Laser Surface Texturing of Alumina/Zirconia Composite Ceramics for Potential Use in Hip Joint Prosthesis
Abstract
1. Introduction
2. Materials and Methods
2.1. Manufacturing of Ceramic Samples
2.2. Laser Treatment
2.3. Characterization
2.3.1. Microstructure
2.3.2. Morphology and Composition
2.3.3. Surface Roughness
3. Results and Discussion
- Energy per pulse depends on the repetition rate; which is already in the model.
- In the set of conducted experiments, Δα and repetition number were interdependent in the different levels (i.e., in the cases where Δα was fixed as 20°, repetition number was always fixed as 20; and in all cases when Δα was fixed as 90°, repetition number was always fixed as 2.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- López-López, J.A.; Humphriss, R.L.; Beswick, A.D.; Thom, H.H.Z.; Hunt, L.P.; Burston, A.; Fawsitt, C.G.; Hollingworth, W.; Higgins, J.P.T.; Welton, N.J.; et al. Choice of implant combinations in total hip replacement: Systematic review and network meta-analysis. BMJ 2017, 359, 4651. [Google Scholar] [CrossRef] [PubMed]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef]
- Edwards, L.D.; Levin, S. Complications from total hip replacement with the use of acrylic cement. Health Serv. Rep. 1973, 88, 857–867. [Google Scholar] [CrossRef] [PubMed]
- Latham, B.; Goswami, T. Effect of geometric parameters in the design of hip implants-paper IV. Mater. Des. 2004, 25, 715–722. [Google Scholar] [CrossRef]
- Sargeant, A.; Goswami, T. Hip implants: Paper V. Physiological effects. Mater. Des. 2006, 27, 287–307. [Google Scholar] [CrossRef]
- Kharmanda, G. Reliability analysis for cementless hip prosthesis using a new optimized formulation of yield stress against elasticity modulus relationship. Mater. Des. 2015, 65, 496–504. [Google Scholar] [CrossRef]
- Rahaman, M.N.; Yao, A.; Sonny Bal, B.; Garino, J.P.; Ries, N.D. Ceramics for prosthetic hip and knee joint replacement. J. Am. Ceram. Soc. 2007, 90, 1965–1988. [Google Scholar] [CrossRef]
- O’Leary, J.F.; Mallory, T.H.; Kraus, T.J.; Lombardi, A.V., Jr.; Lye, C.L. Mittelmeier ceramic total hip arthroplasty. A retrospective study. J. Arthroplast. 1988, 3, 87–96. [Google Scholar] [CrossRef]
- Griss, P.; Claus, A.; Scheller, G. Analyse Unserer Erfahrungen Mit Keramik/Keramik-Huftendoprothesen der Ersten Generation. In Reliability and Long-Term Results of Ceramics in Orthopaedics; Sedel, L., Willmann, G., Eds.; Thieme: Stuttgart, Germany, 1999; pp. 43–47. [Google Scholar]
- Gierse, H.; Maaz, B.; Hofer, C.; Gruner, S. The ceramic cup type Lindenhof. Results 10–14 years after implantation. Arch. Orthop. Trauma Surg. 1996, 115, 167–170. [Google Scholar] [CrossRef]
- Garcia-Cimbrelo, E.; Martinez-Sayanes, J.M.; Minuesa, A.; Munuera, L. Mittelmeier ceramic-ceramic prosthesis after 10 years. J. Arthroplast. 1996, 11, 773–778. [Google Scholar] [CrossRef]
- Rosner, B.I.; Postak, P.D.; Greenwald, A.S. Cup/liner conformity of modular acetabular designs. Orthop. Trans. 1995, 19, 469–470. [Google Scholar]
- Schreiner, U.; Schulze, A.; Scheller, G.; Apruzzese, C.; Schwarz, M.L. Osseointegration of ceramic cement-free acetabular cups. Z. Orthop. Unfallchir. 2011, 150, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Forgon, M.; Mammel, E.; Trombitas, K.; Kacsalova, L.; Draveczki, I. Morphological investigations of a porous aluminium oxide ceramic and the consequences for clinical application. Arch. Orthop. Trauma Surg. 1987, 106, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Cornell, N.C.; Lane, J.M. Current understanding of osteoconduction in bone regeneration. Clin. Orthop. 1998, 355, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Spriano, S.; Yamaguchi, S.; Baino, F.; Ferraris, S. A critical review of multifunctional titanium surfaces: New frontiers for improving osseointegration and host response, avoiding bacteria contamination. Acta Biomater. 2018, 79, 1–22. [Google Scholar] [CrossRef]
