Chitosan-Based Coatings to Prevent the Decay of Populus spp. Wood Caused by Trametes Versicolor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents, Fungal Isolate and Wood
2.2. Chitosan-Based Solutions
2.3. In Vitro Assays
2.4. Wood Coating Assays
2.5. Microscopy and FTIR Studies
2.6. Statistical Analyses
3. Results and Discussion
3.1. Minimum Inhibitory Concentration
3.2. Wood Preservation Assays
3.2.1. Weight Loss
3.2.2. Wood Degradation Monitoring
4. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Singh, T.; Singh, A.P. A review on natural products as wood protectant. Wood Sci. Technol. 2012, 46, 851–870. [Google Scholar] [CrossRef]
- Thakur, V.K.; Thakur, M.K. Recent advance in graft copolymerization and application of chitosan: A review. ACS Sustain. Chem. Eng 2014, 2, 2637–2652. [Google Scholar] [CrossRef]
- Kumar, M.N.R. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27. [Google Scholar] [CrossRef]
- Ngo, D.-H.; Vo, T.-S.; Ngo, D.-N.; Kang, K.-H.; Je, J.-Y.; Pham, H.N.-D.; Byun, H.-G.; Kim, S.-K. Biological effects of chitosan and its derivatives. Food Hydrocoll. 2015, 51, 200–216. [Google Scholar] [CrossRef]
- Ma, Z.; Garrido-Maestu, A.; Jeong, K.C. Application, mode of action, and in vivo activity of chitosan and its micro- and nanoparticles as antimicrobial agents: A review. Carbohydr. Polym. 2017, 176, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Silva-Castro, I.; Martín-Ramos, P.; Matei, P.M.; Fernandes-Correa, M.; Hernánez-Navarro, S.; Martín-Gil, J. Eco-friendly nanocomposites of chitosan with natural extracts, antimicrobial agents, and nanometals. In Handbook of Composites from Renewable Materials; Thakur, V.K., Thakur, M.K., Kessler, M.R., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2017; Volume 8, pp. 35–60. [Google Scholar]
- Kumaraswamy, R.V.; Kumari, S.; Choudhary, R.C.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth. Int. J. Biol. Macromol. 2018, 113, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Verlee, A.; Mincke, S.; Stevens, C.V. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr. Polym. 2017, 164, 268–283. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.H.; Hjeljord, L.G.; Aam, B.B.; Sørlie, M.; Tronsmo, A. Antifungal effect of chito-oligosaccharides with different degrees of polymerization. Eur. J. Plant Pathol. 2015, 141, 147–158. [Google Scholar] [CrossRef]
- Younes, I.; Sellimi, S.; Rinaudo, M.; Jellouli, K.; Nasri, M. Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. Int. J. Food Microbiol. 2014, 185, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Kananont, N.; Pichyangkura, R.; Chanprame, S.; Chadchawan, S.; Limpanavech, P. Chitosan specificity for the in vitro seed germination of two Dendrobium orchids (Asparagales: Orchidaceae). Sci. Hortic. 2010, 124, 239–247. [Google Scholar] [CrossRef]
- Mohammadi, R.; Eidi, E.; Ghavami, M.; Kassaee, M.Z. Chitosan synergistically enhanced by successive Fe3O4 and silver nanoparticles as a novel green catalyst in one-pot, three-component synthesis of tetrahydrobenzo[α]xanthene-11-ones. J. Mol. Catal. A Chem. 2014, 393, 309–316. [Google Scholar] [CrossRef]
- Shukla, S.K.; Mishra, A.K.; Arotiba, O.A.; Mamba, B.B. Chitosan-based nanomaterials: A state-of-the-art review. Int. J. Biol. Macromol. 2013, 59, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Wilson, L.D. Kinetic study on urea uptake with chitosan based sorbent materials. Carbohydr. Polym. 2016, 135, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Fabra, M.J.; Flores-López, M.L.; Cerqueira, M.A.; de Rodriguez, D.J.; Lagaron, J.M.; Vicente, A.A. Layer-by-Layer Technique to Developing Functional Nanolaminate Films with Antifungal Activity. Food Bioprocess Technol. 2016, 9, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Fortunati, E.; Giovanale, G.; Luzi, F.; Mazzaglia, A.; Kenny, J.; Torre, L.; Balestra, G. Effective Postharvest Preservation of Kiwifruit and Romaine Lettuce with a Chitosan Hydrochloride Coating. Coatings 2017, 7, 196. [Google Scholar] [CrossRef]
