A Novel Basalt Flake Epoxy Resin Coating Modified by Carbon Nanotubes
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Materials
2.2. Sample Preparation
2.3. Characterization Techniques
2.4. Chemical Durability and Water Absorption Tests
3. Results
3.1. The FT-IR Analysis of CNTs
3.2. Characterization and Properties of the CNTs Modified BFs
Surface Morphology of the CNTs Modified BFs
3.3. Characterization and Properties of the CNT-BF/EP Coating
3.3.1. The Cross-Section Morphology of CNT-BF/EP Coating
3.3.2. The Tensile Strength Test of the CNT-BF/EP Coating
3.3.3. The Chemical Durability of the CNT-BF/EP Coating
3.3.4. Water Absorption of the CNT-BF/EP Coating
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, S.H.; Li, M.X.; Yoon, J.H.; Cho, T.Y.; He, Y.Z.; Lee, C.G. Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition. Sci. Technol. Adv. Mater. 2008, 9, 35002. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Liu, L.; Meng, F.; Liu, Y.; Li, Y.; Wang, F. The failure behaviour of an epoxy glass flake coating/steel system under marine alternating hydrostatic pressure. Corros. Sci. 2014, 86, 81–92. [Google Scholar] [CrossRef]
- Wang, G.; Yang, J. Influences of glass flakes on fire protection and water resistance of waterborne intumescent fire resistive coating for steel structure. Prog. Org. Coat. 2011, 70, 150–156. [Google Scholar] [CrossRef]
- Sathiyanarayanan, S.; Azim, S.S.; Venkatachari, G. Corrosion protection coating containing polyaniline glass flake composite for steel. Electrochim. Acta 2008, 53, 2087–2094. [Google Scholar] [CrossRef]
- Lv, X.; Li, X.; Li, N.; Zhang, H.; Zheng, Y.-Z.; Wu, J.; Tao, X. ZrO2 nanoparticle encapsulation of graphene microsheets for enhancing anticorrosion performance of epoxy coatings. Surf. Coat. Technol. 2019, 358, 443–451. [Google Scholar] [CrossRef]
- Kim, S.H.; Heo, Y.-J.; Park, M.; Min, B.-G.; Rhee, K.Y.; Park, S.-J. Effect of hydrophilic graphite flake on thermal conductivity and fracture toughness of basalt fibers/epoxy composites. Compos. Part B Eng. 2018, 153, 9–16. [Google Scholar] [CrossRef]
- Broughton, W.; Lodeiro, M.; Pilkington, G. Influence of coupling agents on material behaviour of glass flake reinforced polypropylene. Compos. Part A Appl. Sci. Manuf. 2010, 41, 506–514. [Google Scholar] [CrossRef]
- Luo, L.; Ma, Q.; Wang, Q.; Ding, L.; Gong, Z.; Jiang, W. Study of a nano-SiO2 microsphere-modified basalt flake epoxy resin coating. Coatings 2019, 9, 154. [Google Scholar] [CrossRef]
- Yan, J.; Shi, J.; Zhang, P.; Tian, W.; Zhang, Y.; Sun, Z. Preparation and properties of epoxy/basalt flakes anticorrosive coatings. Mater. Corros. 2018, 69, 1669–1675. [Google Scholar] [CrossRef]
- Song, P.-A.; Yang, H.-T.; Fu, S.-Y.; Wu, Q.; Ye, J.-W.; Lu, F.-Z.; Jin, Y.-M. Effect of carbon nanotubes on the mechanical properties of polypropylene/wood flour composites: Reinforcement mechanism. J. Macromol. Sci. Part B 2011, 50, 907–921. [Google Scholar] [CrossRef]
- Fronza, B.M.; Lewis, S.; Shah, P.K.; Barros, M.D.; Giannini, M.; Stansbury, J.W. Modification of filler surface treatment of composite resins using alternative silanes and functional nanogels. Dent. Mater. 2019, 35, 928–936. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Wang, G.; Hu, M.; Chen, B. Modification of wollastonite by acid treatment and alkali-induced redeposition for use as papermaking filler. Powder Technol. 2015, 276, 193–199. [Google Scholar] [CrossRef]
