Encapsulation of Organic and Perovskite Solar Cells: A Review
Abstract
:1. Introduction
2. Degradation Mechanism of OPV and Perovskite Solar Cells
2.1. Degradation of OPV Devices
2.2. Degradation of Perovskite Devices
2.2.1. Thermal and Photo Stability
2.2.2. Ion Movement
2.2.3. Electrode Degradation
2.2.4. Charge Transport Layers Degradation
- securing the perovskite material from UV irradiation and converting it into visible photons;
- shielding devices from oxygen and moisture, hence blocking the hydrolytic behaviour of the perovskite material;
- maintaining clean front electrode clean by the self-cleaning characteristics of this fluorinated polymer. Similar results were also observed for outdoor tests performed.
3. Encapsulation Requirements
Materials for Encapsulation
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Liang, P.-W.; Liao, C.-Y.; Chueh, C.-C.; Zuo, F.; Williams, S.T.; Xin, X.-K.; Lin, J.; Jen, A.K.-Y. Additive Enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 2014, 26, 3748–3754. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xiao, Z.; Ding, L.; Wang, J. Thermostable single-junction organic solar cells with a power conversion efficiency of 14.62%. Sci. Bull. 2018, 63, 340–342. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 2018, 361, 1094–1098. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Jia, X.; Ding, L. Ternary organic solar cells offer 14% power conversion efficiency. Sci. Bull. 2017, 62, 1562–1564. [Google Scholar] [CrossRef]
- Xu, C.; Wright, M.; Ping, D.; Yi, H.; Zhang, X.; Mahmud, M.A.; Sun, K.; Upama, M.B.; Haque, F.; Uddin, A. Ternary blend organic solar cells with a non-fullerene acceptor as a third component to synergistically improve the efficiency. Org. Electron. 2018, 62, 261–268. [Google Scholar] [CrossRef]
- Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Ho-Baillie, A.W. Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl. 2018, 26, 3–12. [Google Scholar] [CrossRef]
- Mahmud, M.A.; Elumalai, N.K.; Pal, B.; Jose, R.; Upama, M.B.; Wang, D.; Goncales, V.R.; Xu, C.; Haque, F.; Uddin, A. Electrospun 3D composite nano-flowers for high performance triple-cation perovskite solar cells. Electrochim. Acta 2018, 289, 459–473. [Google Scholar] [CrossRef]
- Wang, D.; Wright, M.; Elumalai, N.K.; Uddin, A. Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 2016, 147, 255–275. [Google Scholar] [CrossRef]
- Berhe, T.A.; Su, W.-N.; Chen, C.-H.; Pan, C.-J.; Cheng, J.-H.; Chen, H.-M.; Tsai, M.-C.; Chen, L.-Y.; Dubale, A.A.; Hwang, B.-J. Organometal halide perovskite solar cells: Degradation and stability. Energy Environ. Sci. 2016, 9, 323–356. [Google Scholar] [CrossRef]
- Li, F.; Liu, M. Recent efficient strategies for improving the moisture stability of perovskite solar cells. J. Mater. Chem. A 2017, 5, 15447–15459. [Google Scholar] [CrossRef]
- Ahmad, J.; Bazaka, K.; Anderson, L.J.; White, R.D.; Jacob, M.V. Materials and methods for encapsulation of OPV: A review. Renew. Sustain. Energy Rev. 2013, 27, 104–117. [Google Scholar] [CrossRef]
- Kang, H.; Kim, G.; Kim, J.; Kwon, S.; Kim, H.; Lee, K. Bulk-heterojunction organic solar cells: Five core technologies for their commercialization. Adv. Mater. 2016, 28, 7821–7861. [Google Scholar] [CrossRef]
- Cros, S.; De Bettignies, R.; Berson, S.; Bailly, S.; Maisse, P.; Lemaitre, N.; Guillerez, S. Definition of encapsulation barrier requirements: A method applied to organic solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, S65–S69. [Google Scholar] [CrossRef]