- Escamilla-García, M.; Rodríguez-Hernández, M.; Hernández-Hernández, H.; Delgado-Sánchez, L.; García-Almendárez, B.; Amaro-Reyes, A.; Regalado-González, C. Effect of an Edible Coating Based on Chitosan and Oxidized Starch on Shelf Life of Carica papaya L., and Its Physicochemical and Antimicrobial Properties. Coatings 2018, 8, 318. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Vitchayakitti, W. Improving functional properties of chitosan films to be used as active food packaging by incorporation with propolis. Food Hydrocoll. 2016, 61, 695–702. [Google Scholar] [CrossRef]
- Torlak, E.; Sert, D. Antibacterial effectiveness of chitosan-propolis coated polypropylene films against foodborne pathogens. Int. J. Biol. Macromol. 2013, 60, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Silva-Castro, I.; Barreto, R.W.; Rodríguez, M.C.H.; Matei, P.M.; Martín-Gil, J. Control of Coffee Leaf Rust by chitosan oligomers and propolis. Agric. Life Life Agric. Conf. Proc. 2018, 1, 311–315. [Google Scholar] [CrossRef]
- Venkatesham, M.; Ayodhya, D.; Madhusudhan, A.; Veera Babu, N.; Veerabhadram, G. A novel green one-step synthesis of silver nanoparticles using chitosan: Catalytic activity and antimicrobial studies. Appl. Nanosci. 2012, 4, 113–119. [Google Scholar] [CrossRef]
- Wang, L.-S.; Wang, C.-Y.; Yang, C.-H.; Hsieh, C.-L.; Chen, S.-Y.; Shen, C.-Y.; Wang, J.-J.; Huang, K.-S. Synthesis and anti-fungal effect of silver nanoparticles-chitosan composite particles. Int. J. Nanomed. 2015, 244, 2685. [Google Scholar] [CrossRef]
- El-Gamal, R.; Nikolaivits, E.; Zervakis, G.I.; Abdel-maksoud, G. The use of chitosan in protecting wooden artifacts from damage by mold fungi. Electron. J. Biotechnol. 2016, 24, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Alfredsen, G.; Eikenes, M.; Militz, H.; Solheim, H. Screening of chitosan against wood-deteriorating fungi. Scand. J. For. Res. 2004, 19, 4–13. [Google Scholar] [CrossRef]
- Ding, X.; Richter, D.L.; Matuana, L.M.; Heiden, P.A. Efficient one-pot synthesis and loading of self-assembled amphiphilic chitosan nanoparticles for low-leaching wood preservation. Carbohydr. Polym. 2011, 86, 58–64. [Google Scholar] [CrossRef]
- Torr, K.M.; Chittenden, C.; Franich, R.A.; Kreber, B. Advances in understanding bioactivity of chitosan and chitosan oligomers against selected wood-inhabiting fungi. Holzforschung 2005, 59, 559–567. [Google Scholar] [CrossRef]
- Nowrouzi, Z.; Mohebby, B.; Younesi, H. Influences of nano-chitosan treatment on physical, mechanical properties and bio resistance of wood. J. Indian Acad. Wood Sci. 2014, 11, 174–181. [Google Scholar] [CrossRef]
- Hussain, I.; Singh, T.; Chittenden, C. Preparation of chitosan oligomers and characterization: Their antifungal activities and decay resistance. Holzforschung 2012, 66, 119–125. [Google Scholar] [CrossRef]
- Eikenes, M.; Alfredsen, G.; Erik, B. Comparison of chitosans with different molecular weights as possible wood preservatives. J. Wood Sci. 2005, 51, 387–394. [Google Scholar] [CrossRef]
- Todaro, L.; Russo, D.; Cetera, P.; Milella, L. Effects of thermo-vacuum treatment on secondary metabolite content and antioxidant activity of poplar (Populus nigra L.) wood extracts. Ind. Crops Prod. 2017, 109, 384–390. [Google Scholar] [CrossRef]
- Karimi, A.; Taghiyari, H.R.; Fattahi, A.; Karimi, S.; Ebrahimi, G.; Tarmian, A. Effects of wollastonite nanofibers on biological durability of poplar wood (Populus nigra) against Trametes versicolor. BioResources 2013, 8, 4134–4141. [Google Scholar] [CrossRef]
- Spavento, E.M. Caracterización y mejora tecnológica de la madera de Populus x euramericana I-214 (Dode) Guinier, austral y boreal, con fines estructurales. Ph.D. Thesis, University of Valladolid, Valladolid, Spain, 2015. [Google Scholar]
- EN 350 Durability of Wood and Wood-Based Products—Testing and Classification of the Durability to Biological Agents of Wood and Wood-Based Materials; European Committee for Standardization: Bruxelles, Belgium, 2016.
