Investigating Climate Change and Reproduction: Experimental Tools from Evolutionary Biology
Abstract
:1. Introduction
2. Single Generation Studies on Traits Associated with Reproduction
Environment | Species | Environmental factor under investigation 1,2 | Outcome on reproductive traits 2 | Reference |
---|---|---|---|---|
Lab environment | Wolf spider | Temperature | Warmer temps gradually decreased courtship effort and copulation duration | [35] |
Pardosa astrigera | [16,20,24,28,32 °C] | |||
Dung fly | Temperature | Warmer ambient temps gradually decreased copulation duration | [36] | |
Sepsis cynipsea | [17,18,20,24,26,29 °C] | |||
Stingless wasp | Temperature | At warmer temps fewer primary spermatocytes | [37] | |
Trichogramma brassicae | [23,35,44 °C] | |||
Adzuki bean beetle | Temperature | Warmer temps reduced mating duration and number of sperm transferred | [38] | |
Callosobruchus chinensis | [17,25,33 °C] | |||
Argentine ant | Temperature | Warmer temps decreased development time up to 30° (60d vs. 160d at 21°) | [39] | |
Linepithema humile | [18,21,24,26,28,30,32 °C] | |||
Fruit fly | Temperature | At low temp. female-biased offspring sex ratio | [40] | |
Drosophila melanogaster | [low 5.5–14.5 °C, constant 25°C, high 20–33.5 °C] | |||
Cricket | Temperature | Different aspects in male mating call increased or decreased due to temp | [41] | |
Allonemobius socius | [24,31 °C] | |||
Great tit | Temperature | In 5 of 6 experiments (1999–2004) birds from the warm treatment nested earlier | [42] | |
Parus major | Warm: summer temps of 1998, cold: summer temps of 1986 | |||
Common starling | Temperature | Timing of testicular maturation initiated by photoperiod not temp. | [43] | |
Sturnus vulgaris | [20 °C vs. 5 °C;18 vs. 8 °C] | |||
Fathead minnow | Temperature | Increased temp. leads to higher sensitivity of vitellogenin expression | [44] | |
Pinnephales promelas | [20,25,30 °C] | |||
Leopard gecko | Temperature | In colder temp. more androgen receptors expressed in testes | [45] | |
Eublepharis macularius | [29,18 °C] | |||
Veiled chameleon | Temperature | Longer development time and higher egg mortality at higher temps | [46] | |
Chamaeleo calyptratus | [25,28,30 °C] | |||
Natural environment | Fall webworm | Increased annual temps 1975–2002 | Shift from bivoltinism to trivoltinism | [47] |
Hyphantria cunea | ||||
Dragonfly | Natural temp. variation plus artificial warming | Not faster than univoltine development | [48] | |
Orthetrum cancellatum | [ambient, +2, +4, +6 °C] | |||
Kentish plover | Natural temp. variation 2005–2006 | Increased biparental nest attendance during temp. peaks | [49] | |
Charadrius alexandrinus | ||||
Butterflies & moths | Increased annual mean summer temps1864–2008 | Increased voltinism a general trend | [50] | |
1117 sp. | ||||
Spruce bark beetle | Climate change modeling (3 SRES scenarios (IPCC)) 1961–2100 | Predicted shift to bivoltinism in 50% of years by 2050 if temps increased by +2.4–3.8 °C increased pest | [51] | |
Ips typographus | ||||
Collared flycatcher | Natural variation during years 2003, 2005–2007 | Maternal yolk hormone (androstenedione) transfer highly sensitive e.g., via body condition | [52] | |
Ficedula albicollis | ||||
Greater snow goose | Temp., precipitation and snow cover variation 1994–2004 | Warm spring temps and low snow cover: denser & earlier nesting, but reduced size and mass of fledglings causing decrease in RS | [53] | |
Chen caerulescens | ||||
Barn swallow | Spring and summer temperatures 2000–2002 | Egg mass increased with the temp. 2–5d before laying; temp. effect on carotenoid and immune factors deposition in eggs | [54] | |
Hirundo rustica | ||||
Tuatara | Model with geographical, microclimatic and biophysical data until 2080 | All male clutches predicted without adaptations; behavioral nesting adjustment unlikely | [55] | |
Sphenodon guntheri | ||||
Lizard | Clinal gradient (19° lat.) in East Australia 2003–2004 | Nest relocation to different sites to normalize nest temps and assure equal sex-ratio | [56] | |
Physignathus lesueurii | ||||
Grey seals | Total rainfall in Octobers 1996–2004 | Strong sexual selection in wet years, whereas more males reproduce in dry years | [57] | |
Halichoerus grypus | ||||
African buffalo | Natural variation in precipitation 1978–1998 | Wet male-biased sex ratio, dry female-biased sex ratio, indicating condition-dependent sex-ratio distorter genes | [58] | |
Syncerus caffer | ||||
Leatherback turtle | Natural variation in precipitation 1987–2003 | Increased precipitation has cooling effect on nests, leading to more males | [59] | |
Dermochelys coriacea |
Environment | Species | Environmental factor under investigation 1,2 | Outcome on mean RS 2 | Reference |
---|---|---|---|---|
Lab environment | Serpentine leafminer | Warmer temps | Increase until Topt (=30° with fecundity 406 eggs) | [60] |
Liriomyza trifolii | [15,20,25,30,35] | |||
Olive fruit fly | Warmer temps | Decreased production of mature eggs in elevated temps vs. control | [61] | |
Bactrocera oleae | [18.3–23.9(control), 18.3–35.0, 18.3–37.8] | |||
Fruit fly | Warmer temp. | Increased fec. overall via mother, slight decreasing effect via father | [62] | |
Drosophila melanogaster | [18,25] | |||
Fruit fly | Warmer or colder temp. | In-/decreased RS (84 at 29°, 79 at 25°, 38 at 18°) | [63] | |
Drosophila melanogaster | [18,25, 29] for 1 day | |||
Fruit fly | Cold exposures | Decreased number of offspring in multiply and sustained cold exposed flies | [64] | |
Drosophila melanogaster | [constant 22°, 10h at –0.5°, multiple times 2h at –0.5°, 2h at –0.5°] | |||
House fly | Warmer temps | Increase until Topt (=30° with fecundity 495 vs. 118 and 433 at 20°and 25°) | [65] | |
Musca domestica | [20,25,30,35] | |||
Goldenrod gall fly | Warm spring temp | Decreased fec. if unfrozen (199 eggs at 12° vs. 256 at 0°) | [66] | |
Eurosta solidaginis | [0,12] after overwintering | |||
Hymenopteran parasitoid | Warmer temps | Increased lifetime fec. (62 eggs at 30° vs. 45–59 at other temps) | [67] | |
Trichogramma buesi | [12,15,20,25,30,35] | |||
Hymenopteran parasites | Warmer temp. | Decreased fec. in all three species (e.g., in P. palitans 76 vs. 579 eggs) | [68] | |
Praon palitans, Trioxys utilis, Aphelinus semiflavus | [27,21] | |||
Colder temp. | Decreased fec. in all three species | |||
[16,21] | ||||
Hymenopteran parasitoids | Warmer temp. | Increased offspring number in all 5 species (e.g., in S. cameroni 6 offspring at 21 vs. 12 at 29°) | [69] | |