- Kim, N.; Potscavage , W.J., Jr.; Sundaramoothi, A.; Henderson, C.; Kippelen, B.; Graham, S. A correlation study between barrier film performance and shelf lifetime of encapsulated organic solar cells. Sol. Energy Mater. Sol. Cells 2012, 101, 140–146. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion; Oxford University Press: Oxford, UK, 1979. [Google Scholar]
- Kippelen, B.; Brédas, J.-L. Organic photovoltaics. Energy Environ. Sci. 2009, 2, 251–261. [Google Scholar] [CrossRef]
- Hauch, J.A.; Schilinsky, P.; Choulis, S.A.; Rajoelson, S.; Brabec, C.J. The impact of water vapor transmission rate on the lifetime of flexible polymer solar cells. Appl. Phys. Lett. 2008, 93, 103306. [Google Scholar] [CrossRef]
- Lee, H.-J.; Kim, H.-P.; Kim, H.-M.; Youn, J.-H.; Nam, D.-H.; Lee, Y.-G.; Lee, J.-G.; bin Mohd Yusoff, A.R.; Jang, J. Solution processed encapsulation for organic photovoltaics. Sol. Energy Mater. Sol. Cells 2013, 111, 97–101. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, H.; Graham, S.; Dyer, A.; Reynolds, J.R. Durable polyisobutylene edge sealants for organic electronics and electrochemical devices. Sol. Energy Mater. Sol. Cells 2012, 100, 120–125. [Google Scholar] [CrossRef]
- Zardetto, V.; Williams, B.; Perrotta, A.; Di Giacomo, F.; Verheijen, M.; Andriessen, R.; Kessels, W.; Creatore, M. Atomic layer deposition for perovskite solar cells: Research status, opportunities and challenges. Sustain. Energy Fuels 2017, 1, 30–55. [Google Scholar] [CrossRef]
- Tanenbaum, D.M.; Dam, H.F.; Rösch, R.; Jørgensen, M.; Hoppe, H.; Krebs, F.C. Edge sealing for low cost stability enhancement of roll-to-roll processed flexible polymer solar cell modules. Sol. Energy Mater. Sol. Cells 2012, 97, 157–163. [Google Scholar] [CrossRef]
- Elkington, D.; Cooling, N.; Zhou, X.; Belcher, W.; Dastoor, P. Single-step annealing and encapsulation for organic photovoltaics using an exothermically-setting encapsulant material. Sol. Energy Mater. Sol. Cells 2014, 124, 75–78. [Google Scholar] [CrossRef]
- Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R. Electricity from Photovoltaic Solar Cells: Flat-Plate Solar Array Project Final Report; Volume VII: Module Encapsulation; JPL Publication: Pasadena, CA, USA, 1986. [Google Scholar]
- Kim, N. Fabrication and Characterization of Thin-Film Encapsulation for Organic Electronics; Georgia Institute of Technology: Atlanta, GA, USA, 2009. [Google Scholar]
- Spanggaard, H.; Krebs, F.C. A brief history of the development of organic and polymeric photovoltaics. Sol. Energy Mater. Sol. Cells 2004, 83, 125–146. [Google Scholar] [CrossRef]
- Shaheen, S.E.; Ginley, D.S.; Jabbour, G.E. Organic-based photovoltaics: Toward low-cost power generation. MRS Bull. 2005, 30, 10–19. [Google Scholar] [CrossRef]
- Nguyen, T.-P.; Renaud, C.; Reisdorffer, F.; Wang, L.-J. Degradation of phenyl C61 butyric acid methyl ester: Poly (3-hexylthiophene) organic photovoltaic cells and structure changes as determined by defect investigations. J. Photonics Energy 2012, 2, 021013. [Google Scholar] [CrossRef]
- Reese, M.O.; Morfa, A.J.; White, M.S.; Kopidakis, N.; Shaheen, S.E.; Rumbles, G.; Ginley, D.S. Pathways for the degradation of organic photovoltaic P3HT:PCBM based devices. Sol. Energy Mater. Sol. Cells 2008, 92, 746–752. [Google Scholar] [CrossRef]
- Dennler, G.; Lungenschmied, C.; Neugebauer, H.; Sariciftci, N.S.; Latreche, M.; Czeremuszkin, G.; Wertheimer, M.R. A new encapsulation solution for flexible organic solar cells. Thin Solid Films 2006, 511, 349–353. [Google Scholar] [CrossRef]
- Ray, B.; Alam, M.A. A compact physical model for morphology induced intrinsic degradation of organic bulk heterojunction solar cell. Appl. Phys. Lett. 2011, 99, 140. [Google Scholar] [CrossRef]