- Xing, J.-Q.; Ikuo, M.; Wakako, O. Natural resistance of two plantation woods Populus × canadensis cv. and Cunninghamia lanceolata to decay fungi and termites. For. Stud. China 2005, 7, 36–39. [Google Scholar] [CrossRef]
- Diaz, B.; Murace, M.; Peri, P.; Keil, G.; Luna, L.; Otaño, M.Y. Natural and preservative-treated durability of Populus nigra cv Italica timber grown in Santa Cruz Province, Argentina. Int. Biodeterior. Biodegrad. 2003, 52, 43–47. [Google Scholar] [CrossRef]
- Colom, X.; Carrillo, F.; Nogués, F.; Garriga, P. Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym. Degrad. Stab. 2003, 80, 543–549. [Google Scholar] [CrossRef]
- Pandey, K.K.; Pitman, A.J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Mohebby, B. Attenuated total reflection infrared spectroscopy of white-rot decayed beech wood. Int. Biodeterior. Biodegrad. 2005, 55, 247–251. [Google Scholar] [CrossRef]
- Sun, T.; Zhou, D.; Xie, J.; Mao, F. Preparation of chitosan oligomers and their antioxidant activity. Eur. Food Res. Technol. 2007, 225, 451–456. [Google Scholar] [CrossRef]
- Silva-Castro, I.; Martín-García, J.; Diez, J.J.; Flores-Pacheco, J.A.; Martín-Gil, J.; Martín-Ramos, P. Potential control of forest diseases by solutions of chitosan oligomers, propolis and nanosilver. Eur. J. Plant Pathol. 2017, 150, 401–411. [Google Scholar] [CrossRef]
- Matei, P.M.; Martín-Ramos, P.; Sánchez-Báscones, M.; Hernández-Navarro, S.; Correa-Guimaraes, A.; Navas-Gracia, L.M.; Rufino, C.A.; Ramos-Sánchez, M.C.; Martín-Gil, J. Synthesis of chitosan oligomers/propolis/silver nanoparticles composite systems and study of their activity against Diplodia seriata. Int. J. Polym. Sci. 2015, 2015. [Google Scholar] [CrossRef]
- Martín-Gil, J.; Sánchez-Báscones, M.; Hernández-Navarro, S.; Pérez-Lebeña, E.; Martín-Ramos, P.; Araújo-Rufino, C.; Matei, P.M.; Silva-Castro, I. Composite with anti-microbial activity, comprising two self-assembled components of natural origing, and optianally a component (c) of nanometric size. Patent WO 2016066876A1, 6 May 2016. [Google Scholar]
- Larnøy, E.; Eikenes, M.; Militz, H. Evaluation of factors that have an influence on the fixation of chitosan in wood. Wood Mater. Sci. Eng. 2006, 1, 135–148. [Google Scholar] [CrossRef]
- EN 113 Wood Preservativies—Test Methods for Determining the Protective Effectiveness against Wood Destroying Basidiomycetes—Determination of the Toxic Values; European Committee for Standardization: Bruxelles, Belgium, 1996.