- Baino, F.; Minguella, J.; Kirk, N.; Montealegre, M.A.; Fiaschi, C.; Korkusuz, F.; Orlygsson, G.; Vitale-Brovarone, C. Novel full-ceramic monoblock acetabular cup with a bioactive trabecular coating: Design, fabrication and characterization. Ceram. Int. 2016, 42, 6833–6845. [Google Scholar] [CrossRef]
- Baino, F.; Vitale-Brovarone, C. Trabecular coating on curved alumina substrates using a novel bioactive and strong glass-ceramic. Biomed. Glasses 2015, 1, 31–40. [Google Scholar] [CrossRef]
- Baino, F.; Tallia, F.; Novajra, G.; Minguella-Canela, J.; Montealegre, M.; Korkusuz, F.; Vitale-Brovarone, C. Novel Bone-Like Porous Glass Coatings on Al2O3 Prosthetic Substrates. Key Eng. Mater. 2014, 631, 236–240. [Google Scholar] [CrossRef]
- Baino, F.; Montealegre, M.A.; Orlygsson, G.; Novajra, G.; Vitale-Brovarone, C. Bioactive glass coatings fabricated by laser cladding on ceramic acetabular cups: A proof-of-concept study. J. Mater. Sci. 2017, 52, 9115–9128. [Google Scholar] [CrossRef]
- Baino, F.; Minguella-Canela, J.; Korkusuz, F.; Korkusuz, P.; Kankılıç, B.; Montealegre, M.A.; De los Santos-López, M.A.; Vitale-Brovarone, C. In vitro assessment of bioactive glass coatings on alumina/zirconia composite implants for potential use in prosthetic application. Int. J. Mol. Sci. 2019, 20, 722–737. [Google Scholar] [CrossRef]
- Comesaña, R.; Lusquiños, F.; Del Val, J.; Malot, T.; López-Álvarez, M.; Riveiro, A.; Quintero, F.; Boutinguiza, M.; Aubry, P.; De Carlos, A.; et al. Calcium phosphate grafts produced by rapid prototyping based on laser cladding. J. Eur. Ceram. Soc. 2011, 31, 29–41. [Google Scholar] [CrossRef]
- Comesaña, R.; Lusquiños, F.; Del Val, J.; López-Álvarez, M.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; De Carlos, A.; Jones, J.R.; Hill, R.G.; et al. Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO2 laser cladding. Acta Biomater. 2011, 7, 3476–3487. [Google Scholar] [CrossRef] [PubMed]
- Del Val, J.; López-Cancelos, R.; Riveiro, A.; Badaoui, A.; Lusquiños, F.; Quintero, F.; Comesaña, R.; Boutinguiza, M.; Pou, J. On the fabrication of bioactive glass implants for bone regeneration by laser assisted rapid prototyping based on laser cladding. Ceram. Int. 2016, 42, 2021–2035. [Google Scholar] [CrossRef]
- Lusquiños, F.; Pou, J.; Boutinguiza, M.; Quintero, F.; Soto, R.; León, B.; Pérez-Amor, M. Main characteristics of calcium phosphate coatings obtained by laser cladding. Appl. Surf. Sci. 2005, 247, 486–492. [Google Scholar] [CrossRef]
- Comesaña, R.; Quintero, F.; Lusquiños, F.; Pascual, M.J.; Boutinguiza, M.; Durán, A.; Pou, J. Laser cladding of bioactive glass coatings. Acta Biomater. 2010, 6, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Minguella-Canela, J.; Villegas, M.; Poll, B.; Tena, G.; Ginebra, M.P. Automatic casting of advanced technical ceramic parts via open source high resolution 3D printing machines. Key Eng. Mater. 2014, 631, 269–274. [Google Scholar] [CrossRef]
- Ayats, J.R.G.; Canela, J.M. Development of a methodology for the materialisation of ceramic rapid prototypes based on substractive methods. Arch. Mater. Sci. 2007, 28, 9–14. [Google Scholar]
- Minguella-Canela, J.; Cuiñas, D.; Rodríguez, J.V.; Vivancos, J. Advanced manufacturing of ceramics for biomedical applications: Subjection methods for biocompatible materials. Procedia Eng. 2013, 63, 218–224. [Google Scholar] [CrossRef]
- Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Rules and Procedures for the Assessment of Surface Texture; ISO 4288; International Organization for Standardization: Geneva, Switzerland, 1996.
