Functional Performance of Stone Mastic Asphalt Pavements in Spain: Acoustic Assessment
Abstract
:1. Introduction
2. Project Design
3. Measurement Methods and Equipment
3.1. Close Proximity
3.2. Surface Profile
3.3. Sound Absorption
3.4. Dynamic Stiffness
3.5. Low-Noise Pavement Labeling Methodology in Spain
- MBSR Class A: Excellent tire/pavement noise reduction.
- MBSR Class B: Good tire/pavement noise reduction.
- MBSR Class C: Acceptable tire/pavement noise reduction.
4. Results and Discussion
4.1. Acoustic Absorption and Dynamic Stiffness Measurements
4.2. Surface Profile Measurements
4.3. Close Proximity Measurements
- The shape of the ΔLCPtr curves (Figure 9) is not speed-dependent.
- The relation between both spectra is speed-dependent. Differences between SMA11 and SMA16 are higher at higher speeds, and therefore, this result agrees with Figure 8.
- In spite of the different LCPtr average values and homogeneities (50 km/h) of each test track section (Table 2), there are some points of the test track sections with similar tire/pavement noise levels, as indicated by the error range of each single measurement in Table 2. This does not occur at 80 km/h, where the differences between the average noise levels are higher.
- At low frequencies (up to 700 Hz), SMA11 is noisier than SMA16 in spite of its lower texture level at high texture wavelengths (Figure 6), which are related to impacts and vibrations.
- At high frequencies (from 2000 Hz), SMA16 is noisier than SMA11, in spite of its higher texture level at low texture wavelengths (Figure 6) (sound dispersion) and their similar acoustic absorption spectra.
- Medium frequencies (800–1000 Hz) are the dominant frequencies within the tire/pavement sound levels. The sound generation at these frequencies is governed by a combination of tire/pavement noise generation mechanisms [32]. Medium frequencies are responsible for the highest global sound levels measured in the mixture SMA16.
4.4. Labeling
5. Conclusions
- Acoustic absorption does not play an important role in the noise reduction capacity of the assessed bituminous mixtures with an air void content lower than 10%. The dynamic stiffness value measured is similar in both mixtures. Although the SMA16 mixture has higher average dynamic stiffness at 400 Hz, the differences between mixtures do not justify the higher tire/pavement sound levels of this mixture at medium frequencies.
- The different maximum aggregate sizes of the mixtures do not affect neither their acoustic absorption nor their dynamic stiffness.
- The bituminous mixture SMA11 is better for noise reduction than the SMA16 at 80 km/h. At 50 km/h, the differences between both mixtures are lower. This result may be connected to their MAS. According to the sound spectra, the SMA 16 is noisier at frequencies from 700 Hz, regardless of the reference speed.
- The acoustic behavior of SMA11 and SMA16 depends on the speed. This dependence makes the mixture SMA11 more suitable for paving operations in roads (higher usual speed).
- The SMA16 bituminous mixture has higher MPD values. Its higher macrotexture amplitude might produce the higher LCPtr levels, however, the differences between the MPD values are not big enough to confirm this observation. Texture spectra measurements were conducted in order to identify the texture wavelengths related to the different frequencies of the tire/pavement sound levels.
- The SMA16 has higher texture levels than the SMA11 at nearly every wavelength, except for 12.5 and 31.5 mm, where this mixture has slightly lower values. In spite of their texture spectrum, the SMA 16 produces lower tire/pavement sound levels at low frequencies and higher levels at medium/high frequencies. The texture spectra may influence noise, but the main texture wavelengths affecting overall noise should be determined, as well as the wavelengths that rule the tire/pavement noise at each one-third octave band of a given bituminous mixture.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bueno, M.; Luong, J.; Terán, F.; Viñuela, U.; Paje, S.E. Macrotexture influence on vibrational mechanisms of the tyre-road noise of an asphalt rubber pavement. Int. J. Pavement Eng. 2014, 15, 606–613. [Google Scholar] [CrossRef]
- Directive 2002/49/EC Relating to the Assessment and Management of Environmental Noise; European Commission: Luxembourg, 2016.