- Karlsson, K.; Troncale, V.; Oberli, D.; Malko, A.; Pelucchi, E.; Rudra, A.; Kapon, E. Optical polarization anisotropy and hole states in pyramidal quantum dots. Appl. Phys. Lett. 2006, 89, 251113. [Google Scholar] [CrossRef]
- Cao, H.; He, W.; Mao, Y.; Lin, X.; Ishikawa, K.; Dickerson, J.H.; Hess, W.P. Recent progress in degradation and stabilization of organic solar cells. J. Power Sources 2014, 264, 168–183. [Google Scholar] [CrossRef]
- Lin, R.; Miwa, M.; Wright, M.; Uddin, A. Optimisation of the sol-gel derived ZnO buffer layer for inverted structure bulk heterojunction organic solar cells using a low band gap polymer. Thin Solid Films 2014, 566, 99–107. [Google Scholar] [CrossRef]
- Lin, R.; Wright, M.; Chan, K.H.; Puthen-Veettil, B.; Sheng, R.; Wen, X.; Uddin, A. Performance improvement of low bandgap polymer bulk heterojunction solar cells by incorporating P3HT. Org. Electron. 2014, 15, 2837–2846. [Google Scholar] [CrossRef]
- Grossiord, N.; Kroon, J.M.; Andriessen, R.; Blom, P.W. Degradation mechanisms in organic photovoltaic devices. Org. Electron. 2012, 13, 432–456. [Google Scholar] [CrossRef]
- Tiep, N.H.; Ku, Z.; Fan, H.J. Recent advances in improving the stability of perovskite solar cells. Adv. Energy Mater. 2016, 6, 1501420. [Google Scholar] [CrossRef]
- Ye, M.; Hong, X.; Zhang, F.; Liu, X. Recent advancements in perovskite solar cells: Flexibility, stability and large scale. J. Mater. Chem. A 2016, 4, 6755–6771. [Google Scholar] [CrossRef]
- Bi, D.; Gao, P.; Scopelliti, R.; Oveisi, E.; Luo, J.; Grätzel, M.; Hagfeldt, A.; Nazeeruddin, M.K. High-performance perovskite solar cells with enhanced environmental stability based on amphiphile-modified CH3NH3PbI3. Adv. Mater. 2016, 28, 2910–2915. [Google Scholar] [CrossRef] [PubMed]
- Bi, D.; Tress, W.; Dar, M.I.; Gao, P.; Luo, J.; Renevier, C.; Schenk, K.; Abate, A.; Giordano, F.; Baena, J.-P.C. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2016, 2, e1501170. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Jayatissa, A. Perovskites-based solar cells: A review of recent progress, materials and processing methods. Materials 2018, 11, 729. [Google Scholar] [CrossRef] [PubMed]
- Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D’Haen, J.; D’Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 2015, 5, 1500477. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Wang, C.; Wang, C.; Xie, F.; Yang, J.; Gao, Y. Degradation by exposure of coevaporated CH3NH3PbI3 thin films. J. Phys. Chem. C 2015, 119, 23996–24002. [Google Scholar] [CrossRef]
- Liu, F.; Dong, Q.; Wong, M.K.; Djurišić, A.B.; Ng, A.; Ren, Z.; Shen, Q.; Surya, C.; Chan, W.K.; Wang, J. Is excess PbI2 beneficial for perovskite solar cell performance? Adv. Energy Mater. 2016, 6, 1502206. [Google Scholar] [CrossRef]
- Niu, G.; Li, W.; Meng, F.; Wang, L.; Dong, H.; Qiu, Y. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2014, 2, 705–710. [Google Scholar] [CrossRef]
- Leijtens, T.; Eperon, G.E.; Pathak, S.; Abate, A.; Lee, M.M.; Snaith, H.J. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 2013, 4, 2885. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Li, Y.; Zheng, C.; Gao, D.; Huang, W. Advancements in the stability of perovskite solar cells: Degradation mechanisms and improvement approaches. RSC Adv. 2016, 6, 38079–38091. [Google Scholar] [CrossRef]
- Mahmud, M.A.; Elumalai, N.K.; Upama, M.B.; Wang, D.; Wright, M.; Chan, K.H.; Xu, C.; Haque, F.; Uddin, A. Single vs mixed organic cation for low temperature processed perovskite solar cells. Electrochim. Acta 2016, 222, 1510–1521. [Google Scholar] [CrossRef]