- Orera, V.M.; Merino, R.I.; Chen, Y.; Cases, R.; Alonso, P.J. Intrinsic electron and hole defects in stabilized zirconia single crystals. Phys. Rev. B 1990, 42, 9782–9789. [Google Scholar] [CrossRef]
- Orera, V.M.; Merino, R.I.; Chen, Y.; Cases, R.; Alonso, P.J. Electron and hole trapped defects produced by thermo-reduction or irradiation in stabilized zirconia. Radiat. Eff. Defects. Solids 1991, 119, 907–912. [Google Scholar] [CrossRef]
- Baino, F.; Gautier di Confiengo, G.; Faga, M.G. Fabrication and morphological characterization of glass-ceramic orbital implants. Int. J. Appl. Ceram. Technol. 2018, 15, 884–891. [Google Scholar] [CrossRef]
- Semaltianos, N.G. Nanoparticles by laser ablation. Crit. Rev. Solid State Mater. Sci. 2010, 35, 105–124. [Google Scholar] [CrossRef]
- Kim, M.; Osone, S.; Kim, T.; Higashi, H.; Seto, T. Synthesis of nanoparticles by laser ablation: A review. KONA Powder Part. J. 2017, 34, 80–90. [Google Scholar] [CrossRef]
- Reznikov, N.; Shahar, R.; Weiner, S. Bone hierarchical structure in three dimensions. Acta Biomater. 2014, 10, 3815–3826. [Google Scholar] [CrossRef] [PubMed]
- Feller, L.; Jadwat, Y.; Khammissa, R.A.G.; Meyerov, R.; Schechter, I.; Lemmer, J. Cellular responses evoked by different surface characteristics of intraosseous Ti implants. BioMed Res. Int. 2015, 2015, 171945. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, Z.; Boyan, B.D. Underlying mechanisms at the bone-biomaterial interface. J. Cell. Biochem. 1994, 56, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Rausch-Fan, X.; Wieland, M.; Matejka, M.; Schedle, A. The initial attachment and subsequent behavior regulation of osteoblasts by dental implant surface modification. J. Biomed. Mater. Res. A 2007, 82, 658–668. [Google Scholar] [CrossRef]
- Anselme, K.; Davidson, P.; Popa, A.M.; Giazzon, M.; Liley, M.; Ploux, L. The interactions of cells and bacteria with surfaces structured at the nanometer scale. Acta Biomater. 2010, 6, 3824–12846. [Google Scholar] [CrossRef]
Sample Identity | Energy per Pulse (µJ) | Repetition Rate (kHz) | Scanning Speed (mm/s) | Δα (°) | Repetition Number | Cycles |
---|---|---|---|---|---|---|
1a | 240 | 60 | 1000 | 20 | 20 | 1 |
2a | 240 | 60 | 1000 | 20 | 20 | 5 |
1b | 240 | 60 | 300 | 20 | 20 | 1 |
2b | 240 | 60 | 300 | 20 | 20 | 5 |
1c | 240 | 20 | 1000 | 20 | 20 | 1 |