- Ley 37/2003, de 17 de Noviembre, del Ruido; Boletín Oficial del Estado: Madrid, Spain, 2003. (In Spanish)
- Vogiatzis, K.; Remy, N. From environmental noise abatement to soundscape creation through strategic noise mapping in medium urban agglomerations in South Europe. Sci. Total Environ. 2014, 482, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, V.F.; Luong, J.; Bueno, M.; Terán, F.; Paje, S.E. Assessment of an action against environmental noise: Acoustic durability of a pavement Surface with crumb rubber. Sci. Total Environ. 2016, 542, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Licitra, G.; Cerchiai, M.; Teti, L.; Ascari, E.; Fredianelli, L. Durability and variability of the acoustical performance of rubberized road surfaces. Appl. Acoust. 2015, 94, 20–28. [Google Scholar] [CrossRef] [Green Version]
- UNE-EN 13108-5:2007. Bituminous Mixtures—Material Specifications—Part 5: Stone Mastic Asphalt; AENOR: Madrid, Spain, 2007.
- Paje, S.E.; Vázquez, V.F.; Terán, F.; Viñuela, U.; Hidalgo, M.E.; Costa, A.; Loma, J.; Cervantes, R.; Lanchas, S.; Hergueta, J.A.; et al. Field performance evaluation of stone mastic asphalt with crumb rubber. In Proceedings of the 42nd International Congress and Exposition on Noise Control Engineering 2013, INTER-NOISE 2013: Noise Control for Quality of Life, Innsbruck, Austria, 15–18 September 2013; Austrian Noise Abatement Association: Innsbruck, 2013; p. 536. [Google Scholar]
- Paje, S.E.; Luong, J.; Vázquez, V.F.; Bueno, M.; Miro, R. Road pavement rehabilitation using a binder with a high content of crumb rubber: Influence on noise reduction. Constr. Build. Mater. 2013, 47, 789–798. [Google Scholar] [CrossRef]
- UNE-EN 13108-2:2007. Bituminous Mixtures—Material Specifications—Part 2: Asphalt Concrete for Very Thin Layers; AENOR: Madrid, Spain, 2007.
- Project SMA. Proyecto Mezclas Sostenibles Medioambientalmente Amigables (CDTI-FEDER). Available online: http://www.proyectosma.eu/ (accessed on 17 January 2019).
- Bennert, T.; Maher, A. Influence of pavement surface type on tire/pavement generated noise. J. Test. Eval. 2005, 33, 94–100. [Google Scholar] [CrossRef]
- Ahammed, M.A.; Tighr, S.L.; Klement, T. Quiet and durable pavements: Findings from an Ontario study. Can. J. Civ. Eng. 2010, 37, 1035–1044. [Google Scholar] [CrossRef]
- Miljkovic, M.; Radenberg, M. Thin noise-reducing asphalt pavements for urban areas in Germany. Int. J. Pavement Eng. 2012, 13, 569–578. [Google Scholar] [CrossRef]
- Vuye, C.; Bergiers, A.; Vanhooreweder, B. The acoustical durability of thin noise reducing asphalt layers. Coatings 2016, 6, 21. [Google Scholar] [CrossRef]
- Sweczko-Zurek, S.; Jaskula, P.; Ejsmont, J.A.; Kedzierska, A.; Czajkowski, P. Rolling resistance and tyre/road noise on rubberized asphalt pavement in Poland. Road Mater. Pavement Des. 2017, 18, 151–167. [Google Scholar] [CrossRef]
- Gardziejczyk, W.; Gierasimiuk, P.; Motylewicz, M. Noisiness of the surfaces on low-speed roads. Coatings 2016, 6, 15. [Google Scholar] [CrossRef]
- Gardziejczyk, W. The effect of the time on acoustic durability of low noise pavements—The case studies in Poland. Transport. Res. Part D Transport. Environ. 2016, 44, 93–104. [Google Scholar] [CrossRef]