- Xia, X.; Wu, W.; Li, H.; Zheng, B.; Xue, Y.; Xu, J.; Zhang, D.; Gao, C.; Liu, X. Spray reaction prepared FA1−x CsxPbI3 solid solution as a light harvester for perovskite solar cells with improved humidity stability. RSC Adv. 2016, 6, 14792–14798. [Google Scholar] [CrossRef]
- Zhu, W.; Bao, C.; Li, F.; Yu, T.; Gao, H.; Yi, Y.; Yang, J.; Fu, G.; Zhou, X.; Zou, Z. A halide exchange engineering for CH3NH3PbI3−xBrx perovskite solar cells with high performance and stability. Nano Energy 2016, 19, 17–26. [Google Scholar] [CrossRef]
- Agresti, A.; Pescetelli, S.; Cinà, L.; Konios, D.; Kakavelakis, G.; Kymakis, E.; Carlo, A.D. Efficiency and stability enhancement in perovskite solar cells by inserting lithium—Neutralized graphene oxide as electron transporting layer. Adv. Funct. Mater. 2016, 26, 2686–2694. [Google Scholar] [CrossRef]
- Arafat Mahmud, M.; Kumar Elumalai, N.; Baishakhi Upama, M.; Wang, D.; Haque, F.; Wright, M.; Howe Chan, K.; Xu, C.; Uddin, A. Enhanced stability of low temperature processed perovskite solar cells via augmented polaronic intensity of hole transporting layer. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2016, 10, 882–889. [Google Scholar] [CrossRef]
- Lee, D.-Y.; Na, S.-I.; Kim, S.-S. Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale 2016, 8, 1513–1522. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Z.; Shi, G.; Li, Y.; Li, Q.; Hui, F.; Sun, B.; Jiang, Z.; Liao, L. Dopant-free spiro-triphenylamine/fluorene as hole—Transporting material for perovskite solar cells with enhanced efficiency and stability. Adv. Funct. Mater. 2016, 26, 1375–1381. [Google Scholar] [CrossRef]
- Xu, J.; Voznyy, O.; Comin, R.; Gong, X.; Walters, G.; Liu, M.; Kanjanaboos, P.; Lan, X.; Sargent, E.H. Crosslinked remote-doped hole-extracting contacts enhance stability under accelerated lifetime testing in perovskite solar cells. Adv. Mater. 2016, 28, 2807–2815. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Meng, L.; Song, T.-B.; Guo, T.-F.; Yang, Y.M.; Chang, W.-H.; Hong, Z.; Chen, H.; Zhou, H.; Chen, Q. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 2016, 11, 75. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-Y.; Chang, Y.-C.; Huang, W.-K.; Liao, W.-C.; Wang, H.; Yeh, C.; Tsai, B.-C.; Huang, Y.-C.; Tsao, C.-S. Achieving high efficiency and improved stability in large-area ITO-free perovskite solar cells with thiol-functionalized self-assembled monolayers. J. Mater. Chem. A 2016, 4, 7903–7913. [Google Scholar] [CrossRef]
- Igbari, F.; Li, M.; Hu, Y.; Wang, Z.-K.; Liao, L.-S. A room-temperature CuAlO2 hole interfacial layer for efficient and stable planar perovskite solar cells. J. Mater. Chem. A 2016, 4, 1326–1335. [Google Scholar] [CrossRef]
- Mahmud, M.A.; Elumalai, N.K.; Upama, M.B.; Wang, D.; Gonçales, V.R.; Wright, M.; Gooding, J.J.; Haque, F.; Xu, C.; Uddin, A. Cesium compounds as interface modifiers for stable and efficient perovskite solar cells. Sol. Energy Mater. Sol. Cells 2018, 174, 172–186. [Google Scholar] [CrossRef]
- Song, D.; Wei, D.; Cui, P.; Li, M.; Duan, Z.; Wang, T.; Ji, J.; Li, Y.; Mbengue, J.M.; Li, Y. Dual function interfacial layer for highly efficient and stable lead halide perovskite solar cells. J. Mater. Chem. A 2016, 4, 6091–6097. [Google Scholar] [CrossRef]
- Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J.E. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591. [Google Scholar] [CrossRef] [PubMed]