Muscidifurax raptor, M. zaraptor, M. uniraptor, Spalangia cameroni, S. endius | [21,29] | |||
Hymenopteran parasite | Warmer temps | Increase until Topt (=22.5° with 163 offspring, 112 at 25°, 80 at 27.5° and higher) | [70] | |
Trissolcus oenone | [15,17.5,20,22.5,25, 27.5,30,32.5,35] | |||
Silverleaf whitefly | Warmer temps | Decrease (324 eggs/female at 20° vs. 22 eggs at 35°) | [71] | |
Bemisia argentifolii | [15,20,25,27,30,35] | |||
Butterflies : Hipparchia semele, | Warmer temp. | Decreased fec. in P. aegeria, fec. highest at 30° in other 3 species | [72] | |
Coenonympha pamphilus, Aphantopus hyperantus, Pararge aegeria | [30,25] | |||
Colder temp. [20,25] | Decreased fec. in all 4 sp. | |||
Butterfly | Colder temp. | Decreased lifetime fec. (85 vs. 133) | [73] | |
Pararge aegeria | [19,27] | |||
Spruce bud moth | Warm/cold temps | Decreased fec. at extremes (59 viable eggs at 10°, 53 at 25° vs. 84 and 86 eggs at 15 and 20°) | [74] | |
Zeiraphera canadensis | [10,15,20,25] | |||
Fluctuating temp. | ||||
[alternating between 10 and 25] | Decreased fec. (51 viable eggs, see above) | |||
Lesser peach tree borer | Warmer temps | Increased fec. until Topt (=30°; 221 eggs vs. 0–122 at lower temps) | [75] | |
Synanthedon pictipes | [15.2,20.8,23.5,26.9, 30.3,33.6,37.8] | |||
Spruce bark beetle | Warmer temps. | Increased fec. until Topt (=30° with 24 eggs, 10 eggs at 15°) | [76] | |
Ips typographus | [12,15,20,25,30,33] | |||
Mexican bean beetle | Warmer temp. | Decreased fecundity | [77] | |
Epilachna varivestis | [27,22] | (6 eggs vs. 75) | ||
Colder temp. | Decreased fecundity | |||
[17,22] | (38 eggs vs. 75) | |||
Stored product pest beetles | Sinusoidal fluctuation | T.c.: increased fec. in fluctuating vs. constant regime | [78] | |
Tribolium castaneum, Trogoderma | [10° range, mean 25] | |||
inclusum, Sitophilus oryzae | vs. constant 25] | T.i., S.o.: no effect | ||
Stored product pest beetle | Warmer temp. | Increased RS of polyandrous beetles at warmer temp. | [79] | |
Tribolium castaneum | [30,34] | |||
Stored product pest beetles | Warmer temps | Increased fec.: T. cast.: 19, 51 and 57 eggs, T. conf.: 15, 38 and 43 eggs | [80] | |
Tribolium castaneum, T. confusum | [24,29,34] | |||
Wolf spider | Cold/warm temps | Increase until Topt (=24° with lifetime fec. of 67 vs. 16–66 at other temps) | [81] | |
Pardosa astrigera | [16,20,24,28,32] | |||
Cotton aphid | Warmer temps | Increased no. of offspring until Topt (=30° with 3.1/day, 1.8/day at 15°, 0 at 35°, 3.1/day with 25/30° and 2.3/day with 30/35°) | [82] | |
Aphis gossypii | [15,20,25,30,35] | |||
Fluctuating temp. | ||||
[25/30,30/35] | ||||
Soybean aphid | Warmer temp. [30,25] | Decrease (23 vs. 73 eggs) | [83] | |
Aphis glycines | Colder temp. [20,25] | Stable (75 vs. 73 eggs) | ||
Corn aphids: Rhopalosiphum padi, Sitobion avenae, Metopolophium dirhodum | Warmer temps | R.p.: Increase (Topt = 27.5°), S.a.: Decrease (Topt = 18°), M.d.: Decrease (Topt = 18°) | [84] | |
[18,22,25,27.5,30] | ||||
Wheat aphid | Warmer temps | Decreased offspring number from 35 at 15° to 34 (20°), 17 (25°) and 5 (30°) | [85] | |
Diuraphis noxia | [5,10,15,20,25,30] | |||
Western tarnished plant bug | Warmer temps [12.8,15.6,21.1,26.7, 32.2,35.0,37.8] | Increase until Topt (=26.7°, 178 eggs vs. 38–140 at other temps) | [86] | |
Lygus hesperus | ||||
Predatory mites | Warmer temp. | Increased egg laying rate in all 4 species | [87] | |
Galendromus longipilis, Neoseiulus fallacis, Phytoseiulus macropilis, Proprioseiopsis temperellus | [13.3,26.4] | |||
Predatory mite | Warmer temps | Increase to Topt (=25°; 34 vs. 17–30 eggs at other temps) | [88] | |
Amblyseius largoensis | [15,20,25,30,35] | |||
Citrus rust mite | Warmer temps | Increased fec. from 2 eggs at 14° up to 15 at 27°, then decrease | [89] | |
Phyllocoptruta oleivora | [12,14,17,19,21,23,25,27,29,31,33] | |||
Predatory mite | Warmer/colder temps | Decreased fec. 8 and 16 eggs at 20 and 30° vs. 18 at 25° | [90] | |
Amblyseius californicus | [20,25,30] | |||
Predatory mite | Warmer temp. [30,25] | Decrease (31 vs. 57 eggs) | [91] | |
Hypoaspis miles | Colder temps [15,20,25] | Decrease (33, 49, 57 eggs) | ||
Predatory mite | Warmer temps | Decrease (61 eggs at 21° vs. 53 and 26 at higher temps) | [92] | |
A mblyseius fallcis | [21,27,32] | |||
Water flea | Warmer temps | Decreased brood size if warmer than Topt (=15°) | [93] | |
Daphnia parvula | [5,10,15,20,25,30] | |||
Water fleas | Warmer temps | Increase until Topt2 = 20° for both species (D. pulex 56 offspring; D. magna 66) | [94] | |
Daphnia pulex, Daphnia magna | [15,20,25,30] | |||
Copepod | Warmer temps | Increased fec. until Topt2 = 17° then decrease | [95] | |
Acartia clausi | [2.5,6.9,10.0,12.6,14.7, 17.0,19.4,21.7,25.0] | |||
Reef damselfish | Warmer temps | Decreased clutch size and egg area at elevated temps vs. 28.5° | [96] | |
Acanthochromis polyacanthus | [28.5,30,31.5] | |||
Whitefish | Warmer temps | Decreased RS (more unfertilized and abnormal eggs at temps above 7°) | [97] | |
Coregonus lavaretus | [4–5, 7–8, 9–10, 11–12, 13–14] | |||
Palmate newts | Warmer temps | Decreased fec. (ca. 35 eggs at 22° vs. ca. 80 at 14 or 18°) | [98] | |
Lissotriton helveticus | [14,18,22] | |||
Grass lizard | Warm/cold temps | Decreased number of offspring per year (10 at 24°, 15 at 28°, 9 at 32°) | [99] | |
Takydromus septentrionalis | [24,28,32] | |||
Three-lined skink | Cold and hot treatments with contrasting duration of cage heating | Increased number of eggs per clutch (6.9 in hot vs. 6.3 in cold treatment) | [100] | |
Bassiana duperreyi | ||||
Natural environment | Butterfly | Warmer mean temps [23.1,25.1,29.3] | Increase (egg laying rate increases with temp.: 9.2, 11.3, 18.0 eggs per day) | [101] |
Speyeria mormonia | ||||
Warbler | Minimum, mean and max. temps 1973–2002 | Increased clutch sizes over study period | [102] | |
Acrocephalus sp. | ||||
Pied flycatcher | 1943–2003: climatic factors at wintering ground in Africa | Highly variable RS | [103] | |
Ficedula hypoleuca | ||||
Pied flycatcher | Fluctuation, warming | Decreased clutch size (birds breeding earlier and laying fewer eggs, most likely caused by increased spring temps) | [104] | |
Ficedula hypoleuca | data for 2 to 11 years from each of 80 study areas in Europe | |||
Coast nesting birds | High tide fluctuation (max. high tide increased twice as fast as mean high tide over the 4 decades, causing greater risk of flooding of nests) | Decreased RS (based on reproductive data from 26 years) | [105] | |
Haematopus ostralegus | ||||
