Seismic Behavior of Steel-Fiber-Reinforced High-Strength Concrete Shear Wall with CFST Columns: Experimental Investigation
Abstract
:1. Introduction
2. Experimental Program
2.1. Test Specimens and Materials
2.2. Materials
2.3. Experimental Device and Loading System
3. Test Results and Discussion
3.1. Failure Modes
3.2. Hysteretic Curve
3.3. Skeleton Curve
3.4. Ductility Coefficient and Energy Dissipation
3.5. Stiffness Degradation
4. Conclusions
- Compared to the ordinary shear wall, the cracking force, yielding force, peak force, deformation capacity, ductility and energy dissipation capacity of the composite shear wall were significantly improved; in particular, the energy dissipation capacity was increased by 66%. This demonstrated that CFTS columns can significantly improve the seismic performance of SFRHC shear walls, due to the confinement effect on the shear web.
- With the addition of steel fiber, the energy dissipation capacity, ductility coefficient and load-bearing capacity of the specimens were increased. In addition, the failure mode of the shear wall changed from shear failure to bending failure due to the crack resistance of steel fiber.
- Comparative analysis of seismic performance between CFST-3 and CFST-5 specimens demonstrated that increasing the axial compression ratio of shear walls can increase the cracking force, yield force and peak force of specimens, and has little influence on the energy consumption. However, it has a negative impact on the ductility of the specimens.
- Comparative analysis of seismic performance between CFST-3 and CFST-6 specimens illustrated that increasing the shear span ratio of shear walls can increase the ductility and energy dissipation of specimens. However, it decreased the cracking force, yield force and peak force (all >35%).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, Y.; Wu, H.; Zhuge, Y. Strength and drift capacity of squat recycled concrete shear walls under cyclic loading. Eng. Struct. 2015, 100, 356–368. [Google Scholar] [CrossRef]
- Bekő, A.; Rosko, P.; Wenzel, H.; Pegon, P.; Markovic, D.; Molina, F.J. RC shear walls: Full-scale cyclic test, insights and derived analytical model. Eng. Struct. 2015, 102, 120–131. [Google Scholar] [CrossRef]
- Li, B.; Qian, K.; Wu, H. Flange effects on seismic performance of reinforced concrete squat walls with irregular or regular openings. Eng. Struct. 2016, 110, 127–144. [Google Scholar] [CrossRef]
- Mosoarca, M. Failure analysis of RC shear walls with staggered openings under seismic loads. Eng. Fail. Anal. 2014, 41, 48–64. [Google Scholar] [CrossRef]
- Zhang, H.M.; Lu, X.L.; Duan, Y.F.; Zhu, Y. Experimental study on failure mechanism of RC walls with different boundary elements under vertical and lateral loads. Adv. Struct. Eng. 2014, 17, 361–379. [Google Scholar] [CrossRef]
- Massone, L.M.; Wallace, J.W. Load-deformation responses of slender reinforced concrete walls. Struct. J. 2004, 101, 103–113. [Google Scholar]
- Massone, L.M.; Bonelli, P.; Lagos, R.; Lüders, C.; Moehle, J.; Wallace, J.W. Seismic design and construction practices for RC structural wall buildings. Earthq. Spectra 2012, 28, 245–256. [Google Scholar] [CrossRef]
- Sener, K.C.; Varma, A.H.; Ayhan, D. Steel-plate composite (SC) walls: Out-of-plane flexural behavior, database, and design. J. Constr. Steel Res. 2015, 108, 46–59. [Google Scholar] [CrossRef]
- Seo, J.; Varma, A.H.; Sener, K.; Ayhan, D. Steel-plate composite (SC) walls: In-plane shear behavior, database, and design. J. Constr. Steel Res. 2016, 119, 202–215. [Google Scholar] [CrossRef]
- Bogdanić, A.; Casucci, D.; Ožbolt, J. Numerical and experimental investigation of anchor channels subjected to shear load in composite slabs with profiled steel decking. Eng. Struct. 2021, 240, 112347. [Google Scholar] [CrossRef]