- Stössel, P.; Leuba, L.J. Effect of chitosan, chitin and some aminosugar on growth of various soil born phytopathogenic fungi. J. Phytopathol. 1984, 111, 82–90. [Google Scholar] [CrossRef]
- Rabea, E.I.; Badawy, M.E.T.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 2003, 4, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Vesentini, D.; Singh, A.P.; Daniel, G. Effect of chitosan on physiological, morphological, and ultrastructural characteristics of wood-degrading fungi. Int. Biodeterior. Biodegrad. 2008, 62, 116–124. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chatterjee, B.P.; Guha, A.K. A study on antifungal activity of water-soluble chitosan against Macrophomina phaseolina. Int. J. Biol. Macromol. 2014, 67, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Marcucci, M.C. Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie 1994, 26, 83–99. [Google Scholar] [CrossRef]
- Zabaiou, N.; Fouache, A.; Trousson, A.; Baron, S.; Zellagui, A.; Lahouel, M.; Lobaccaro, J.M.A. Biological properties of propolis extracts: Something new from an ancient product. Chem. Phys. Lipids 2017, 207, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Potential role of propolis in wound healing: Biological properties and therapeutic activities. Biomed. Pharmacother. 2018, 98, 469–483. [Google Scholar] [CrossRef] [PubMed]
- Pastor, C.; Sánchez-gonzález, L.; Cháfer, M.; Chiralt, A.; González-martínez, C. Physical and antifungal properties of hydroxypropylmethylcellulose based films containing propolis as affected by moisture content. Carbohydr. Polym. 2010, 82, 1174–1183. [Google Scholar] [CrossRef]
- Ali, A.; Chow, W.L.; Zahid, N.; Ong, M.K. Efficacy of propolis and cinnamon oil coating in controlling post-harvest anthracnose and quality of chilli (Capsicum annuum L.) during cold storage. Food Bioprocess Technol. 2013, 7, 2742–2748. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, T.; Mi, N.; Wang, Y.; Li, G.; Wang, L.; Xie, Y. Antifungal activity of monoterpenes against wood white-rot fungi. Int. Biodeterior. Biodegrad. 2016, 106, 2014–2017. [Google Scholar] [CrossRef]
- Gu, C.; Zhang, H.; Lang, M. Preparation of mono-dispersed silver nanoparticles assisted by chitosan-g-poly(E-caprolactone) micelles and their antimicrobial application. Appl. Surf. Sci. 2014, 301, 273–279. [Google Scholar] [CrossRef]
- Kim, S.W.; Jung, J.H.; Lamsal, K.; Kim, Y.S.; Min, J.S.; Lee, Y.S. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 2018, 8093, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, K.B.; Park, H.H. Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur. J. Plant Pathol. 2014, 140, 185–192. [Google Scholar] [CrossRef]
- Mascheroni, E.; Figoli, A.; Musatti, A.; Limbo, S.; Drioli, E.; Suevo, R.; Talarico, S.; Rollini, M. An alternative encapsulation approach for production of active chitosan-propolis beads. Int. J. Food Sci. Technol. 2014, 49, 1401–1407. [Google Scholar] [CrossRef]
- Kaur, P.; Thakur, R.; Choudhary, A. An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int. J. Sci. Technol. Res. 2012, 1, 83–86. [Google Scholar]
- Velmurugan, N.; Kumar, G.G.; Han, S.S.; Nahm, K.S.; Lee, Y.S. Synthesis and characterization of potential fungicidal silver nano-sized particles and chitosan membrane containing silver particles. Iran. Polym. J. 2009, 18, 383–392. [Google Scholar]
