Two-Body and Three-Body Wear Behavior of a Dental Fluorapatite Glass-Ceramic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Fluorapatite Glass-Ceramic
2.2. Characterization of the Fluorapatite Glass-Ceramic
2.3. Preparation of Feldspathic Glass-Ceramic and Tooth Specimens
2.4. Friction and Wear Tests
3. Results
3.1. Characteristic of the Glass-Ceramic
3.2. Friction Behavior
3.3. Wear Behavior
4. Discussion
5. Conclusions
- (1)
- Good mechanical properties of fluorapatite glass-ceramic can be achieved by the sintering process and material components. The fluorapatite glass-ceramic has greater hardness, elastic modulus, and strength than the feldspathic glass-ceramic that was tested.
- (2)
- In both the two-body and three-body modes, the fluorapatite glass-ceramic had better tribological performances and caused less damage than the feldspathic glass-ceramic. The fluorapatite glass-ceramic and antagonistic tooth had a larger friction coefficient and wear rate in the saliva and water conditions than in the dry and slurry conditions because water and saliva facilitate the adhesion of the two contact surfaces and change the main wear mechanism from abrasive wear and fatigue wear to adhesive wear. Meanwhile the feldspathic glass-ceramic showed adhesive wear in dry, water, and saliva environments and had the largest friction coefficient and wear rate in dry condition.
Author Contributions
Funding
Conflicts of Interest
References
- Sailer, I.; Makarov, N.A.; Thoma, D.S.; Zwahlen, M.; Pjetursson, B.E. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I. Single crowns (SCs). Dent. Mater. 2016, 32, E389–E390. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Wen, C.; Wu, J.; Na, W.; Sa, B.; Zhang, T. Mechanical and bioactive properties of lithium disilicate glass-ceramic mixtures synthesized by two different methods. J. Non-Cryst. Solids 2019, 509, 1–9. [Google Scholar] [CrossRef]
- Denry, I.; Hollloway, J.A. Low temperature sintering of fluorapatite glass-ceramics. Dent. Mater. 2014, 30, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Stijacic, T.; Hu, W.; Chung, K.H.; Zheng, C.; Flinn, B.; Raigrodski, A. Fatigue reliability of dental ceramic materials—An in vitro study. Adv. Appl. Ceram. 2018, 118, 56–61. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, S.; Bian, C.; Kong, H. Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading. J. Mech. Behav. Biomed. Mater. 2014, 39, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Arsecularatne, J.A.; Hoffman, M. Ceramic-like wear behaviour of human dental enamel. J. Mech. Behav. Biomed. Mater. 2012, 8, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Baino, F.; Verné, E. Production and Characterization of Glass-Ceramic Materials for Potential Use in Dental Applications: Thermal and Mechanical Properties, Microstructure, and In Vitro Bioactivity. Appl. Sci. 2017, 7, 1330. [Google Scholar] [CrossRef]
- Oh, W.S.; DeLong, R.; Anusavice, K.J. Factors affecting enamel and ceramic wear: A literature review. J. Prosthet. Dent. 2002, 87, 451–459. [Google Scholar] [CrossRef]
- Zhou, Z.R.; Zheng, J. Tribology of dental materials: A review. J. Phys. D Appl. Phys. 2008, 41, 113001. [Google Scholar] [CrossRef]
- D’Arcangelo, C.; Vanini, L.; Rondoni, G.D.; De Angelis, F. Wear properties of dental ceramics and porcelains compared with human enamel. J. Prosthet. Dent. 2016, 115, 350–355. [Google Scholar] [CrossRef]
- Sripetchdanond, J.; Leevailoj, C. Wear of human enamel opposing monolithic zirconia, glass-ceramic, and composite resin. an in vitro study. J. Prosthet. Dent. 2014, 112, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Silva, N.R.; Thompson, V.P.; Valverde, G.B.; Coelho, P.G.; Powers, J.M.; Farah, J.W. Reliability analyses of zirconium oxide and lithium disilicate restorations in vitro and in vivo. J. Am. Dent. Assoc. 2011, 142, 4S–9S. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yi, Y.; Wang, X.; Guo, J.; Li, D.; He, L.; Zhang, S. A comparative study of progressive wear of four dental monolithic, veneered glass-ceramics. J. Mech. Behav. Biomed. Mater. 2017, 74, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.; Branco, A.; Polido, M.; Serro, A.P.; Figueiredo-Pin, C.G. Comparative study of the wear of the pair human teeth/Vita Enamic® vs. commonly used dental ceramics through chewing simulation. J. Mech. Behav. Biomed. Mater. 2018, 88, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, S.P.; Williamson, R.T. A review of saliva: Normal composition, flow, and function. J. Prosthet. Dent. 2001, 85, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Bongaerts, J.H.H.; Rossetti, D.; Stokes, J.R. The lubricating properties of human whole saliva. Tribol. Lett 2007, 27, 277–287. [Google Scholar] [CrossRef]