- Cheng, S.; Yin, S.; Jing, L. Comparative experimental analysis on the in-plane shear performance of brick masonry walls strengthened with different fiber reinforced materials. Constr. Build. Mater. 2020, 259, 120387. [Google Scholar] [CrossRef]
- Chu, Y.; Hou, H.; Yao, Y. Experimental study on shear performance of composite cold-formed ultra-thin-walled steel shear wall. J. Constr. Steel Res. 2020, 172, 106168. [Google Scholar] [CrossRef]
- Hossain, K.M.A.; Jahan, A.; Mol, L. Experimental and analytical investigation on shear behavior of profiled steel sheet dry board composite wall system. Structures 2021, 34, 3945–3957. [Google Scholar] [CrossRef]
- Kenarangi, H.; Kizilarslan, E.; Bruneau, M. Cyclic behavior of c-shaped composite plate shear walls—Concrete filled. Eng. Struct. 2021, 226, 111306. [Google Scholar] [CrossRef]
- Xingxing, W.; Wei, W.; Jihong, Y.; Youcheng, L. Synergistic shear behaviour of cold-formed steel shear walls and reinforced edge struts. J. Constr. Steel Res. 2021, 184, 106779. [Google Scholar] [CrossRef]
- Meghdadaian, M.; Ghalehnovi, M. Improving seismic performance of composite steel plate shear walls containing openings. J. Build. Eng. 2019, 21, 336–342. [Google Scholar] [CrossRef]
- Meghdadian, M.; Gharaei-Moghaddam, N.; Arabshahi, A.; Mahdavi, N.; Ghalehnovi, M. Proposition of an equivalent reduced thickness for composite steel plate shear walls containing an opening. J. Constr. Steel Res. 2020, 168, 105985. [Google Scholar] [CrossRef]
- Kizilarslan, E.; Broberg, M.; Shafaei, S.; Varma, A.H.; Bruneau, M. Non-linear analysis models for Composite Plate Shear Walls-Concrete Filled (C-PSW/CF). J. Constr. Steel Res. 2021, 184, 106803. [Google Scholar] [CrossRef]
- Kizilarslan, E.; Broberg, M.; Shafaei, S.; Varma, A.H.; Bruneau, M. Seismic design coefficients and factors for coupled composite plate shear walls/concrete filled (CC-PSW/CF). Eng. Struct. 2021, 244, 112766. [Google Scholar] [CrossRef]
- Kizilarslan, E.; Bruneau, M. Hysteretic behavior of repaired C-shaped concrete filled-composite plate shear walls (C-PSW/CF). Eng. Struct. 2021, 241, 112410. [Google Scholar] [CrossRef]
- Hu, H.; Nie, J.; Fan, J.; Tao, M.; Wang, Y.; Li, S. Seismic behavior of CFST-enhanced steel plate-reinforced concrete shear walls. J. Constr. Steel Res. 2016, 119, 176–189. [Google Scholar] [CrossRef]
- Shi, J.; Guo, L.; Qu, B. In-plane cyclic tests of double-skin composite walls with concrete-filled steel tube boundary elements. Eng. Struct. 2022, 250, 113301. [Google Scholar] [CrossRef]
- Jiang, J.; Luo, J.; Xue, W.; Hu, X.; Qin, D. Seismic performance of precast concrete double skin shear walls with different vertical connection types. Eng. Struct. 2021, 245, 112911. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Li, X.; Cao, W. Seismic behavior of steel fiber-reinforced high-strength concrete mid-rise shear walls with high-strength steel rebar. J. Build. Eng. 2021, 42, 102462. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Zhang, D.; Huang, X. Hysteretic behavior of high-performance frame-shear wall composite structure with high-strength steel bars. J. Build. Eng. 2022, 45, 103416. [Google Scholar] [CrossRef]
- Yan, J.; Hu, H.; Wang, T. Cyclic tests on concrete-filled composite plate shear walls with enhanced C-channels. J. Constr. Steel Res. 2021, 179, 106522. [Google Scholar] [CrossRef]
- Yan, J.; Hu, H.; Wang, T. Seismic behaviour of novel concrete-filled composite plate shear walls with boundary columns. J. Constr. Steel Res. 2021, 179, 106507. [Google Scholar] [CrossRef]
- Shi, J.; Gao, S.; Guo, L. Compressive behaviour of double skin composite shear walls stiffened with steel-bars trusses. J. Constr. Steel Res. 2021, 180, 106581. [Google Scholar] [CrossRef]
- Xiong, M.; Xiong, D.; Liew, J.R. Flexural performance of concrete filled tubes with high tensile steel and ultra-high strength concrete. J. Constr. Steel Res. 2017, 132, 191–202. [Google Scholar] [CrossRef]
