Synthesis and Characterization of Nanostructured Polyaniline Thin Films with Superhydrophobic Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Nanoparticles (TiO2 and ZnO)
2.2. Electrochemical Polymerization
2.3. Characterization
3. Results and Discussion
3.1. X-Ray Diffraction
3.2. HR-TEM Characterization
3.3. Electrochemical Polymerization and CV
3.4. FE-SEM Analysis
3.5. XPS Analysis
4. Conclusions
- The electrochemical polymerization using the CV method was employed to prepare PANI and the PANI/TiO2 and ZnO nanocomposites. Comprehensive characterization and analysis were presented.
- HR-TEM images revealed that the particle sizes of the prepared powders (ZnO and TiO2) were in the ranges of 13 and 6.5 nm, respectively.
- FE-SEM images of the PANI/TiO2 and PANI/ZnO nanocomposites showed the formation and morphological evolution of the PANI thin films. The mechanism of morphological growth of the PANI nanocomposites was discussed.
- The XPS chemical and surface analysis was used to study the surface chemistry and the surface composition of PANI and the PANI nanocomposites. Detailed information from the scan spectrum was presented for all elements in the thin film. The analysis confirmed that the incorporation of the oxide nanoparticles in the matrix.
- The results clearly indicated that a superhydrophobic PANI coating can be produced by a simple and inexpensive electrochemical polymerization technique.
- The maximum water CA of the prepared coating layer with TiO2 reached 146° without any optimization for the produced coatings.
Author Contributions
Funding
Conflicts of Interest
References
- Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8. [Google Scholar] [CrossRef]
- Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super-hydrophobic surfaces: From natural to artificial. Adv. Mater. 2002, 14, 1857–1860. [Google Scholar] [CrossRef]
- Koch, K.; Barthlott, W. Superhydrophobic and superhydrophilic plant surfaces: An inspiration for biomimetic materials. Philos. Trans. R. Soc. A 2009, 367, 1487–1509. [Google Scholar] [CrossRef] [PubMed]
- Ensikat, H.J.; Ditsche-Kuru, P.; Neinhuis, C.; Barthlott, W. Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Beilstein J. Nanotechnol. 2011, 2, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Barthlott, W.; Mail, M.; Neinhuis, C. Superhydrophobic hierarchically structured surfaces in biology: Evolution, structural principles and biomimetic applications. Philos. Trans. R. Soc. A 2016, 374, 20160191. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Sathasivam, S.; Song, J.; Crick, C.R.; Carmalt, C.J.; Parkin, I.P. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 2015, 347, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Law, K.Y. Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: Getting the basics right. J. Phys. Chem. Lett. 2014, 5, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhang, Q.; Zhan, X.; Chen, F. Superhydrophobic and anti-icing properties under overcooled temperature of fluorinated hybrid surface prepared via sol-gel process. Soft Matter 2015, 11, 4540–4550. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, I.; Ravindra, C.; Pangule, S.; Ravi, K. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria and marine organisms. Adv. Mater. 2011, 23, 690–718. [Google Scholar] [CrossRef] [PubMed]
- Young, B.; Pitt, W.; Cooper, S. Protein adsorption on polymeric biomaterials: II. Adsorption kinetics. J. Colloid Interface Sci. 1988, 124, 28–43. [Google Scholar] [CrossRef]
- Horbett, T. Protein adsorption on biomaterials, Biomater. Interfacial Phenom. Appl. 1982, 199, 233–244. [Google Scholar]