- Christians, J.A.; Miranda Herrera, P.A.; Kamat, P.V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 2015, 137, 1530–1538. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Bai, Y.; Liu, X.; Chueh, C.C.; Yang, S.; Jen, A.K.Y. Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron—Transporting layer. Adv. Mater. 2016, 28, 6478–6484. [Google Scholar] [CrossRef]
- Aldibaja, F.K.; Badia, L.; Mas-Marzá, E.; Sánchez, R.S.; Barea, E.M.; Mora-Sero, I. Effect of different lead precursors on perovskite solar cell performance and stability. J. Mater. Chem. A 2015, 3, 9194–9200. [Google Scholar] [CrossRef]
- Dkhissi, Y.; Weerasinghe, H.; Meyer, S.; Benesperi, I.; Bach, U.; Spiccia, L.; Caruso, R.A.; Cheng, Y.-B. Parameters responsible for the degradation of CH3NH3PbI3-based solar cells on polymer substrates. Nano Energy 2016, 22, 211–222. [Google Scholar] [CrossRef]
- Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J.M.; Bach, U.; Spiccia, L.; Cheng, Y.-B. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 2015, 3, 8139–8147. [Google Scholar] [CrossRef]
- Li, X.; Tschumi, M.; Han, H.; Babkair, S.S.; Alzubaydi, R.A.; Ansari, A.A.; Habib, S.S.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Grätzel, M. Outdoor performance and stability under elevated temperatures and long-term light soaking of triple-layer mesoporous perovskite photovoltaics. Energy Technol. 2015, 3, 551–555. [Google Scholar] [CrossRef]
- Xie, F.X.; Zhang, D.; Su, H.; Ren, X.; Wong, K.S.; Graätzel, M.; Choy, W.C. Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. ACS Nano 2015, 9, 639–646. [Google Scholar] [CrossRef]
- Reese, M.O.; Gevorgyan, S.A.; Jørgensen, M.; Bundgaard, E.; Kurtz, S.R.; Ginley, D.S.; Olson, D.C.; Lloyd, M.T.; Morvillo, P.; Katz, E.A. Consensus stability testing protocols for organic photovoltaic materials and devices. Sol. Energy Mater. Sol. Cells 2011, 95, 1253–1267. [Google Scholar] [CrossRef]
- Supasai, T.; Rujisamphan, N.; Ullrich, K.; Chemseddine, A.; Dittrich, T. Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers. Appl. Phys. Lett. 2013, 103, 183906. [Google Scholar] [CrossRef]
- Shi, L.; Young, T.L.; Kim, J.; Sheng, Y.; Wang, L.; Chen, Y.; Feng, Z.; Keevers, M.J.; Hao, X.; Verlinden, P.J. Accelerated lifetime testing of organic–inorganic perovskite solar cells encapsulated by polyisobutylene. ACS Appl. Mater. Interfaces 2017, 9, 25073–25081. [Google Scholar] [CrossRef]
- Elumalai, N.K.; Uddin, A. Hysteresis in organic-inorganic hybrid perovskite solar cells. Sol. Energy Mater. Sol. Cells 2016, 157, 476–509. [Google Scholar] [CrossRef]
- Azpiroz, J.M.; Mosconi, E.; Bisquert, J.; De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 2015, 8, 2118–2127. [Google Scholar] [CrossRef]
- Upama, M.B.; Elumalai, N.K.; Mahmud, M.A.; Wang, D.; Haque, F.; Gonçales, V.R.; Gooding, J.J.; Wright, M.; Xu, C.; Uddin, A. Role of fullerene electron transport layer on the morphology and optoelectronic properties of perovskite solar cells. Org. Electron. 2017, 50, 279–289. [Google Scholar] [CrossRef]
- Kim, J.H.; Liang, P.W.; Williams, S.T.; Cho, N.; Chueh, C.C.; Glaz, M.S.; Ginger, D.S.; Jen, A.K.Y. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv. Mater. 2015, 27, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Ono, L.K.; Raga, S.R.; Remeika, M.; Winchester, A.J.; Gabe, A.; Qi, Y. Pinhole-free hole transport layers significantly improve the stability of MAPbI3-based perovskite solar cells under operating conditions. J. Mater. Chem. A 2015, 3, 15451–15456. [Google Scholar] [CrossRef]
- Idígoras, J.; Aparicio, F.J.; Contreras-Bernal, L.; Ramos-Terrón, S.; Alcaire, M.; Sánchez-Valencia, J.R.; Borras, A.; Barranco, Á.; Anta, J.A. Enhancing moisture and water resistance in perovskite solar cells by encapsulation with ultrathin plasma polymers. ACS Appl. Mater. Interfaces 2018, 10, 11587–11594. [Google Scholar] [CrossRef] [PubMed]