- Huang, Z.; Liew, J.R. Structural behaviour of steel–concrete–steel sandwich composite wall subjected to compression and end moment. Thin Wall Struct. 2016, 98, 592–606. [Google Scholar] [CrossRef]
- Chen, Z.; Zi, Z.; Zhou, T.; Wu, Y. Axial compression stability of thin double-steel-plate and concrete composite shear wall. Structures 2021, 34, 3866–3881. [Google Scholar] [CrossRef]
- Ren, F.; Chen, J.; Chen, G.; Guo, Y.; Jiang, T. Seismic behavior of composite shear walls incorporating concrete-filled steel and FRP tubes as boundary elements. Eng. Struct. 2018, 168, 405–419. [Google Scholar] [CrossRef]
- Yan, J.; Yan, Y.; Wang, T. Cyclic tests on novel steel-concrete-steel sandwich shear walls with boundary CFST columns. J. Constr. Steel Res. 2020, 164, 105760. [Google Scholar] [CrossRef]
- Zhou, J.; Li, P.; Guo, N. Seismic performance assessment of a precast concrete-encased CFST composite wall with twin steel tube connections. Eng. Struct. 2020, 207, 110240. [Google Scholar] [CrossRef]
- Zhou, J.; Fang, X.; Yao, Z. Mechanical behavior of a steel tube-confined high-strength concrete shear wall under combined tensile and shear loading. Eng. Struct. 2018, 171, 673–685. [Google Scholar] [CrossRef]
- Smarzewski, P. Hybrid Fibres as Shear Reinforcement in High-Performance Concrete Beams with and without Openings. Appl. Sci. 2018, 8, 2070. [Google Scholar] [CrossRef] [Green Version]
- Smarzewski, P. Analysis of Failure Mechanics in Hybrid Fibre-Reinforced High-Performance Concrete Deep Beams with and without Openings. Materials 2018, 12, 101. [Google Scholar] [CrossRef] [Green Version]
- Lim, W.G.; Kang, S.W.; Yun, H.D. Shear Behavior of Squat Steel Fiber Reinforced Concrete (SFRC) Shear Walls with Vertical Slits. Appl. Mech. Mater. 2013, 372, 207–210. [Google Scholar] [CrossRef]
- Eom, T.; Kang, S.; Kim, O. Earthquake resistance of structural walls confined by conventional tie hoops and steel fiber reinforced concrete. Earthq. Struct. 2014, 7, 843–859. [Google Scholar] [CrossRef]
- Choun, Y.S.; Lee, J.H.; Jeon, J.K. Evaluation of Shear Resisting Capacity of a Conventional Reinforced Concrete Wall with Steel or Polyamide Fiber Reinforcement. J. Korean Soc. Hazard Mitig. 2013, 13, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Xie, Z.; Zhang, W.; Luo, X.; Yang, Y.; Chen, B. Experimental study on circular steel tube-confined reinforced UHPC columns under axial loading. Eng. Struct. 2021, 230, 111599. [Google Scholar] [CrossRef]
- Xu, S.; Wu, C.; Liu, Z.; Shao, R. Experimental investigation on the cyclic behaviors of ultra-high-performance steel fiber reinforced concrete filled thin-walled steel tubular columns. Thin Wall. Struct. 2019, 140, 1–20. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, Y.; Zhang, H.; Zhang, H.; Xiao, R. Experimental study on seismic performance of steel fiber reinforced high strength concrete composite shear walls with different steel fiber volume fractions. Eng. Struct. 2018, 171, 247–259. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB 50010-2010 Code for Design of Concrete Structures; China Building Industry Press: Beijing, China, 2010. [Google Scholar]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China and General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB 50936-2014 Technical Specifications for Concrete Filled Steel Tubular Structures; China Building Industry Press: Beijing, China, 2014. [Google Scholar]
- Vetr, M.G.; Shirali, N.M.; Ghamari, A. Seismic resistance of hybrid shear wall (HSW) systems. J. Constr. Steel Res. 2016, 116, 247–270. [Google Scholar] [CrossRef]
- China Ministry of Construction. Standard for Evaluation of Concrete Compressive Strength. GB/T 50107–2010; China Ministry of Construction: Beijing, China, 2010. [Google Scholar]
- China Ministry of Construction. Test Methods of Steel for Reinforcement of Concrete. GB/T 28900–2012; China Ministry of Construction: Beijing, China, 2012. [Google Scholar]