- Vaitkus, A.; Andriejauskas, T.; Vorobjovas, V.; Jagniatinskis, A.; Fiks, B.; Zofka, E. Asphalt wearing course optimization for road traffic noise reduction. Constr. Build. Mater. 2017, 152, 345–356. [Google Scholar] [CrossRef]
- Sangiorgi, C.; Tataranni, P.; Simone, A.; Vignali, V.; Lantieri, C.; Dondi, G. Stone mastic asphalt (SMA) with crumb rubber according to a new dry-hybrid technology: A laboratory and trial field evaluation. Constr. Build. Mater. 2018, 182, 200–209. [Google Scholar] [CrossRef]
- Licitra, G.; Cerchiai, M.; Teti, L.; Ascari, E.; Blanco, F.; Chetoni, M. Performance assessment of low-noise road surcaces in the Leopoldo Project: Comparison and validation of different measurement methods. Coatings 2015, 5, 3–25. [Google Scholar] [CrossRef]
- Licitra, G.; Teti, L.; Cerchiai, M.; Bianco, F. The influence on the use of the CPX method for evaluating the effectiveness of a noise mitigation action based on low-noise road surfaces. Transport. Res. Part D Transp. Environ. 2017, 55, 217–226. [Google Scholar] [CrossRef]
- Rubio, B.; Enríquez, L.; Mirada, L.; Fenollosa, M.D.; Hidalgo, E.; Costa, A.; Loma, J.; Cervantes, J.; Sánchez, F.; Hergueta, J.A.; et al. Tramo de ensayo a escala real con mezclas bituminosas en caliente de la familia SMA (Norma UNE EN 13108-5). In Proceedings of the VII Jornada Nacional de ASEFMA, Madrid, Spain, 24 May 2012; p. 34. [Google Scholar]
- UNE-EN 12697-5:2010. Bituminous Mixtures—Test Methods for Hot Mix Asphalt—Part 5: Determination of the Maximum Density; AENOR: Madrid, Spain, 2010.
- UNE-EN 12697-6:2012. Bituminous Mixtures—Test Methods for Hot Mix Asphalt—Part 6: Determination of Bulk Density of Bituminous Specimens; AENOR: Madrid, Spain, 2012.
- UNE-EN 12697-39:2013. Bituminous Mixtures—Test Methods for Hot Mix Asphalt—Part 39: Binder Content by Ignition; AENOR: Madrid, Spain, 2013.
- UNE-EN 12697-8:2003. Bituminous Mixtures—Test Methods for Hot Mix Asphalt—Part 8: Determination of Void Characteristics of Bituminous Specimens; AENOR: Madrid, Spain, 2003.
- UNE-EN 12697-26:2012. Bituminous Mixtures—Test Methods for Hot Mix Asphalt—Part 26: Stiffness; AENOR: Madrid, Spain, 2012.
- Vázquez, V.F.; Paje, S.E. Study of the road surface properties that control the acoustic performance of a rubberized asphalt mixture. Appl. Acoust. 2016, 102, 33–39. [Google Scholar] [CrossRef]
- Bueno, M.; Luong, J.; Viñuela, U.; Terán, F.; Paje, S.E. Pavement temperature influence on close proximity tire/road noise. Appl. Acoust. 2011, 72, 829–835. [Google Scholar] [CrossRef]
- UNE-EN ISO 13473-1:2006. Characterization of Pavement Texture by Use of Surface Profiles—Part 1: Determination of Mean Profile Depth; AENOR: Madrid, Spain, 2006.
- Sandberg, U.; Ejsmont, J.A. Tyre/Road Noise Reference Book; INFORMEX: Kisa, Sweden, 2002. [Google Scholar]
- PIARC. Report of the committee on surface characteristics. In Proceedings of the XVIII World Road Congress, Brussels, Belgium, 13–19 September 1987. [Google Scholar]
- Sandberg, U. Road traffic noise—The influence of the road surface and its characterization. Appl. Acoust. 1987, 21, 97–118. [Google Scholar] [CrossRef]
- UNE-EN 12697-30:2013. Bituminous Mixtures—Test Methods for Hot Mix Asphalt—Part 30: Specimen Preparation by Impact Compactor; AENOR: Madrid, Spain, 2013.