- Zhu, Y.; Wang, D.; Jiang, L.; Jin, J. Recent Progress in Developing Advanced Membranes for Emulsified Oil/Water Separation. Npg Asia Mater. 2014, 6, e101. [Google Scholar] [CrossRef]
- Chen, P.C.; Xu, Z.K. Mineral-Coated Polymer Membranes with Superhydrophilicity and Underwater Superoleophobicity for Effective Oil/Water Separation. Sci. Rep. 2013, 3, 2776. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Lim, T.T. Performance and Mechanism of a Hydrophobic—Oleophilic Kapok Filter for Oil/Water Separation. Desalination 2006, 190, 295–307. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, L.; Qian, H. Superhydrophobic surfaces for corrosion protection: A review of recent progresses and future directions. J. Coat. Technol. Res. 2016, 13, 11. [Google Scholar] [CrossRef]
- Bhushan, B.; Koch, K.; Jung, Y. Fabrication and characterization of the hierarchical structure for superhydrophobicity and self-cleaning. Ultramicroscopy 2009, 109, 1029–1034. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Ke, Q.; Zhou, G.; Tang, T. Fabrication of microcavity-array superhydrophobic surfaces using an improved template method. J. Colloid Interface Sci. 2013, 395, 326–328. [Google Scholar] [CrossRef] [PubMed]
- Vandencasteele, N.; Merche, D.; Reniers, F. XPS and contact angle study of N2 sand O2 plasma-modified PTFE, PVDF and PVF surfaces. Surf. Interface Anal. 2006, 38, 526–530. [Google Scholar] [CrossRef]
- Zhai, F.; Cebeci, F.; Cohen, R.; Rubner, R. Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers. Nano Lett. 2004, 4, 1349. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, J. Layer-by-layer codeposition of polyelectrolyte complexes and free polyelectrolytes for the fabrication of polymeric coatings. Macromolecules 2010, 43, 2413–2420. [Google Scholar] [CrossRef]
- Michielsen, S.; Lee, H.J. Design of a superhydrophobic surface using woven structures. Langmuir 2007, 23, 6004–6010. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Ding, B.; Sone, Y.; Shiratori, S. Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes. Nanotechnology 2007, 18, 165607. [Google Scholar] [CrossRef]
- Ma, M.; Mao, Y.; Gupta, M.; Gleason, K.K.; Rutledge, G.C. Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules 2005, 38, 9742–9748. [Google Scholar] [CrossRef]
- Wang, X.; Ding, B.; Yu, J.; Wang, M. Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano Today 2011, 6, 510–530. [Google Scholar] [CrossRef]
- Ganesh, V.A.; Raut, H.K.; Nair, A.S.; Ramakrishna, S. A review on self-cleaning coatings. J. Mater. Chem. 2011, 21, 16304–16322. [Google Scholar] [CrossRef]
- Han, D.; Steckl, A.J. Superhydrophobic and oleophobic fibers by coaxial electrospinning. Langmuir 2009, 25, 9454–9462. [Google Scholar] [CrossRef] [PubMed]
- Allcock, H.R.; Steely, L.B.; Singh, A. Hydrophobic and superhydrophobic surfaces from polyphosphazenes. Polym. Int. 2006, 55, 621–625. [Google Scholar] [CrossRef]
- Ding, B.; Ogawa, T.; Kim, J.; Fujimoto, K.; Shiratori, S. Fabrication of a super-hydrophobic nanofibrous zinc oxide film surface by electrospinning. Thin Solid Film. 2008, 516, 2495–2501. [Google Scholar] [CrossRef]
- Aguilar-Morales, A.I.; Alamri, S.; Lasagni, A.F. Micro-fabrication of high aspect ratio periodic structures on stainless steel by picosecond direct laser interference patterning. J. Mater. Proc. Technol. 2018, 252, 313–321. [Google Scholar] [CrossRef]
- Levkin, P.A.; Svec, F.; Fréchet, J.M. Porous polymer coatings: A versatile approach to superhydrophobic surfaces. Adv. Funct. Mater. 2009, 19, 1993–1998. [Google Scholar] [CrossRef] [PubMed]