- Yu, H.Y.; Cai, Z.B.; Ren, P.D.; Zhu, M.H.; Zhou, Z.R. Friction and wear behavior of dental feldspathic porcelain. Wear 2006, 261, 611–621. [Google Scholar] [CrossRef]
- Kaidonis, J.A.; Richards, L.C.; Townsend, G.C.; Tansley, G.D. Wear of human enamel: A quantitative in vitro assessment. J. Dent. Res. 1998, 77, 1983–1990. [Google Scholar] [CrossRef]
- Tillitson, E.W.; Craig, R.G.; Peyton, F.A. Friction and wear of restorative dental materials. J. Dent. Res. 1971, 50, 149–154. [Google Scholar] [CrossRef]
- Mccrea, E.S.; Katona, T.R.; Eckert, G.J. The effects of salivas on occlusal forces. J. Oral Rehabil. 2015, 42, 348–354. [Google Scholar] [CrossRef]
- Amer, R.; Kürklü, D.; Kateeb, E.; Seghi, R.R. Three-body wear potential of dental yttrium-stabilized zirconia ceramic after grinding, polishing, and glazing treatments. J. Prosthet. Dent. 2014, 112, 1151–1155. [Google Scholar] [CrossRef] [PubMed]
- Koottathape, N.; Takahashi, H.; Iwasaki, N.; Kanehira, M.; Finger, W.J. Two- and three-body wear of composite resins. Dent. Mater. 2012, 28, 1261–1270. [Google Scholar] [CrossRef]
- Zhang, H.; Sun Yali Guo, J.; Meng, M.; He, L.; Tay, F.R.; Zhang, S. The effect of food medium on the wear behaviour of veneering porcelain: An in vitro study using the three-body abrasion mode. J. Dent. 2019, 83, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Fu, K.; Wang, S.; Wang, G.; Wang, Y. The effects of calcium oxide on fluorapatite crystal morphology and mechanical property of functional glass-ceramic. Ceram. Int. 2018, 44, 20531–20538. [Google Scholar] [CrossRef]
- Wang, G.; Wang, S.; Bian, C.; Li, Y.; Shao, J. Tribological behavior evaluation of dental fluorapatite glass ceramic. J. Aust. Ceram. Soc. 2019, 55, 363–370. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Q.H.; Ling, W.S.; He, L.Z.; Tang, Y.; Wu, F.; Liao, J.L.; Hui, K.S.; Hui, K.N. Characterization of three- and four-point bending properties of porous metal fiber sintered sheet. Mater. Design 2014, 56, 522–527. [Google Scholar] [CrossRef]
- Plastics- Determination of Flexural Properties; ISO 178:2019; International Organization for Standardization: Geneva, Switzerland, 2019.
- Eisenburger, M.; Shellis, R.P.; Addy, M. Comparative study of wear of enamel induced by alternating and simultaneous combinations of abrasion and erosion in vitro. Caries. Res. 2003, 37, 450–455. [Google Scholar] [CrossRef]
- Heintze, S.D.; Zellweger, G.; Sbicego, S.; Rousson, V.; Muñoz-Viveros, C.; Stober, T. Wear of two denture teeth materials in vivo-2-year results. Dent. Mater. 2013, 29, e191–e204. [Google Scholar] [CrossRef]
- Schmid-Schwap, M.; Rousson, V.; Vornwagner, K.; Heintze, S.D. Wear of two artificial tooth materials in vivo: A 12-month pilot study. J. Prosthet. Dent. 2009, 102, 104–114. [Google Scholar] [CrossRef]
Material | Bending Strength (MPa) | Elasticity Modulus (GPa) | Hardness (HV) |
---|---|---|---|
Self-made fluorapatite glass-ceramic | 160 (±15) | 87 (±10) | 637 (±36) |
Vita VM9 feldspathic glass-ceramic | 98 (±9) | 75 (±8) | 539 (±34) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Li, Y.; Wang, S.; Yang, X.; Sun, Y. Two-Body and Three-Body Wear Behavior of a Dental Fluorapatite Glass-Ceramic. Coatings 2019, 9, 580. https://doi.org/10.3390/coatings9090580
Wang G, Li Y, Wang S, Yang X, Sun Y. Two-Body and Three-Body Wear Behavior of a Dental Fluorapatite Glass-Ceramic. Coatings. 2019; 9(9):580. https://doi.org/10.3390/coatings9090580
Chicago/Turabian StyleWang, Gaoqi, Yunkai Li, Shouren Wang, Xuefeng Yang, and Yujing Sun. 2019. "Two-Body and Three-Body Wear Behavior of a Dental Fluorapatite Glass-Ceramic" Coatings 9, no. 9: 580. https://doi.org/10.3390/coatings9090580
APA StyleWang, G., Li, Y., Wang, S., Yang, X., & Sun, Y. (2019). Two-Body and Three-Body Wear Behavior of a Dental Fluorapatite Glass-Ceramic. Coatings, 9(9), 580. https://doi.org/10.3390/coatings9090580