- Bella, F.; Griffini, G.; Correa-Baena, J.-P.; Saracco, G.; Grätzel, M.; Hagfeldt, A.; Turri, S.; Gerbaldi, C. Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 2016, 354, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Griffini, G.; Levi, M.; Turri, S. Novel crosslinked host matrices based on fluorinated polymers for long-term durability in thin-film luminescent solar concentrators. Sol. Energy Mater. Sol. Cells 2013, 118, 36–42. [Google Scholar] [CrossRef]
- Griffini, G.; Levi, M.; Turri, S. Novel high-durability luminescent solar concentrators based on fluoropolymer coatings. Prog. Organ. Coat. 2014, 77, 528–536. [Google Scholar] [CrossRef]
- Da Silva Sobrinho, A.; Latreche, M.; Czeremuszkin, G.; Klemberg-Sapieha, J.; Wertheimer, M. Transparent barrier coatings on polyethylene terephthalate by single-and dual-frequency plasma-enhanced chemical vapor deposition. J. Vac. Sci. Technol. A Vac. Surf. Films 1998, 16, 3190–3198. [Google Scholar] [CrossRef]
- Da Silva Sobrinho, A.; Czeremuszkin, G.; Latreche, M.; Dennler, G.; Wertheimer, M. A study of defects in ultra-thin transparent coatings on polymers. Surf. Coat. Technol. 1999, 116, 1204–1210. [Google Scholar] [CrossRef]
- Rossi, G.; Nulman, M. Effect of local flaws in polymeric permeation reducing barriers. J. Appl. Phys. 1993, 74, 5471–5475. [Google Scholar] [CrossRef]
- Lee, Y.I.; Jeon, N.J.; Kim, B.J.; Shim, H.; Yang, T.Y.; Seok, S.I.; Seo, J.; Im, S.G. A low—Temperature thin—Film encapsulation for enhanced stability of a highly efficient perovskite solar cell. Adv. Energy Mater. 2018, 8, 1701928. [Google Scholar] [CrossRef]
- Anderson, L.; Jacob, M. Effect of RF power on the optical and morphological properties of RF plasma polymerised linalyl acetate thin films. Appl. Surf. Sci. 2010, 256, 3293–3298. [Google Scholar] [CrossRef]
- Xu, Q.F.; Wang, J.N.; Sanderson, K.D. Organic–inorganic composite nanocoatings with superhydrophobicity, good transparency, and thermal stability. ACS Nano 2010, 4, 2201–2209. [Google Scholar] [CrossRef] [PubMed]
- Bazaka, K.; Jacob, M. Synthesis of radio frequency plasma polymerized non-synthetic Terpinen-4-ol thin films. Mater. Lett. 2009, 63, 1594–1597. [Google Scholar] [CrossRef]
- Bazaka, K.; Jacob, M.V. Post-deposition ageing reactions of plasma derived polyterpenol thin films. Polym. Degrad. Stab. 2010, 95, 1123–1128. [Google Scholar] [CrossRef]
- Jin, J.; Chen, S.; Zhang, J. Investigation of UV aging influences on the crystallization of ethylene-vinyl acetate copolymer via successive self-nucleation and annealing treatment. J. Polym. Res. 2010, 17, 827–836. [Google Scholar] [CrossRef]
- Schlothauer, J.; Jungwirth, S.; Köhl, M.; Röder, B. Degradation of the encapsulant polymer in outdoor weathered photovoltaic modules: Spatially resolved inspection of EVA ageing by fluorescence and correlation to electroluminescence. Sol. Energy Mater. Sol. Cells 2012, 102, 75–85. [Google Scholar] [CrossRef]
- Le Donne, A.; Dilda, M.; Crippa, M.; Acciarri, M.; Binetti, S. Rare earth organic complexes as down-shifters to improve Si-based solar cell efficiency. Opt. Mater. 2011, 33, 1012–1014. [Google Scholar] [CrossRef]
- Hayes, R.A.; Lenges, G.M.; Pesek, S.C.; Roulin, J. Low Modulus Solar Cell Encapsulant Sheets with Enhanced Stability and Adhesion. United States Patent 8168885, 5 January 2012. [Google Scholar]
- Annual Report 2010; Bayer AG: Leverkusen, Germany, 28 February 2011; Available online: https://www.bayer.com/en/gb-2010-en.pdfx (accessed on 29 November 2018).