- Ates, M.; Topkaya, E. Nanocomposite film formations of polyaniline via TiO2, Ag, and Zn, and their corrosion protection properties. Prog. Org. Coat. 2015, 82, 33–40. [Google Scholar]
- MacDiarmid, A. Synthetic Metals: A Novel Role for Organic Polymers. Angew. Chem. Int. Ed. 2001, 40, 2581–2590. [Google Scholar] [CrossRef]
- Li, D.; Huang, J.; Kaner, R. Polyaniline nanofibers: A unique polymer nanostructure for versatile applications. Acc. Chem. Res. 2009, 42, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Obaid, A.Y.; El-Mossalamy, E.H.; Al-Thabaiti, S.A.; El-Hallag, I.S.; Hermab, A.A.; Asiri, A.M. Electrodeposition and Characterization of Polyaniline on Stainless Steel Surface via Cyclic, Convolutive Voltammetry and SEM in Aqueous Acidic Solutions. International Journal of electrochemical science. Int. J. Electrochem. Sci. 2014, 9, 1003–1015. [Google Scholar]
- Dhand, C.; Dwivedi, N.; Mishra, S.; Solanki, P.R.; Mayandi, V.; Beuerman, R.W.; Ramakrishna, S.; Lakshminarayanan, R.; Malhotra, B.D. Polyaniline-based biosensors. Nanobiosens. Dis. Diagn. 2015, 4, 25–46. [Google Scholar]
- Ge, J.; Cheng, G.; Chen, L. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. Nanoscale 2011, 3, 3084–3088. [Google Scholar] [CrossRef] [PubMed]
- Domingues, S.H.; Salvatierra, R.V.; Oliveira, M.M.; Zarbin, A.J. Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization. Chem. Commun. 2011, 47, 2592–2594. [Google Scholar] [CrossRef] [PubMed]
- Bandgar, D.K.; Khuspe, G.D.; Pawar, R.C.; Lee, C.S.; Patil, V.B. Facile and novel route for preparation of nanostructured polyaniline (PANi) thin films. Appl. Nanosci. 2014, 4, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Pringsheim, E.; Terpetschnig, E.; Wolfbeis, O.S. Optical sensing of pH using thin films of substituted polyanilines. Anal. Chim. Acta 1997, 357, 247–252. [Google Scholar] [CrossRef]
- Tai, H.; Jiang, Y.; Xie, G.; Yu, J.; Chen, X. Fabrication and gas sensitivity of polyaniline–titanium dioxide nanocomposite thin film. Sens. Actuators B 2007, 125, 644–650. [Google Scholar] [CrossRef]
- Sun, H.; Luo, Y.; Zhang, Y.; Li, D.; Yu, Z.; Li, K.; Meng, Q. In situ preparation of a flexible polyaniline/carbon composite counter electrode and its application in dye-sensitized solar cells. J. Phys. Chem. C 2010, 114, 11673–11679. [Google Scholar] [CrossRef]
- Akhtar, M.; Weakliem, H.A.; Paiste, R.M.; Gaughan, K. Polyaniline thin film electrochromic devices. Synth. Met. 1988, 26, 203–208. [Google Scholar] [CrossRef]
- Chang, C.H.; Huang, T.C.; Peng, C.W.; Yeh, T.C.; Lu, H.I.; Hung, W.I.; Weng, C.J.; Yang, T.I.; Yeh, J.M. Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 2012, 50, 5044–5051. [Google Scholar] [CrossRef]
- Talo, A.; Passiniemi, P.; Forsen, O.; Yläsaari, S. Polyaniline/epoxy coatings with good anti-corrosion properties. Synth. Met. 1997, 85, 1333–1334. [Google Scholar] [CrossRef]
- Kalendová, A.; Sapurina, I.; Stejskal, J.; Veselý, D. Anticorrosion properties of polyaniline-coated pigments in organic coatings. Corros. Sci. 2008, 50, 3549–3560. [Google Scholar] [CrossRef]
- Olad, A.; Barati, M.; Shirmohammadi, H. Conductivity and anticorrosion performance of polyaniline/zinc composites: Investigation of zinc particle size and distribution effect. Prog. Org. Coat. 2011, 72, 599–604. [Google Scholar] [CrossRef]
- Qu, M.; Zhao, G.; Cao, X.; Zhang, J. Biomimetic fabrication of lotus-leaf-like structured polyaniline film with stable superhydrophobic and conductive properties. Langmuir 2008, 24, 4185–4189. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hu, D.; Wan, M.X.; Jiang, L.; Wei, Y. Conducting and superhydrophobic rambutan-like hollow spheres of polyaniline. Adv. Mater. 2007, 19, 2092–2096. [Google Scholar] [CrossRef]