Seabirds | 1996–1999 warmer sea surface temps between –0.5 and 0.4° | Decreased RS (potentially due to lower food abundance) | [106] | |
Uria aalge, Rissa tridactyla | ||||
Common buzzard | Higher summer precipitation | Decreased lifetime RS | [107] | |
Buteo buteo | Warmer (1989–2000) | Increased lifetime RS | ||
Bivalve | Warmer water temps 1969–2007 | Decreased population size (recruitment) | [108] | |
Macoma balthica | ||||
Common frog | Global warming + 1.02º 1983–2006 (incl. heat wave 2003) | Decrease (2004 lowest fec. in the dataset, 2003 event more damaging than long term temp. increase) | [109] | |
Rana temporaria | ||||
Chinese alligator | Increase in March/ April temps between 1987–2005 | Increased clutch size with increasing temp. | [110] | |
Alligator sinensis | ||||
Red squirrel | Natural environmental variability 1989–1998 | Early breeding females with intermediate RS favored by selection | [111] | |
Tamiasciurus hudsonicus | ||||
African lion | Warmer temperatures in Tanzania 1964–2001 | More abnormal sperm in males with dark manes, potential for decrease in RS with climate change | [112] | |
Panthera leo | ||||
Human | Global air temperatures from 1900–1994 | Decrease in yearly birth rates | [113] | |
Homo sapiens |
3. Measuring Reproduction
4. Sexual Selection and Climate Change
4.1. Reproductive Isolation
4.2. Extinction
5. Experimental Evolution Simulating Climate Change Impacts
5.1. Selection Line Characteristics
5.2. Evolutionary Drivers and Mechanisms
5.3. Ecological Reality
5.4. Species and Species Interactions
5.5. Assessing Fitness
6. Conclusions and Future Directions
Acknowledgments
References
- Huber, M.; Knutti, R. Anthropogenic and natural warming inferred from changes in Earth's energy balance. Nat. Geosci. 2012, 5, 31–36. [Google Scholar] [CrossRef]
- Hughes, L. Biological consequences of global warming: is the signal already apparent? Trends Ecol. Evol. 2000, 15, 56–61. [Google Scholar] [CrossRef]
- Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.K.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef]
- Jump, A.S.; Penuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 2005, 8, 1010–1020. [Google Scholar] [CrossRef]
- Garrett, K.A.; Dendy, S.P.; Frank, E.E.; Rouse, M.N.; Travers, S.E. Climate change effects on plant disease: Genomes to ecosystems. Annu. Rev. Phytopathol. 2006, 44, 489–509. [Google Scholar] [CrossRef]
- Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef]
- Menendez, R. How are insects responding to global warming? Tijdschr. Entomol. 2007, 150, 355–265. [Google Scholar]
- Robinet, C.; Roques, A. Direct impacts of recent climate warming on insect populations. Integr. Zool. 2010, 5, 132–142. [Google Scholar] [CrossRef]
- Sheridan, J.A.; Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 2011, 1, 401–406. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Amano, T.; Smithers, R.J.; Sparks, T.H.; Sutherland, W.J. A 250-year index of first flowering dates and its response to temperature changes. Proc. R. Soc. Lond. B 2010, 277, 2451–2457. [Google Scholar] [CrossRef]
- Halupka, L.; Dyrcz, A.; Borowiec, M. Climate change affects breeding of reed warblers Acrocephalus scirpaceus. J. Avian Biol. 2008, 39, 95–100. [Google Scholar] [CrossRef]
- Kauserud, H.; Heegaard, E.; Semenov, M.A.; Boddy, L.; Halvorsen, R.; Stige, L.C.; Sparks, T.H.; Gange, A.C.; Stenseth, N.C. Climate change and spring-fruiting fungi. Proc. R. Soc. Lond. B 2010, 277, 1169–1177. [Google Scholar] [CrossRef]
- Yasuda, T.; Kawabe, R.; Takahashi, T.; Murata, H.; Kurita, Y.; Nakatsuka, N.; Arai, N. Habitat shifts in relation to the reproduction of Japanese flounder Paralichthys olivaceus revealed by a depth–temperature data logger. J Exp. Mar. Biol. Ecol. 2010, 385, 50–58. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar]
- Forister, M.L.; McCall, A.C.; Sander, N.J.; Fordyce, J.A.; Thorne, J.H.; O'Brien, J.; Waetjen, D.P.; Shapiro, A.M. Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. P. Natl. Acad. Sci. 2010, 107, 2088–2092. [Google Scholar]
- Hof, C.; Levinsky, I.; Araujo, M.B.; Rahbek, C. Rethinking species' ability to cope with rapid climate change. Glob. Change Biol. 2011, 17, 2987–2990. [Google Scholar] [CrossRef]
- Brook, B.W.; Sodhi, N.S.; Bradshaw, C.J.A. Synergies among extinction drivers under global change. Trends Evol. Ecol. 2008, 23, 453–460. [Google Scholar] [CrossRef]
- Spielman, D.; Brook, B.W.; Frankham, R. Most species are not driven to extinction before genetic factors impact them. P. Natl. Acad. Sci. USA 2004, 101, 15261–15264. [Google Scholar] [CrossRef]
- Frankham, R. Genetics and extinction. Biol. Conserv. 2005, 126, 131–140. [Google Scholar] [CrossRef]
- Lande, R. Genetics and demography in biological conservation. Science 1988, 241, 1455–1460. [Google Scholar]
- Boyce, M.S.; Haridas, C.V.; Lee, C.T. the NCEAS Stochastic Demography Working Group. Demography in an increasingly variable world. Trends Ecol. Evol. 2006, 21, 141–148. [Google Scholar] [CrossRef]
- Bradshaw, W.E.; Holzapfel, C.M. Climate change—Evolutionary response to rapid climate change. Science 2006, 312, 1477–1478. [Google Scholar] [CrossRef]
- Skelly, D.K.; Joseph, L.N.; Possingham, H.P.; Freidenburg, L.K.; Farrugia, T.J.; Kinnison, M.T.; Hendry, A.P. Evolutionary responses to climate change. Conserv. Biol. 2007, 21, 1353–1355. [Google Scholar] [CrossRef]
- Swart, B.L.; Tolley, K.A.; Matthee, C.A. Climate change drives speciation in the southern rock agama (Agama atra) in the Cape Floristic Region, South Africa. J. Biogeogr. 2009, 36, 78–87. [Google Scholar] [CrossRef]
- Carstens, B.C.; Knowles, L.L. Shifting distributions and speciation: Species divergence during rapid climate change. Mol. Ecol. 2007, 16, 619–627. [Google Scholar] [CrossRef]
- Franks, S.J.; Weis, A.E. Climate change alters reproductive isolation and potential gene flow in an annual plant. Evol. Appl. 2009, 2, 481–488. [Google Scholar] [CrossRef]
- Visser, M.E. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc. Lond. B 2008, 275, 649–659. [Google Scholar] [CrossRef]
- Gienapp, P.; Teplitsky, C.; Alho, J.S.; Mills, J.A.; Merila, J. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 2008, 17, 167–178. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Sgro, C.M. Climate change and evolutionary adaptation. Nature 2011, 470, 479–485. [Google Scholar] [CrossRef]
- Reed, T.E.; Schindler, D.E.; Waples, R.S. Interacting effects of phenotypic plasticity and evolution on population persistence in a changing climate. Conserv. Biol. 2011, 25, 56–63. [Google Scholar] [CrossRef]