- Liang, X.; Li, J. GB/T 228-2002, Metallic Materials—Tensile Testing at Ambient Temperature; China Architecture & Building Press: Beijing, China, 2002. [Google Scholar]
- Liao, F. Study on Seismic Behavior of Reinforced Concrete Shear Walls with Concrete-Filled Steel Tubular Side Columns.; Fuzhou University: Fuzhou, China, 2007. [Google Scholar]
- Jiuru, T.; Chaobin, H.; Kaijian, Y.; Yongcheng, Y. Seismic behavior and shear strength of framed joint using steel–fiber reinforced concrete. J. Struct. Eng. 1992, 118, 341–358. [Google Scholar] [CrossRef]
Joint Number | Web Concrete Type | Dimension (mm × mm × mm) | Steel Fiber Volume Fraction (%) | Axial Compression Ratio | Shear Span Ratio | |
---|---|---|---|---|---|---|
Wall Web | Steel Tube | |||||
RHC-0 | C60 | 975 × 750 × 120 | -- | 0 | 0.2 | 1.5 |
CFST-1 | C60 | 975 × 750 × 120 | 120 × 120 × 3 | 0 | 0.2 | 1.5 |
CFST-2 | CF60 | 975 × 750 × 120 | 120 × 120 × 3 | 0.5 | 0.2 | 1.5 |
CFST-3 | CF60 | 975 × 750 × 120 | 120 × 120 × 3 | 1.0 | 0.2 | 1.5 |
CFST-4 | CF60 | 975 × 750 × 120 | 120 × 120 × 3 | 1.5 | 0.2 | 1.5 |
CFST-5 | CF60 | 975 × 750 × 120 | 120 × 120 × 3 | 1.0 | 0.1 | 1.5 |
CFST-6 | CF60 | 600 × 750 × 120 | 120 × 120 × 3 | 1.0 | 0.2 | 1.0 |
Concrete Type | Steel Fiber Volume Fraction (%) | Mix Proportion (kg/m3) | fc (MPa) | ft (MPa) | Modulus of Elasticity (Mpa) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Steel Fiber | Water | Cement | Sand | Stone | Water Reducer | |||||
C60 | 0 | 0.0 | 164 | 529 | 646 | 1110 | 5.819 | 55.3 | 2.8 | 41,500 |
CF60 | 0.5% | 39 | 164 | 529 | 646 | 1110 | 5.819 | 55.5 | 3.7 | 41,600 |
CF60 | 1.0% | 78 | 164 | 529 | 646 | 1110 | 5.819 | 55.9 | 6.2 | 42,100 |
CF60 | 1.5% | 117 | 164 | 529 | 646 | 1110 | 5.819 | 56.8 | 7.9 | 42,300 |
Category | Yield Strength fy (MPa) | Ultimate Strength fu (Mpa) | Elastic Modulus (Mpa) |
---|---|---|---|
C6 | 369.2 | 521.6 | 185,000 |
2 mm plate | 236.67 | 323.20 | 188,000 |
3 mm plate | 307.07 | 392.20 | 198,000 |
Joint Number | Cracking Point | Yield Point | Peak Point | Ultimate Point | μ | Etotal | ||||
---|---|---|---|---|---|---|---|---|---|---|
Fcr (kN) | Δy (mm) | Fy (kN) | Δy (mm) | Fm (kN) | Δm (mm) | Fu (kN) | Δu (mm) | |||
RHC-0 | 132.22 | 1.86 | 308.52 | 9.32 | 383.71 | 18.56 | 325.37 | 24.2 | 2.60 | 65.09 |
CFST-1 | 166.27 | 2.51 | 405.89 | 10.27 | 481.76 | 22.41 | 414.42 | 28.48 | 2.77 | 108.06 |
CFST-2 | 199.72 | 2.69 | 425.65 | 10.51 | 523.73 | 26.03 | 451.19 | 32.5 | 3.09 | 154.96 |
CFST-3 | 245.56 | 2.92 | 455.53 | 11.01 | 548.95 | 29.42 | 473.53 | 38.13 | 3.46 | 194.92 |
CFST-4 | 285.59 | 3.47 | 480.54 | 10.84 | 585.95 | 32.67 | 504.27 | 41.9 | 3.87 | 289.42 |
CFST-5 | 202.29 | 2.56 | 417.62 | 10.81 | 483.13 | 30.54 | 417.14 | 41.02 | 3.79 | 191.34 |
CFST-6 | 398.32 | 1.38 | 807.17 | 8.82 | 993.36 | 20.15 | 844.68 | 23.5 | 2.66 | 157.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, K.; Zhang, M.; Li, P.; Xue, R.; You, P.; Zhang, T.; Cui, B. Seismic Behavior of Steel-Fiber-Reinforced High-Strength Concrete Shear Wall with CFST Columns: Experimental Investigation. Fibers 2021, 9, 75. https://doi.org/10.3390/fib9110075
Shi K, Zhang M, Li P, Xue R, You P, Zhang T, Cui B. Seismic Behavior of Steel-Fiber-Reinforced High-Strength Concrete Shear Wall with CFST Columns: Experimental Investigation. Fibers. 2021; 9(11):75. https://doi.org/10.3390/fib9110075
Chicago/Turabian StyleShi, Ke, Mengyue Zhang, Pengfei Li, Ru Xue, Peibo You, Tao Zhang, and Baoyu Cui. 2021. "Seismic Behavior of Steel-Fiber-Reinforced High-Strength Concrete Shear Wall with CFST Columns: Experimental Investigation" Fibers 9, no. 11: 75. https://doi.org/10.3390/fib9110075
APA StyleShi, K., Zhang, M., Li, P., Xue, R., You, P., Zhang, T., & Cui, B. (2021). Seismic Behavior of Steel-Fiber-Reinforced High-Strength Concrete Shear Wall with CFST Columns: Experimental Investigation. Fibers, 9(11), 75. https://doi.org/10.3390/fib9110075