- Araujo-Rufino, C.; Fernandes-Vieira, J.; Martín-Ramos, P.; Silva-Castro, I.; Fernandes-Côrrea, M.; Matei Petruta, M.; Sánchez-Báscones, M.; Carmen, R.-S.M.; Martín-Gil, J. Synthesis of chitosan oligomers composite systems and study of their activity against Bipolaris oryzae. J. Mater. Sci. Eng. Adv. Technol. 2016, 13, 29–52. [Google Scholar]
- He, P.; Davis, S.S.; Illum, L. In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int. J. Pharm. 1998, 166, 75–88. [Google Scholar] [CrossRef]
- Kofuji, K.; Qian, C.J.; Nishimura, M.; Sugiyama, I.; Murata, Y.; Kawashima, S. Relationship between physicochemical characteristics and functional properties of chitosan. Eur. Polym. J. 2005, 41, 2784–2791. [Google Scholar] [CrossRef]
- Flores-López, M.L.; Cerqueira, M.A.; de Rodríguez, D.J.; Vicente, A.A. Perspectives on Utilization of Edible Coatings and Nano-laminate Coatings for Extension of Postharvest Storage of Fruits and Vegetables. Food Eng. Rev. 2016, 8, 292–305. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wohlert, J.; Bergenstråhle-Wohlert, M.; Tu, Y.; Ågren, H. Molecular mechanisms for the adhesion of chitin and chitosan to montmorillonite clay. RSC Adv. 2015, 5, 54580–54588. [Google Scholar] [CrossRef] [Green Version]
- Akhtari, M.; Arefkhani, M. Study of microscopy properties of wood impregnated with nanoparticles during exposed to white-rot fungus. Agric. Sci. Dev. 2013, 2, 116–119. [Google Scholar]
- Marin, L.; Moraru, S.; Popescu, M.C.; Nicolescu, A.; Zgardan, C.; Simionescu, B.C.; Barboiu, M. Out-of-water constitutional self-organization of chitosan-cinnamaldehyde dynagels. Chem. A Eur. J. 2014, 20, 4814–4821. [Google Scholar] [CrossRef] [PubMed]
- Özgenç, Ö.; Durmaz, S.; Hakki, I.; Eksi-kocak, H. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 171, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ferrari, C.; Angiuli, M.; Yao, J.; Raspi, C.; Bramanti, E. Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydr. Polym. 2010, 82, 772–778. [Google Scholar] [CrossRef]
Treatment | Concentration | ||||||
---|---|---|---|---|---|---|---|
Control | 0.0 | ||||||
MMWC | 1.0 | 2.0 | 4.0 | 7.0 | 10.0 | ||
CO | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | ||
P | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | ||
nAg | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | ||
CO-P | 0.5–0.05 | 1.0–0.1 | 2.0–0.2 | ||||
CO-nAg | 0.5–0.5 | 1.0–1.0 | 2.0–2.0 | ||||
P-nAg | 0.05–0.5 | 0.1–1.0 | 0.2–2.0 | ||||
CO-P-nAg | 0.5–0.05–0.5 | 1.0–0.1–1.0 | 2.0–0.2–2.0 |
Treatment | Concentration | Inhibition Percentage (%) Mean-Confidence Interval and Homogeneous Groups | Shapiro Wilk p-Value | Levene’s Test p-Value | Welch’s Test p-Value | |
---|---|---|---|---|---|---|
Control | 0.0 | 0.000 ± 0.000 | C | 0.000 | − | − |
MMWC | 1.0 | 22.708 ± 2.027 | a | 0.324 | 0.08629 | 0.0000 |
2.0 | 42.083 ± 1.429 | b | 0.505 | |||
4.0 | 75.375 ± 1.970 | e | 0.377 | |||
7.0 | 90.250 ± 1.846 | i | 0.988 | |||
10.0 | 95.542 ± 1.331 | j k | 0.001 | |||
CO | 1.0 | 78.750 ± 1.094 | f | 0.110 | 0.0417 | 0.0000 |
1.5 | 87.708 ± 0.857 | h | 0.035 | |||
2.0 | 92.333 ± 0.991 | i j | 0.433 | |||
2.5 | 97.000 ± 0.992 | k | 0.680 | |||
3.0 | 99.997 ± 0.004 | l | 0.001 | |||
P | 0.1 | 84.541 ± 1.135 | g | 0.836 | 0.0207 | 0.0000 |