- Matesanz, S.; Gianoli, E.; Valladares, F. Global change and the evolution of phenotypic plasticity in plants. Ann. NY Acad. Sci. 2010, 1206, 35–55. [Google Scholar]
- Coulson, T.; Mace, G.M.; Hudson, E.; Possingham, H. The use and abuse of population viability analysis. Trends Ecol. Evol. 2001, 16, 219–221. [Google Scholar] [CrossRef] [Green Version]
- Jiao, X.G.; Wu, J.; Chen, Z.Q.; Chen, J.; Liu, F.X. Effects of temperature on courtship and copulatory behaviours of a wolf spider Pardosa astrigera (Araneae: Lycosidae). J. Therm. Biol. 2009, 34, 348–352. [Google Scholar] [CrossRef]
- Martin, O.Y.; Hosken, D.J. Strategic ejaculation in the common dung fly Sepsis cynipsea. Anim. Behav. 2002, 63, 541–546. [Google Scholar] [CrossRef]
- Chihrane, J.; Lauge, G. Effects of high temperature shocks on male germinal cells of Trichogramma brassicae (Hymenoptera, Trichogrammatidae). Entomophaga 1994, 39, 11–20. [Google Scholar] [CrossRef]
- Katsuki, M.; Miyatake, T. Effects of temperature on mating duration, sperm transfer and remating frequency in Callosobruchus chinensis. J. Insect. Physiol. 2009, 55, 112–115. [Google Scholar]
- Abril, S.; Oliveras, J.; Gomez, C. Effect of temperature on the development and survival of the Argentine ant, Linepithema humile. J. Insect Sci. 2010, 10. [Google Scholar] [CrossRef]
- Kristensen, T.N.; Barker, J.S.F.; Pedersen, K.S.; Loeschcke, V. Extreme temperatures increase the deleterious consequences of inbreeding under laboratory and semi-natural conditions. Proc. R. Soc. Lond. B 2008, 275, 2055–2061. [Google Scholar] [CrossRef]
- Olvido, A.E.; Fernandes, P.R.; Mousseau, T.A. Relative effects of juvenile and adult environmental factors on mate attraction and recognition in the cricket, Allonemobius socius. J. Insect Sci. 2010, 10. [Google Scholar] [CrossRef]
- Visser, M.E.; Holleman, L.J.M.; Caro, S.P. Temperature has a causal effect on avian timing of reproduction. Proc. R. Soc. Lond. B 2009, 276, 2323–2331. [Google Scholar] [CrossRef]
- Dawson, A. The effect of temperature on photoperiodically regulated gonadal maturation, regression and moult in starlings—potential consequences of climate change. Func. Ecol. 2005, 19, 995–1000. [Google Scholar] [CrossRef]
- Brian, J.V.; Harris, C.A.; Runnalls, T.J.; Fantinati, A.; Pojana, G.; Marcomini, A.; Booy, P.; Lamoree, M.; Kortenkamp, A.; Sumpter, J.P. Evidence of temperature-dependent effects on the estrogenic response of fish: Implications with regard to climate change. Sci. Total Environ. 2008, 397, 72–81. [Google Scholar] [CrossRef]
- Endo, D.; Park, M.K. Quantification of three steroid hormone receptors of the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination: Their tissue distributions and the effect of environmental change on their expressions. Comp. Biochem. Phys. B 2003, 136, 957–966. [Google Scholar] [CrossRef]
- Andrews, R.M. Effects of incubation temperature on growth and performance of the veiled chameleon (Chamaeleo calyptratus). J. Exp. Zool. 2008, 309A, 435–446. [Google Scholar] [CrossRef]
- Gomi, T.; Nagasaka, M.; Fukuda, T.; Hagihara, H. Shifting of the life cycle and life-history traits of the fall webworm in relation to climate change. Entomol. Exp. Appl. 2007, 125, 179–184. [Google Scholar] [CrossRef]
- Flenner, I.; Richter, O.; Suhling, F. Rising temperature and development in dragonfly populations at different latitudes. Freshwater Biol. 2010, 55, 397–410. [Google Scholar] [CrossRef]
- AlRashidi, M.; Kosztolanyi, A.; Kupper, C.; Cuthill, I.C.; Javed, S.; Szekely, T. The influence of a hot environment on parental cooperation of a ground-nesting shorebird, the Kentish plover Charadrius alexandrinus. Front. Zool. 2010, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Altermatt, F. Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. Lond. B 2010, 277, 1281–1287. [Google Scholar] [CrossRef]
- Jonsson, A.M.; Appelberg, G.; Harding, S.; Barring, L. Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle, Ips typographus. Glob. Change Biol. 2009, 15, 486–499. [Google Scholar] [CrossRef]
- Tschirren, B.; Sendecka, J.; Groothuis, T.G.G.; Gustafsson, L.; Doligez, B. Heritable variation in maternal yolk hormone transfer in a wild bird population. Am. Nat. 2009, 174, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Dickey, M.H.; Gauthier, G.; Cadieux, M.C. Climatic effects on the breeding phenology and reproductive success of an arctic-nesting goose species. Glob. Change Biol. 2008, 14, 1973–1985. [Google Scholar] [CrossRef]
- Saino, N.; Romano, M.; Ambrosini, R.; Ferrari, R.P.; Moller, A.P. Timing of reproduction and egg quality covary with temperature in the insectivorous Barn Swallow, Hirundo rustica. Funct. Ecol. 2004, 18, 50–57. [Google Scholar] [CrossRef]
- Mitchell, N.J.; Kearney, M.R.; Nelson, N.J.; Porter, W.P. Predicting the fate of a living fossil: How will global warming affect sex determination and hatching phenology in tuatara? Proc. R. Soc. Lond. B 2008, 275, 2185–2193. [Google Scholar] [CrossRef]
- Doody, J.S.; Guarino, E.; Georges, A.; Corey, B.; Murray, G.; Ewert, M. Nest site choice compensates for climate effects on sex ratios in a lizard with environmental sex determination. Evol. Ecol. 2006, 20, 307–330. [Google Scholar] [CrossRef]
- Twiss, S.D.; Thomas, C.; Poland, V.; Graves, J.A.; Pomeroy, P. The impact of climatic variation on the opportunity for sexual selection. Biol. Lett. 2007, 3, 12–15. [Google Scholar] [CrossRef]
- van Hooft, P.; Prins, H.H.T.; Getz, W.M.; Jolles, A.E.; van Wieren, S.E.; Greyling, B.J.; van Helden, P.D.; Bastos, A.D.S. Rainfall-driven sex-ratio genes in African buffalo suggested by correlations between Y-chromosomal haplotype frequencies and foetal sex ratio. BMC Evol. Biol. 2010, 10, 106. [Google Scholar] [CrossRef]
- Houghton, J.D.R.; Myers, A.E.; Lloyd, C.; King, R.S.; Isaacs, C.; Hays, G.C. Protracted rainfall decreases temperature within leatherback turtle (Dermochelys coriacea) clutches in Grenada, West Indies: Ecological implications for a species displaying temperature dependent sex determination. J. Exp. Mar. Biol. Ecol. 2007, 345, 71–77. [Google Scholar] [CrossRef]
- Leibee, G.L. Influence of temperature on development and fecundity of Liriomyza trifolii (Burgess) (Diptera, Agromyzidae) on celery. Environ. Entomol. 1984, 13, 497–501. [Google Scholar]
- Wang, X.G.; Johnson, M.W.; Daane, K.M.; Nadel, H. High summer temperatures affect the survival and reproduction of olive fruit fly (Diptera: Tephritidae). Environ. Entomol. 2009, 38, 1496–1504. [Google Scholar] [CrossRef]