- Zhang, W.; Zou, X.; Wei, F.; Wang, H.; Zhang, G.; Huang, Y.; Zhang, Y. Grafting SiO2 nanoparticles on polyvinyl alcohol fibers to enhance the interfacial bonding strength with cement. Compos. Part B Eng. 2019, 162, 500–507. [Google Scholar] [CrossRef]
- Szakács, J.; Mészáros, L. Synergistic effects of carbon nanotubes on the mechanical properties of basalt and carbon fiber-reinforced polyamide 6 hybrid composites. J. Thermoplast. Compos. Mater. 2018, 31, 553–571. [Google Scholar] [CrossRef]
- Siddiqui, N.A.; Sham, M.-L.; Tang, B.Z.; Munir, A.; Kim, J.-K. Tensile strength of glass fibres with carbon nanotube-epoxy nanocomposite coating. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1606–1614. [Google Scholar] [CrossRef]
- Ma, Q.; Ding, L.; Wang, Q.; Yu, Y.; Luo, L.; Li, H. Preparation and characterization of continuous fly ash derived glass fibers with improved tensile strength. Mater. Lett. 2018, 231, 119–121. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Wu, S.; Duan, Y.; Fu, X.; Wu, J. Surface modification of CNTs and enhanced photocatalytic activity of TiO2 coated on hydrophilically modified CNTs. Appl. Surf. Sci. 2012, 258, 3012–3018. [Google Scholar] [CrossRef]
- Gómez, S.; Rendtorff, N.M.; Aglietti, E.F.; Sakka, Y.; Suarez, G. Intensity of sulfonitric treatment on multiwall carbon nanotubes. Chem. Phys. Lett. 2017, 689, 135–141. [Google Scholar] [CrossRef]
- Kim, S.D.; Kim, J.W.; Im, J.S.; Kim, Y.H.; Lee, Y.S. A comparative study on properties of multi-walled carbon nanotubes (MWCNTs) modified with acids and oxyfluorination. J. Fluor. Chem. 2007, 128, 60–64. [Google Scholar] [CrossRef]
- Osorio, A.; Silveira, I.; Bueno, V.; Bergmann, C. H2SO4/HNO3/HCl-Functionalization and its effect on dispersion of carbon nanotubes in aqueous media. Appl. Surf. Sci. 2008, 255, 2485–2489. [Google Scholar] [CrossRef]
- Li, S.; Li, Z.; Ke, B.; He, Z.; Cui, Y.; Pan, Z.; Li, D.; Huang, S.; Lai, C.; Su, J. Magnetic multi-walled carbon nanotubes modified with polyaluminium chloride for removal of humic acid from aqueous solution. J. Mol. Liq. 2019, 279, 241–250. [Google Scholar] [CrossRef]
- Liang, C.; Song, P.; Ma, A.; Shi, X.; Gu, H.; Wang, L.; Qiu, H.; Kong, J.; Gu, J. Highly oriented three-dimensional structures of Fe3O4 decorated CNTs/reduced graphene oxide foam/epoxy nanocomposites against electromagnetic pollution. Compos. Sci. Technol. 2019, 181, 107683. [Google Scholar] [CrossRef]
- Xu, Z.; Dai, J.; Niu, J.; He, L.; Mu, R.; Wang, Z. Isothermal oxidation and hot corrosion behaviors of diffusion aluminide coatings deposited by chemical vapor deposition. J. Alloy. Compd. 2015, 637, 343–349. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, L.; Wang, Q.; Ma, Q.; Wang, Q.; Liu, J.; Ding, L.; Jiang, W. A Novel Basalt Flake Epoxy Resin Coating Modified by Carbon Nanotubes. Coatings 2019, 9, 714. https://doi.org/10.3390/coatings9110714
Luo L, Wang Q, Ma Q, Wang Q, Liu J, Ding L, Jiang W. A Novel Basalt Flake Epoxy Resin Coating Modified by Carbon Nanotubes. Coatings. 2019; 9(11):714. https://doi.org/10.3390/coatings9110714
Chicago/Turabian StyleLuo, Lida, Qihui Wang, Qian Ma, Qingwei Wang, Jin Liu, Linfeng Ding, and Weizhong Jiang. 2019. "A Novel Basalt Flake Epoxy Resin Coating Modified by Carbon Nanotubes" Coatings 9, no. 11: 714. https://doi.org/10.3390/coatings9110714
APA StyleLuo, L., Wang, Q., Ma, Q., Wang, Q., Liu, J., Ding, L., & Jiang, W. (2019). A Novel Basalt Flake Epoxy Resin Coating Modified by Carbon Nanotubes. Coatings, 9(11), 714. https://doi.org/10.3390/coatings9110714