0.2 | 88.333 ± 1.173 | i | 0.911 | |||
0.3 | 93.333 ± 1.148 | j | 0.850 | |||
0.4 | 97.500 ± 0.909 | k | 0.421 | |||
0.5 | 99.997 ± 0.004 | l | 0.001 | |||
nAg | 1.0 | 85.000 ± 1.270 | g | 0.960 | 0.0214 | 0.0000 |
1.5 | 91.333 ± 1.221 | h | 0.843 | |||
2.0 | 94.217 ± 1.177 | j | 0.473 | |||
2.5 | 97.333 ± 0.753 | k | 0.725 | |||
3.0 | 99.997 ± 0.004 | l | 0.001 | |||
CO-P | 0.5–0.05 | 51.458 ± 2.472 | c | 0.540 | 0.0037 | 0.0000 |
1.0–0.1 | 89.167 ± 0.451 | h | 0.001 | |||
2.0–0.2 | 99.997 ± 0.003 | l | 0.001 | |||
CO-nAg | 0.5–0.5 | 64.583 ± 0.427 | d | 0.001 | 0.0281 | 0.0000 |
1.0–1.0 | 84.583 ± 0.740 | g | 0.091 | |||
2.0–2.0 | 99.996 ± 0.003 | l | 0.001 | |||
P-nAg | 0.05–0.5 | 47.292 ± 1.673 | c | 0.212 | 0.1652 | 0.0000 |
0.1–1.0 | 84.167 ± 0.639 | g | 0.001 | |||
0.2–2.0 | 99.997 ± 0.004 | l | 0.001 | |||
CO-P-nAg | 0.5–0.05–0.5 | 77.500 ± 1.081 | f | 0.110 | 0.0190 | 0.0000 |
1.0–0.1–1.0 | 85.208 ± 1.348 | g | 0.804 | |||
2.0–0.2–2.0 | 99.997 ± 0.004 | l | 0.001 |
Treatment | Time (days) | Weight Loss (%) Mean-Confidence Interval and Homogeneous Groups | Shapiro Wilk p-Value | Levene’s Test p-Value | Welch’s Test p-Value | |
---|---|---|---|---|---|---|
Control | 5 | 0.138 ± 0.155 | a | 0.004 | 0.1973 | 0.0000 |
10 | 5.352 ± 1.315 | b c | 0.079 | |||
15 | 27.261 ± 3.037 | i j | 0.127 | |||
20 | 32.888 ± 4.233 | j k | 0.073 | |||
25 | 39.774 ± 2.036 | l | 0.949 | |||
30 | 42.353 ± 1.866 | l | 0.470 | |||
MMWC | 5 | 0.000 ± 0.000 | a | 0.000 | 0.1132 | 0.0000 |
10 | 0.000 ± 0.000 | a | 0.000 | |||
15 | 3.478 ± 0.541 | b | 0.534 | |||
20 | 7.177 ± 0.570 | c | 0.900 | |||
25 | 10.157 ± 1.095 | d | 0.955 | |||
30 | 11.455 ± 1.171 | d | 0.412 | |||
CO | 5 | 0.000 ± 0.000 | a | 0.000 | 0.0001 | 0.0000 |
10 | 4.311 ± 0.883 | b | 0.825 | |||
15 | 6.570 ± 1.226 | c | 0.759 | |||
20 | 13.524 ± 0.937 | e | 0.999 | |||
25 | 22.190 ± 0.890 | h | 0.961 | |||
30 | 26.871 ± 1.164 | i | 0.373 | |||
CO-P | 5 | 0.000 ± 0.000 | a | 0.000 | 0.0254 | 0.0000 |
10 | 7.567 ± 0.889 | c | 0.610 | |||
15 | 13.578 ± 1.084 | e | 0.996 | |||
20 | 17.276 ± 1.154 | f | 0.869 | |||
25 | 29.662 ± 1.174 | j | 0.340 | |||
30 | 32.856 ± 1.039 | k | 0.289 | |||
CO-P-Ag | 5 | 0.000 ± 0.000 | a | 0.000 | 0.0342 | 0.0000 |
10 | 10.615 ± 1.071 | d | 0.138 | |||
15 | 20.150 ± 1.185 | g | 0.660 | |||
20 | 26.864 ± 1.154 | i | 0.971 | |||
25 | 35.074 ± 1.341 | k | 0.762 | |||
30 | 39.943 ± 2.357 | l | 0.882 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Castro, I.; Casados-Sanz, M.; Alonso-Cortés, A.L.; Martín-Ramos, P.; Martín-Gil, J.; Acuña-Rello, L. Chitosan-Based Coatings to Prevent the Decay of Populus spp. Wood Caused by Trametes Versicolor. Coatings 2018, 8, 415. https://doi.org/10.3390/coatings8120415
Silva-Castro I, Casados-Sanz M, Alonso-Cortés AL, Martín-Ramos P, Martín-Gil J, Acuña-Rello L. Chitosan-Based Coatings to Prevent the Decay of Populus spp. Wood Caused by Trametes Versicolor. Coatings. 2018; 8(12):415. https://doi.org/10.3390/coatings8120415
Chicago/Turabian StyleSilva-Castro, Iosody, Milagros Casados-Sanz, Agustín L. Alonso-Cortés, Pablo Martín-Ramos, Jesús Martín-Gil, and Luis Acuña-Rello. 2018. "Chitosan-Based Coatings to Prevent the Decay of Populus spp. Wood Caused by Trametes Versicolor" Coatings 8, no. 12: 415. https://doi.org/10.3390/coatings8120415