- Huey, R.B.; Wakefield, T.; Crill, W.D.; Gilchrist, G.W. Within- and between-generation effects of temperature on early fecundity of Drosophila melanogaster. Heredity 1995, 74, 216–223. [Google Scholar] [CrossRef]
- Dillon, M.E.; Cahn, L.R.Y.; Huey, R.B. Life history consequences of temperature transients in Drosophila melanogaster. J. Exp. Biol. 2007, 210, 2897–2904. [Google Scholar] [CrossRef]
- Marshall, K.E.; Sinclair, B.J. Repeated stress exposure results in a survival-reproduction trade-off in Drosophila melanogaster. Proc. R. Soc. Lond. B 2010, 277, 963–969. [Google Scholar] [CrossRef]
- Fletcher, M.G.; Axtell, R.C.; Stinner, R.E. Longevity and fecundity of Musca domestica (Diptera, Muscidae) as a function of temperature. J. Med. Entomol. 1990, 27, 922–926. [Google Scholar]
- Irwin, J.T.; Lee, R.E. Mild winter temperatures reduce survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis (Diptera:Tephritidae). J. Insect Physiol. 2000, 46, 655–661. [Google Scholar] [CrossRef]
- Reznik, S.Y.; Voinovich, N.D.; Vaghina, N.P. Effect of temperature on the reproduction and development of Trichogramma buesi (Hymenoptera:Trichogrammatidae). Eur. J. Entomol. 2009, 106, 535–544. [Google Scholar]
- Force, D.C.; Messenger, P.S. Fecundity, reproductive rates, and innate capacity for increase of three parasites of Therioaphis maculata (Buckton). Ecology 1964, 45, 706–715. [Google Scholar] [CrossRef]
- Legner, E.F. Temperature, humidity and depth of habitat influencing host destruction and fecundity of muscoid fly parasites. Entomophaga 1977, 22, 199–206. [Google Scholar] [CrossRef]
- James, D.G.; Warren, G.N. Effect of temperature on development, survival, longevity and fecundity of Trissolcus oenone Dodd (Hymenoptera, Scelionida). J. Aust. Entomol. Soc. 1991, 30, 303–306. [Google Scholar] [CrossRef]
- Wang, K.H.; Tsai, J.H. Temperature effect on development and reproduction of silverleaf whitefly (Homoptera: Aleyrodidae). Ann. Entomol. Soc. Am. 1996, 89, 375–384. [Google Scholar]
- Karlsson, B.; Wiklund, C. Butterfly life history and temperature adaptations; dry open habitats select for increased fecundity and longevity. J. Anim. Ecol. 2005, 74, 99–104. [Google Scholar] [CrossRef]
- Gibbs, M.; van Dyck, H.; Karlsson, B. Reproductive plasticity, ovarian dynamics and maternal effects in response to temperature and flight in Pararge aegeria. J. Insect Physiol. 2010, 56, 1275–1283. [Google Scholar] [CrossRef]
- Carroll, A.L.; Quiring, D.T. Interactions between size and temperature influence fecundity and longevity of a tortricid moth, Zeiraphera canadensis. Oecologia 1993, 93, 233–241. [Google Scholar] [CrossRef]
- Greenfield, M.D.; Karandinos, M.G. Fecundity and longevity of Synanthedon pictipes under constant and fluctuating temperatures. Environ. Entomol. 1976, 5, 883–887. [Google Scholar]
- Wermelinger, B.; Seifert, M. Temperature-dependent reproduction of the spruce bark beetle Ips typographus, and analysis of the potential population growth. Ecol. Entomol. 1999, 24, 103–110. [Google Scholar] [CrossRef]
- Kitayama, K.; Stinner, R.E.; Rabb, R.L. Effects of temperature, humidity, and soybean maturity on longevity and fecundity of the adult mexican bean beetle, Epilachna varivestis Coleoptera, Coccinellidae. Environ. Entomol. 1979, 8, 458–464. [Google Scholar]
- Hagstrum, D.W.; Leach, C.E. Role of constant and fluctuating temperatures in determining development time and fecundity of 3 species of stored-products Coleoptera. Ann. Entomol. Soc. Am. 1973, 66, 407–410. [Google Scholar]
- Grazer, V.M.; Martin, O.Y. Elevated temperature changes female costs and benefits of reproduction. Evol. Ecol. 2012, 26, 625–637. [Google Scholar] [CrossRef]
- Park, T.; Frank, M.B. The fecundity and development of the flour beetles, Tribolium confusum and Tribolium castaneum, at 3 constant temperatures. Ecology 1948, 29, 368–374. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Jiao, X.G.; Wu, J.; Chen, J.; Liu, F.X. Effects of copulation temperature on female reproductive output and longevity in the wolf spider Pardosa astrigera (Araneae: Lycosidae). J. Therm. Biol. 2010, 35, 125–128. [Google Scholar] [CrossRef]
- Kersting, U.; Satar, S.; Uygun, N. Effect of temperature on development rate and fecundity of apterous Aphis gossypii Glover (Hom., Aphididae) reared on Gossypium hirsutum L. J. Appl. Entomol. 1999, 123, 23–27. [Google Scholar] [CrossRef]
- McCornack, B.P.; Ragsdale, D.W.; Venette, R.C. Demography of soybean aphid (Homoptera: Aphididae) at summer temperatures. J. Econ. Entomol. 2004, 97, 854–861. [Google Scholar] [CrossRef]
- Asin, L.; Pons, X. Effect of high temperature on the growth and reproduction of corn aphids (Homoptera: Aphididae) and implications for their population dynamics on the northeastern Iberian peninsula. Environ. Entomol. 2001, 30, 1127–1134. [Google Scholar] [CrossRef]
- Michels, G.J.; Behle, R.W. Reproduction and development of Diuraphis noxia (Homoptera, Aphididae) at constant temperatures. J. Econ. Entomol. 1988, 81, 1097–1101. [Google Scholar]
- Strong, F.E.; Sheldahl, J.A. Influence of temperature on longevity and fecundity in the bug Lygus hesperus (Hemiptera: Miridae). Ann. Entomol. Soc. Am. 1970, 63, 1509–1515. [Google Scholar]
- Ball, J.C. Development, fecundity, and prey consumption of 4 species of predacious mites (Phytoseiidae) at 2 constant temperature. Environ. Entomol. 1980, 9, 298–303. [Google Scholar]
- Yue, B.S.; Tsai, J.H. Development, survivorship, and reproduction of Amblyseius largoensis (Acari: Phytoseiidae) on selected plant pollens and temperature. Environ. Entomol. 1996, 25, 488–494. [Google Scholar]
- Allen, J.C.; Yang, Y.; Knapp, J.L. Temperature effects on development and fecundity of the citrus rust mite (Acari, Eriophyidae). Environ. Entomol. 1995, 24, 996–1004. [Google Scholar]
- Gotoh, T.; Yamaguchi, K.; Mori, K. Effect of temperature on life history of the predatory mite Amblyseius (Neoseiulus) californicus (Acari: Phytoseiidae). Exp. Appl. Acarol. 2004, 32, 15–30. [Google Scholar] [CrossRef]
- Ydergaard, S.; Enkegaard, A.; Brodsgaard, H.F. The predatory mite Hypoaspis miles: Temperature dependent life table characteristics on a diet of sciarid larvae, Bradysia paupera and B. tritici. Entomol. Exp. Appl. 1997, 85, 177–187. [Google Scholar]
- Smith, J.C.; Newsom, L.D. The biology of Amblyseius fallcis (Acarina: Phytoseiidae) at various temperature and photoperiod regimes. Ann. Entomol. Soc. Am. 1970, 63, 460–462. [Google Scholar]
- Orcutt, J.D.; Porter, K.G. Diel vertical migration by zooplankton: constant and fluctuating temperature effects on life-history parameters of Daphnia. Limnol. Oceanogr. 1983, 28, 720–730. [Google Scholar] [CrossRef]