- Schut, J.H. Shining Opportunities in Solar Films. Plastics Technology. Available online: http://search.ebscohost.com/login.aspx (accessed on 29 November 2018).
- Granstrom, J.; Swensen, J.; Moon, J.; Rowell, G.; Yuen, J.; Heeger, A. Encapsulation of organic light-emitting devices using a perfluorinated polymer. Appl. Phys. Lett. 2008, 93, 409. [Google Scholar] [CrossRef]
- Cavalcante, L.M.; Schneider, L.F.J.; Silikas, N.; Watts, D.C. Surface integrity of solvent-challenged ormocer-matrix composite. Dent. Mater. 2011, 27, 173–179. [Google Scholar] [CrossRef]
- Noller, K.; Vasko, K. Flexible polymer barrier films for the encapsulation of solar cells. In Proceedings of the 19th European Photovoltaic Solar Energy Conference and Exhibition 2004, Paris, France, 7–11 June 2004; pp. 2156–2159. [Google Scholar]
- Budunoglu, H.; Yildirim, A.; Guler, M.O.; Bayindir, M. Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films. ACS Appl. Mater. Interfaces 2011, 3, 539–545. [Google Scholar] [CrossRef]
- Pagliaro, M.; Ciriminna, R.; Palmisano, G. Silica-based hybrid coatings. J. Mater. Chem. 2009, 19, 3116–3126. [Google Scholar] [CrossRef]
- Fu, Y.; Tsai, F.-Y. Air-stable polymer organic thin-film transistors by solution-processed encapsulation. Org. Electron. 2011, 12, 179–184. [Google Scholar] [CrossRef]
- Ong, K.S.; Raymond, G.C.R.; Ou, E.; Zheng, Z.; Ying, D.L.M. Interfacial and mechanical studies of a composite Ag–IZO–PEN barrier film for effective encapsulation of organic TFT. Org. Electron. 2010, 11, 463–466. [Google Scholar] [CrossRef]
- Fluoropolymer. Available online: https://en.wikipedia.org/wiki/Fluoropolymer (accessed on 29 November 2018).