- Luong, J.; Bueno, M.; Vázquez, V.F.; Paje, S.E. Ultrathin porous pavement made with high viscosity asphalt rubber binder: A better acoustic absorption? Appl. Acoust. 2014, 79, 117–123. [Google Scholar] [CrossRef]
- Vázquez, V.F.; Paje, S.E. Dynamic stiffness assessment of construction materials by the resonant and non-resonant methods. J. Nondestruct. Eval. 2016, 35, 34. [Google Scholar] [CrossRef]
- Paje, S.E. Mezclas asfálticas con polvo de caucho NFU: Evaluación acústica en Servicio. Carreteras: Congreso Extraordinario CILA. (In Spanish). Available online: https://www.aecarretera.com/congresos/REVISTACARRETERAS%20_%20EXTRAORDINARIO%20CILA%20NOV-2013.pdf (accessed on 16 February 2019).
- Miro, R.; Perez-Jiménez, F.; Martinez, A.H.; Reyes-Ortiz, O.; Paje, S.E.; Bueno, M. Effect of crumb rubber bituminous mixes on functional characteristics of road pavements. Transp. Res. Board. 2009, 2126, 83–90. [Google Scholar] [CrossRef]
Mix | Layer Thickness (cm) | Maximum Density (kg/m3) | Apparent Density (kg/m3) | Binder (Mix) (%) | Air Void Content (%) | Stiffness Modulus (MPa) |
---|---|---|---|---|---|---|
SMA11 | 4.0 | 2510 | 2345 | 5.58 | 6.55 | 2515 |
SMA16 | 4.5 | 2511 | 2391 | 5.66 | 4.75 | 3400 |
Reference Speed | Mix | Tire/Pavement Sound Levels LCPtr (dB(A)) | |||||
---|---|---|---|---|---|---|---|
M.1 | M.2 | M.3 | M.4 | Average | Homogeneity (σ) | ||
50 km/h | SMA11 | 88.17 ± 0.4 | 88.06 ± 0.5 | 88.11 ± 0.5 | 88.05 ± 0.4 | 88.10 | 0.05 |
SMA16 | 88.9 9± 0.7 | 88.82 ± 0.6 | 88.93 ± 0.6 | 88.88 ± 0.6 | 88.90 | 0.07 | |
80 km/h | SMA11 | 95.12 ± 0.5 | 95.17 ± 0.5 | 95.12 ± 0.5 | 94.97 ± 0.5 | 95.10 | 0.08 |
SMA16 | 96.42 ± 0.4 | 96.34 ± 0.5 | 96.28 ± 0.4 | 96.20 ± 0.4 | 96.31 | 0.08 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez, V.F.; Terán, F.; Luong, J.; Paje, S.E. Functional Performance of Stone Mastic Asphalt Pavements in Spain: Acoustic Assessment. Coatings 2019, 9, 123. https://doi.org/10.3390/coatings9020123
Vázquez VF, Terán F, Luong J, Paje SE. Functional Performance of Stone Mastic Asphalt Pavements in Spain: Acoustic Assessment. Coatings. 2019; 9(2):123. https://doi.org/10.3390/coatings9020123
Chicago/Turabian StyleVázquez, Víctor F., Fernando Terán, Jeanne Luong, and Santiago E. Paje. 2019. "Functional Performance of Stone Mastic Asphalt Pavements in Spain: Acoustic Assessment" Coatings 9, no. 2: 123. https://doi.org/10.3390/coatings9020123
APA StyleVázquez, V. F., Terán, F., Luong, J., & Paje, S. E. (2019). Functional Performance of Stone Mastic Asphalt Pavements in Spain: Acoustic Assessment. Coatings, 9(2), 123. https://doi.org/10.3390/coatings9020123