- Goss, L.B.; Bunting, D.L. Daphnia development and reproduction: Responses to temperature. J. Therm. Biol. 1983, 8, 375–380. [Google Scholar] [CrossRef]
- Uye, S. Fecundity studies of neritic calanoid Copepods Acartia clausi Giesbrecht and Acartia steueri Smirnov: A simple empirical model of daily egg production. J. Exp. Mar. Biol. Ecol. 1981, 50, 255–271. [Google Scholar] [CrossRef]
- Donelson, J.M.; Munday, P.L.; McCormick, M.I.; Pankhurst, N.W.; Pankhurst, P.M. Effects of elevated water temperature and food availability on the reproductive performance of a coral reef fish. Mar. Ecol. Prog. Ser. 2010, 401, 233–243. [Google Scholar] [CrossRef]
- Cingi, S.; Keinanen, M.; Vuorinen, P.J. Elevated water temperature impairs fertilization and embryonic development of whitefish Coregonus lavaretus. J. Fish. Biol. 2010, 76, 502–521. [Google Scholar] [CrossRef]
- Galloy, V.; Denoel, M. Detrimental effect of temperature increase on the fitness of an amphibian (Lissotriton helveticus). Acta Oecol. 2010, 36, 179–183. [Google Scholar] [CrossRef]
- Luo, L.G.; Ding, G.H.; Ji, X. Income breeding and temperature-induced plasticity in reproductive traits in lizards. J. Exp. Biol. 2010, 213, 2073–2078. [Google Scholar] [CrossRef]
- Telemeco, R.S.; Radder, R.S.; Baird, T.A.; Shine, R. Thermal effects on reptile reproduction: adaptation and phenotypic plasticity in a montane lizard. Biol. J. Linn. Soc. 2010, 100, 642–655. [Google Scholar] [CrossRef]
- Boggs, C.L. Reproductive strategies of female butterflies: variation in and constraints on fecundity. Ecol. Entomol. 1986, 11, 7–15. [Google Scholar] [CrossRef]
- Schaefer, T.; Ledebur, G.; Beier, J.; Leisler, B. Reproductive responses of two related coexisting songbird species to environmental changes: Global warming, competition, and population sizes. J. Ornithol. 2006, 147, 47–56. [Google Scholar] [CrossRef]
- Laaksonen, T.; Ahola, M.; Eeva, T.; Vaisanen, R.A.; Lehikoinen, E. Climate change, migratory connectivity and changes in laying date and clutch size of the pied flycatcher. Oikos 2006, 114, 277–290. [Google Scholar] [CrossRef]
- Sanz, J.J. Large-scale effect of climate change on breeding parameters of pied flycatchers in Western Europe. Ecography 2003, 26, 45–50. [Google Scholar] [CrossRef]
- van de Pol, M.; Ens, B.J.; Heg, D.; Brouwer, L.; Krol, J.; Maier, M.; Exo, K.M.; Oosterbeek, K.; Lok, T.; Eising, C.M.; Koffijberg, K. Do changes in the frequency, magnitude and timing of extreme climatic events threaten the population viability of coastal birds? J. Appl. Ecol. 2010, 47, 720–730. [Google Scholar] [CrossRef]
- Shultz, M.T.; Piatt, J.F.; Harding, A.M.A.; Kettle, A.B.; van Pelt, T.I. Timing of breeding and reproductive performance in murres and kittiwakes reflect mismatched seasonal prey dynamics. Mar. Ecol. Prog. Ser. 2009, 393, 247–258. [Google Scholar] [CrossRef]
- Kruger, O. Dissecting common buzzard lifespan and lifetime reproductive success: the relative importance of food, competition, weather, habitat and individual attributes. Oecologia 2002, 133, 474–482. [Google Scholar] [CrossRef]
- Beukema, J.J.; Dekker, R.; Jansen, J.M. Some like it cold: Populations of the tellinid bivalve Macoma balthica (L.) suffer in various ways from a warming climate. Mar. Ecol. Prog. Ser. 2009, 384, 135–145. [Google Scholar] [CrossRef]
- Neveu, A. Incidence of climate on common frog breeding: Long-term and short-term changes. Acta Oecol. 2009, 35, 671–678. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Y.; Guo, Z.; Murray, B.R. Climate warming and reproduction in Chinese alligators. Anim. Conserv. 2009, 12, 128–137. [Google Scholar] [CrossRef]
- Reale, D.; Berteaux, D.; McAdam, A.G.; Boutin, S. Lifetime selection on heritable life-history traits in a natural population of red squirrels. Evolution 2003, 57, 2416–2423. [Google Scholar]
- West, P.M.; Packer, C. Sexual selection, temperature, and the lion's mane. Science 2002, 297, 1339–1343. [Google Scholar] [CrossRef]
- Fisch, H.; Andrews, H.F.; Fisch, K.S.; Golden, R.; Liberson, G.; Olsson, C.A. The relationship of long term global temperature change and human fertility. Med. Hypotheses 2003, 61, 21–28. [Google Scholar] [CrossRef]
- Roff, D.A. Life History Evolution; Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar]
- Arnqvist, G.; Rowe, L. Sexual conflict; Princeton University Press: Princeton, NJ, USA, 2005. [Google Scholar]
- Nilsson, T.; Fricke, C.; Arnqvist, G. Patterns of divergence in the effects of mating on female reproductive performance in flour beetles. Evolution 2002, 56, 111–120. [Google Scholar]
- Brommer, J.E.; Fricke, C.; Edward, D.A.; Chapman, T. Interactions between genotype and sexual conflict environment influence transgenerational fitness in Drosophila melanogaster. Evolution 2011, 517–531. [Google Scholar]
- Boyce, M.S. Population viability analysis. Annu. Rev. Ecol. Syst. 1992, 23, 481–506. [Google Scholar] [CrossRef]
- Brook, B.W.; O'Grady, J.J.; Chapman, A.P.; Burgman, M.A.; Akcakaya, H.R.; Frankham, R. Predictive accuracy of population viability analysis in conservation biology. Nature 2000, 404, 385–387. [Google Scholar]
- Moller, A.P.; Szep, T. Rapid evolutionary change in a secondary sexual character linked to climatic change. J. Evol. Biol. 2005, 18, 481–495. [Google Scholar] [CrossRef]
- Candolin, U.; Heuschele, J. Is sexual selection beneficial during adaptation to environmental change? Trends Ecol. Evol. 2008, 23, 446–452. [Google Scholar] [CrossRef]
- Chevin, L.M.; Lande, R.; Mace, G.M. Adaptation, plasticity, and extinction in a changing environment: Towards a predictive theory. PloS Biol. 2010, 8. [Google Scholar] [CrossRef]
- Fricke, C.; Arnqvist, G. Rapid adaptation to a novel host in a seed beetle (Callosobruchus maculatus): The role of sexual selection. Evolution 2007, 61, 440–454. [Google Scholar] [CrossRef]
- Holland, B. Sexual selection fails to promote adaptation to a new environment. Evolution 2002, 56, 721–730. [Google Scholar]
- Rundle, H.D.; Chenoweth, S.F.; Blows, M.W. The roles of natural and sexual selection during adaptation to a novel environment. Evolution 2006, 60, 2218–2225. [Google Scholar]
- Ritchie, M.G. Sexual selection and speciation. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 79–102. [Google Scholar] [CrossRef]
- IPCC Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In Intergovernmental Panel on Climate Change; Pachauri, R.K.; Reisinger, A. (Eds.) IPCC: Geneva, Switzerland, 2007.