Characteristics | Specification of Requirement |
---|---|
WVTR | 10−3–10−6 g·m−2·day−1 |
OTR | 10−3–10−5 cm3·m−2·day−1·atm−1 |
Glass transition temperature (Tg) | <−40 °C (during the winter in deserts) |
Total light transmission | >90% of incident light |
Water absorption | <0.5 wt % (20 °C/100% RH) |
Tensile modulus | <20.7 mPa (>3000 psi) at 25 °C |
UV absorption degradation | None (>350 nm) |
Hydrolysis | None (80 °C, 100% RH) |
Materials | Encapsulation Type | Water Vapour Transmission Rate (WVTR) (g·m−2·day−1) | Comments | References |
---|---|---|---|---|
Ethylene vinyl acetate (EVA) | Single layer encapsulation | 40 | Light transmission of 91%. Suitable for resisting weather and long-term reliability under light exposure. It is suitable for encapsulation of organic and perovskite solar modules. | [88,89] |
Europium doped EVA: Eu3+ | Single layer encapsulation | 40 | Absorption bang gap is 310 nm (4 eV). Suitable for PV module encapsulation. Eu3+ doped EVA layers can induce photon down-shifting with wavelengths <460 nm. | [90] |
Ethylene methyl acrylate (EMA) | Single layer encapsulation | Not mentioned | EMA is suitable for chemical resistance, thermally stability, adherence to different substrates and excellent mechanical behaviour at low temperature. It is suitable for encapsulation of perovskite and organic devices. | [23,91] |
Polyvinyl butyral (PVB) | Single layer encapsulation | 60 | PVB has high optical transparency, good heat resistance, good adherence to solar cells, glass, and other plastics, increased bond durability, and compatible with module components. PVB is already used as encapsulation layer for thin film solar cells. | [14] |
Thermoplastic polyurethane (TPU) | Single layer encapsulation | 150 | TPU film is better than EVA film for encapsulation since it is flexible to bond with relatively hard materials. These films can be processed in normal atmospheric pressure without cross-linking and emissions. | [92,93] |
UV-cured epoxy | Single layer encapsulation | 16 | Epoxy film is good for encapsulation. It is optically transparent, thermally conductive, weather resistance, high temperature resistance, good adhesive properties on glass and plastic. | [70] |
Polyisobutylene (PIB) | Single layer encapsulation | 0.001–0.0001 | PIB is a synthetic rubber. It can encapsulate organic and perovskite solar cells. | [70] |
Cyclized perfluoro-polymer (CytopTM) | Single layer encapsulation | Not mentioned | Conventional thin-film deposition techniques e.g., spin coating can be used to deposit this polymer. It is transparent and amorphous. This material is good for weather resistant, good for oxygen/water-vapor shielding for testing organic device lifetime. | [94] |
Organic–inorganic hybrid materials ORMOCERs (ORM) | Single layer encapsulation | 0.01 | It is organic and inorganic components modified ceramics or ORM. It has good chemical resistance, highly transparent, anti-soiling, diffusion- inhibition. OTR is <0.01 cm3 m−2 day−1. These properties are necessary for the encapsulation of organic and perovskite solar cells. | [95,96] |
ORMOSIL aero-gel thin film | Single layer encapsulation | Not mentioned | It is mechanically and thermally stable and highly transparent. ORMOSIL materials are flexibility and stability at atmospheric conditions. ORMOSIL has variable organic group that can modify the chemical and physical surface properties. | [97,98] |
Other organic materials | Single layer encapsulation | Not mentioned | Encapsulation tested of 10 polymers were poly(vinyl methyl ketone) (PVMK), poly(methyl methacrylate) (PMMA), poly(vinylidene chloride-co-vinyl chloride) (PVDC-co-PVC), poly (vinylidene fluoride)(PVDF), polyacrylonitride (PAN), poly(vinylalcohol) (PVA), poly(vinylphenol) (PVP), poly(methyl vinyl ether) (PMVE), polystyrene (PS), and poly(vinyl chloride) (PVC). An encapsulation approach with these 10 low-polarity polymer is demonstrated to block water/moisture and prevent encapsulation-induced degradation. | [99,100] |
Luminescent downshifting fluoro-polymeric coating such as PTFE (polytetrafluoroethylene), PFA (perfluoroalkoxy), FEP (fluorinated ethylene-propylene), etc. | Single layer encapsulation | Not mentioned | It is very good as an encapsulating material for organic and perovskite solar cells to improve the device stability for the out-door application. Fluoropolymers are excellent for chemical and thermal resistance. Their surfaces are non-reactive with all chemicals and solvents. | [101] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uddin, A.; Upama, M.B.; Yi, H.; Duan, L. Encapsulation of Organic and Perovskite Solar Cells: A Review. Coatings 2019, 9, 65. https://doi.org/10.3390/coatings9020065
Uddin A, Upama MB, Yi H, Duan L. Encapsulation of Organic and Perovskite Solar Cells: A Review. Coatings. 2019; 9(2):65. https://doi.org/10.3390/coatings9020065
Chicago/Turabian StyleUddin, Ashraf, Mushfika Baishakhi Upama, Haimang Yi, and Leiping Duan. 2019. "Encapsulation of Organic and Perovskite Solar Cells: A Review" Coatings 9, no. 2: 65. https://doi.org/10.3390/coatings9020065