2c | 240 | 20 | 1000 | 20 | 20 | 5 |
1d | 240 | 20 | 300 | 20 | 20 | 1 |
2d | 240 | 20 | 300 | 20 | 20 | 5 |
3d | 555 | 20 | 300 | 20 | 20 | 1 |
4a | 240 | 60 | 300 | 90 | 2 | 1 |
4b | 240 | 60 | 300 | 90 | 2 | 2 |
4c | 240 | 60 | 300 | 90 | 2 | 3 |
4d | 240 | 60 | 300 | 90 | 2 | 4 |
5 | 240 | 60 | 300 | 90 | 2 | 10 |
Sample Identity | Ra (µm) | Rq (µm) |
---|---|---|
As-such ceramic | 0.26 ± 0.025 | 0.39 ± 0.038 |
1a | 4.48 ± 0.47 | 6.78 ± 0.62 |
2a | 7.25 ± 0.66 | 8.58 ± 1.00 |
1b | 11.08 ± 0.64 | 14.10 ± 0.55 |
2b | 31.03 ± 4.91 | 38.50 ± 5.88 |
1c | 3.38 ± 0.39 | 4.18 ± 0.39 |
2c | 7.75 ± 0.47 | 9.28 ± 0.67 |
1d | 3.45 ± 0.29 | 4.4 ± 0.36 |
2d | 5.48 ± 0.26 | 6.90 ± 0.26 |
3d | 8.78 ± 1.93 | 12.18 ± 3.30 |
4a | 3.78 ± 0.68 | 4.83 ± 0.76 |
4b | 6.55 ± 0.41 | 8.08 ± 0.46 |
4c | 8.55 ± 1.24 | 10.28 ± 1.51 |
4d | 9.78 ± 1.04 | 12.05 ± 0.99 |
5 | 18.84 ± 0.28 | 21.85 ± 0.26 |
5 after heat treatment | 18.66 ± 0.34 | 21.53 ± 0.37 |
DOE Experiment Id | A: Repetition Rate (kHz) | B: Scanning Speed (mm/s) | C: Δα (°) | D: Number of Cycles (units) |
---|---|---|---|---|
1 | 20 | 300 | 20 | 1 |
2 | 60 | 300 | 20 | 5 |
3 | 20 | 1000 | 20 | 5 |
4 | 60 | 1000 | 20 | 1 |
5 | 20 | 300 | 90 | 5 |
6 | 60 | 300 | 90 | 1 |
7 | 20 | 1000 | 90 | 1 |
8 | 60 | 1000 | 90 | 5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baino, F.; Montealegre, M.A.; Minguella-Canela, J.; Vitale-Brovarone, C. Laser Surface Texturing of Alumina/Zirconia Composite Ceramics for Potential Use in Hip Joint Prosthesis. Coatings 2019, 9, 369. https://doi.org/10.3390/coatings9060369
Baino F, Montealegre MA, Minguella-Canela J, Vitale-Brovarone C. Laser Surface Texturing of Alumina/Zirconia Composite Ceramics for Potential Use in Hip Joint Prosthesis. Coatings. 2019; 9(6):369. https://doi.org/10.3390/coatings9060369
Chicago/Turabian StyleBaino, Francesco, Maria Angeles Montealegre, Joaquim Minguella-Canela, and Chiara Vitale-Brovarone. 2019. "Laser Surface Texturing of Alumina/Zirconia Composite Ceramics for Potential Use in Hip Joint Prosthesis" Coatings 9, no. 6: 369. https://doi.org/10.3390/coatings9060369
APA StyleBaino, F., Montealegre, M. A., Minguella-Canela, J., & Vitale-Brovarone, C. (2019). Laser Surface Texturing of Alumina/Zirconia Composite Ceramics for Potential Use in Hip Joint Prosthesis. Coatings, 9(6), 369. https://doi.org/10.3390/coatings9060369