- Tanaka, Y. Sexual selection enhances population extinction in a changing environment. J. Theor. Biol. 1996, 180, 197–206. [Google Scholar] [CrossRef]
- Doherty, P.F.; Sorci, G.; Royle, J.A.; Hines, J.E.; Nichols, J.D.; Boulinier, T. Sexual selection affects local extinction and turnover in bird communities. P. Natl. Acad. Sci. USA 2003, 100, 5858–5862. [Google Scholar] [CrossRef]
- Morrow, E.H.; Pitcher, T.E. Sexual selection and the risk of extinction in birds. Proc. R. Soc. Lond. B 2003, 270, 1793–1799. [Google Scholar] [CrossRef]
- Sorci, G.; Moller, A.P.; Clobert, J. Plumage dichromatism of birds predicts introduction success in New Zealand. J. Anim. Ecol. 1998, 67, 263–269. [Google Scholar] [CrossRef]
- Morrow, E.H.; Fricke, C. Sexual selection and the risk of extinction in mammals. Proc. R. Soc. Lond. B 2004, 271, 2395–2401. [Google Scholar]
- Price, T.A.R.; Hurst, G.D.D.; Wedell, N. Polyandry prevents extinction. Curr. Biol. 2010, 20, 471–475. [Google Scholar]
- Michalczyk, L.; Millard, A.L.; Martin, O.Y.; Lumley, A.J.; Emerson, B.C.; Chapman, T.; Gage, M.J.G. Inbreeding promotes female promiscuity. Science 2011, 333, 1739–1742. [Google Scholar]
- Jarzebowska, M.; Radwan, J. Sexual selection counteracts extinction of small populations of the bulb mites. Evolution 2010, 64, 1283–1289. [Google Scholar]
- Kawecki, T.J.; Lenski, R.E.; Ebert, D.; Hollis, B.; Olivieri, I.; Whitlock, M.C. Experimental evolution. Trends. Ecol. Evol. 2012. [Google Scholar] [CrossRef]
- Lenski, R.E.; Rose, M.R.; Simpson, S.C.; Tadler, S.C. Long-term experimental evolution in Escherichia coli. 1. Adaptation and divergence during 2,000 generations. Am. Nat. 1991, 138, 1315–1341. [Google Scholar]
- Narraway, C.; Hunt, J.; Wedell, N.; Hosken, D.J. Genotype-by-environment interactions for female preference. J. Evol. Biol. 2010, 23, 2550–2557. [Google Scholar] [CrossRef]
- Teotonio, H.; Chelo, I.M.; Bradic, M.; Rose, M.R.; Long, A.D. Experimental evolution reveals natural selection on standing genetic variation. Nat. Genet. 2009, 41, 251–257. [Google Scholar] [CrossRef]
- Hosken, D.J.; Martin, O.Y.; Wigby, S.; Chapman, T.; Hodgson, D.J. Sexual conflict and reproductive isolation in flies. Biol. Lett. 2009, 5, 697–699. [Google Scholar] [CrossRef]
- Martin, O.Y.; Hosken, D.J. The evolution of reproductive isolation through sexual conflict. Nature 2003, 423, 979–982. [Google Scholar]
- Gay, L.; Eady, P.E.; Vasudev, R.; Hosken, D.J.; Tregenza, T. Does reproductive isolation evolve faster in larger populations via sexually antagonistic coevolution? Biol. Lett. 2009, 5, 693–696. [Google Scholar] [CrossRef]
- Bell, G.; Gonzalez, A. Evolutionary rescue can prevent extinction following environmental change. Ecol. Lett. 2009, 12, 942–948. [Google Scholar] [CrossRef]
- Drake, J.M.; Griffen, B.D. Speed of expansion and extinction in experimental populations. Ecol. Lett. 2009, 12, 772–778. [Google Scholar] [CrossRef]
- Cohen, A.E.; Gonzalez, A.; Lawton, A.; Petchey, O.L.; Wildman, D.; Cohen, J.E. A novel experimental apparatus to study the impact of white noise and 1/f noise on animal populations. Proc. R. Soc. Lond. B 1998, 265, 11–15. [Google Scholar] [CrossRef]
- Bolnick, D.I. Can intraspecific competition drive disruptive selection? An experimental test in natural populations of sticklebacks. Evolution 2004, 58, 608–618. [Google Scholar]
- Garland, T.; Rose, M.R. Experimental Evolution: Concepts, Methods, and Applications of Selection Experiments; University of California Press: Berkeley, CA, USA, 2009. [Google Scholar]
- Bennett, A.F.; Lenski, R.E. An experimental test of evolutionary trade-offs during temperature adaptation. P. Natl. Acad. Sci. USA 2007, 104, 8649–8654. [Google Scholar] [CrossRef]
- Riehle, M.M.; Bennett, A.F.; Lenski, R.E.; Long, A.D. Evolutionary changes in heat-inducible gene expression in lines of Escherichia coli adapted to high temperature. Physiol. Genomics 2003, 14, 47–58. [Google Scholar]
- Collins, S.; Bell, G. Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature 2004, 431, 566–569. [Google Scholar] [CrossRef]
- Travisano, M.; Lenski, R.E. Long-term experimental evolution in Escherichia coli. 4. Targets of selection and the specificity of adaptation. Genetics 1996, 143, 15–26. [Google Scholar]
- Chippindale, A.K.; Chu, T.J.F.; Rose, M.R. Complex trade-offs and the evolution of starvation resistance in Drosophila melanogaster. Evolution 1996, 50, 753–766. [Google Scholar] [CrossRef]
- Archer, M.A.; Bradley, T.J.; Mueller, L.D.; Rose, M.R. Using experimental evolution to study the physiological mechanisms of desiccation resistance in Drosophila melanogaster. Physiol. Biochem. Zool. 2007, 80, 386–398. [Google Scholar] [CrossRef]
- Holland, B.; Rice, W.R. Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. P. Natl. Acad. Sci. USA 1999, 96, 5083–5088. [Google Scholar] [CrossRef]
- Michalczyk, L.; Millard, A.L.; Martin, O.Y.; Lumley, A.J.; Emerson, B.C.; Gage, M.J.G. Experimental evolution exposes female and male responses to sexual selection and conflict in Tribolium castaneum. Evolution 2011, 65, 713–724. [Google Scholar] [CrossRef]
- Shaffer, M.L. Minimum population sizes for species conservation. Bioscience 1981, 31, 131–134. [Google Scholar] [CrossRef]
- Willi, Y.; van Buskirk, J.; Hoffmann, A.A. Limits to the adaptive potential of small populations. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 433–458. [Google Scholar] [CrossRef]
- Magiafoglou, A.; Hoffmann, A. Thermal adaptation in Drosophila serrata under conditions linked to its southern border: unexpected patterns from laboratory selection suggest limited evolutionary potential. J. Genet. 2003, 82, 179–189. [Google Scholar] [CrossRef]