- Mostafaei, A.; Zolriasatein, A. Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog. Nat. Sci. 2012, 22, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Wessling, B. Passivation of Metals by Coating with Polyaniline: Corrosion Potential Shift and Morphological Changes. Adv. Mater. 1994, 6, 226–228. [Google Scholar] [CrossRef]
- Kilmartin, P.A.; Trie, L.; Wright, G.A. Corrosion Inhibition of Polyaniline and Poly(o-methoxyaniline) on stainless steel. Synth. Met. 2002, 131, 99–109. [Google Scholar] [CrossRef]
- Frau, A.; Pernites, R.B.; Advincula, R.C. A Conjugated Polymer Network Approach to Anticorrosion Coatings: Poly(vinylcarbazole) Electrodeposition. Ind. Eng. Chem. Res. 2010, 49, 9789–9797. [Google Scholar] [CrossRef]
- Sapurina, I.; Stejskal, J. The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym. Int. 2008, 57, 1295–1325. [Google Scholar] [CrossRef]
- Stejskal, J.; Sapurina, I.; Trchová, M. Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog. Polym. Sci. 2010, 35, 1420–1481. [Google Scholar] [CrossRef]
- Sapurina, I.Y.; Stejskal, J. Oxidation of aniline with strong and weak oxidants. Russ. J. Gen. Chem. 2012, 82, 256–275. [Google Scholar] [CrossRef]
- Song, E.; Choi, J.W. Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials 2013, 3, 498–523. [Google Scholar] [CrossRef] [PubMed]
- Gilja, V.; Vrban, I.; Mandić, V.; Žic, M.; Hrnjak-Murgić, Z. Preparation of a PANI/ZnO Composite for Efficient Photocatalytic Degradation of Acid Blue. Polymers 2018, 10, 940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors—Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- Belgherbi, O.; Chouder, D.; Lakhdari, D.; Manesri, A. Electropolymerization and Characterization of Electro Active Polyaniline Thin Films. In Proceedings of the 24th Research World International Conference, Istanbul, Turkey, 26–27 December 2016. [Google Scholar]
- Kang, E.T.; Neoh, K.G.; Tan, K.L. Polyaniline: A polymer with many Intrinsic Redox States. Polym. Sci. 1998, 23, 277. [Google Scholar] [CrossRef]
- Khalila, M.W.; Salah Eldin, T.; Hassan, H.B.; El-Sayed, K.; Abdel Hamid, Z. Electrodeposition of Ni–GNS–TiO2 nanocomposite coatings as anticorrosion film for mild steel in neutral environment. Surf. Coat. Technol. 2015, 275, 98–111. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel Hamid, Z.; Hasan Gomaa, M.; S. Abdel Rehim, S.; Abdel Hamid, M.; Ibrahim, A. Synthesis and Characterization of Nanostructured Polyaniline Thin Films with Superhydrophobic Properties. Coatings 2019, 9, 748. https://doi.org/10.3390/coatings9110748
Abdel Hamid Z, Hasan Gomaa M, S. Abdel Rehim S, Abdel Hamid M, Ibrahim A. Synthesis and Characterization of Nanostructured Polyaniline Thin Films with Superhydrophobic Properties. Coatings. 2019; 9(11):748. https://doi.org/10.3390/coatings9110748
Chicago/Turabian StyleAbdel Hamid, Zeinab, Mona Hasan Gomaa, Sayed S. Abdel Rehim, Maamoun Abdel Hamid, and Ahmed Ibrahim. 2019. "Synthesis and Characterization of Nanostructured Polyaniline Thin Films with Superhydrophobic Properties" Coatings 9, no. 11: 748. https://doi.org/10.3390/coatings9110748
APA StyleAbdel Hamid, Z., Hasan Gomaa, M., S. Abdel Rehim, S., Abdel Hamid, M., & Ibrahim, A. (2019). Synthesis and Characterization of Nanostructured Polyaniline Thin Films with Superhydrophobic Properties. Coatings, 9(11), 748. https://doi.org/10.3390/coatings9110748