- Cox, J.; Schubert, A.M.; Travisano, M.; Putonti, C. Adaptive evolution and inherent tolerance to extreme thermal environments. BMC Evol. Biol. 2010, 10. [Google Scholar] [CrossRef]
- Musolin, D.L.; Tougou, D.; Fujisaki, K. Too hot to handle? Phenological and life-history responses to simulated climate change of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae). Glob. Change Biol. 2010, 16, 73–87. [Google Scholar] [CrossRef]
- Drake, J.M.; Lodge, D.M. Effects of environmental variation on extinction and establishment. Ecol. Lett. 2004, 7, 26–30. [Google Scholar] [CrossRef]
- Potvin, C.; Tousignant, D. Evolutionary consequences of simulated global change: Genetic adaptation or adaptive phenotypic plasticity. Oecologia 1996, 108, 683–693. [Google Scholar] [CrossRef]
- Harte, J.; Torn, M.S.; Chang, F.R.; Feifarek, B.; Kinzig, A.P.; Shaw, R.; Shen, K. Global warming and soil microclimate—Results from a meadow-warming experiment. Ecol. Appl. 1995, 5, 132–150. [Google Scholar] [CrossRef]
- Griffen, B.D.; Drake, J.M. A review of extinction in experimental populations. J. Anim. Ecol. 2008, 77, 1274–1287. [Google Scholar] [CrossRef]
- Godoy, W.A.C.; Costa, M.I.S. Dynamics of extinction in coupled populations of the flour beetle Tribolium castaneum. Braz. J. Biol. 2005, 65, 271–280. [Google Scholar] [CrossRef]
- Dey, S.; Joshi, A. Stability via asynchrony in Drosophila metapopulations with low migration rates. Science 2006, 312, 434–436. [Google Scholar] [CrossRef]
- Griffen, B.D.; Drake, J.M. Environment, but not migration rate, influences extinction risk in experimental metapopulations. Proc. R. Soc. Lond. B 2009, 276, 4363–4371. [Google Scholar] [CrossRef]
- Samani, P.; Bell, G. Adaptation of experimental yeast populations to stressful conditions in relation to population size. J. Evol. Biol. 2010, 23, 791–796. [Google Scholar] [CrossRef]
- de Mazancourt, C.; Johnson, E.; Barraclough, T.G. Biodiversity inhibits species' evolutionary responses to changing environments. Ecol. Lett. 2008, 11, 380–388. [Google Scholar] [CrossRef]
- Johansson, J. Evolutionary responses to environmental changes: How does competition affect adaptation? Evolution 2008, 62, 421–435. [Google Scholar] [CrossRef]
- Lawrence, D.; Fiegna, F.; Behrends, V.; Bundy, J.G.; Phillimore, A.B.; Bell, T.; Barraclough, T.G. Species interactions alter evolutionary responses to a novel environment. PloS Biol. 2012, 10. [Google Scholar] [CrossRef]
- Wisz, M.S.; Pottier, J.; Kissling, W.D.; Pellissier, L.; Lenoir, J.; Damagaard, C.F.; Dormann, C.F.; Forchhammer, M.C.; Grytnes, J.-A.; Guisan, A.; et al. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol. Rev. 2012. [Google Scholar] [CrossRef] [Green Version]
- Klapwijk, M.J.; Gröbler, B.C.; Ward, K.; Wheeler, D.; Lewis, O.T. Influence of experimental warming and shading on host-parasitoid synchrony. Glob. Change Biol. 2009, 16, 102–112. [Google Scholar]
- Zarnetske, P.L.; Skelly, D.K.; Urban, M.C. Biotic multipliers of climate change. Science 2012, 336, 1516–1518. [Google Scholar] [CrossRef]
- Ebert, D. Experimental evolution of parasites. Science 1998, 282, 1432–1435. [Google Scholar] [CrossRef]
- Zhang, Q.G.; Buckling, A. Antagonistic coevolution limits population persistence of a virus in a thermally deteriorating environment. Ecol. Lett. 2011, 14, 282–288. [Google Scholar]
- Lohse, K.; Gutierrez, A.; Kaltz, O. Experimental evolution of resistance in Paramecium caudatum against the bacterial parasite Holospora undulata. Evolution 2006, 60, 1177–1186. [Google Scholar]
- Koskella, B.; Lively, C.M. Advice of the rose: Experimental coevolution of a trematode parasite and its snail host. Evolution 2007, 61, 152–159. [Google Scholar] [CrossRef]
- Koskella, B.; Lively, C.M. Evidence for negative frequency-dependent selection during experimental coevolution of a freshwater snail and a sterilizing trematode. Evolution 2009, 63, 2213–2221. [Google Scholar] [CrossRef]
- Adiba, S.; Huet, M.; Kaltz, O. Experimental evolution of local parasite maladaptation. J. Evol. Biol. 2010, 23, 1195–1205. [Google Scholar] [CrossRef]
- Berenos, C.; Schmid-Hempel, P.; Wegner, K.M. Experimental coevolution leads to a decrease in parasite-induced host mortality. J. Evol. Biol. 2011, 24, 1777–1782. [Google Scholar] [CrossRef]
- Berenos, C.; Wegner, K.M.; Schmid-Hempel, P. Antagonistic coevolution with parasites maintains host genetic diversity: an experimental test. Proc. R. Soc. Lond. B 2011, 278, 218–224. [Google Scholar] [CrossRef]
- Schulte, R.D.; Makus, C.; Hasert, B.; Michiels, N.K.; Schulenburg, H. Host-parasite local adaptation after experimental coevolution of Caenorhabditis elegans and its microparasite Bacillus thuringiensis. Proc. R. Soc. Lond. B 2011, 278, 2832–2839. [Google Scholar] [CrossRef]
- Morran, L.T.; Schmidt, O.G.; Gelarden, I.A.; Parrish, R.C.; Lively, C.M. Running with the Red Queen: Host-parasite coevolution selects for biparental sex. Science 2011, 333, 216–218. [Google Scholar] [CrossRef]
- Hillesland, K.L.; Velicer, G.J.; Lenski, R.E. Experimental evolution of a microbial predator's ability to find prey. Proc. R. Soc. Lond. B 2009, 276, 459–467. [Google Scholar] [CrossRef]
- Bohannan, B.J.M.; Lenski, R.E. Effect of prey heterogeneity on the response of a model food chain to resource enrichment. Am. Nat. 1999, 153, 73–82. [Google Scholar] [CrossRef]
- Kaunzinger, C.M.K.; Morin, P.J. Productivity controls food-chain properties in microbial communities. Nature 1998, 395, 495–497. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Grazer, V.M.; Martin, O.Y. Investigating Climate Change and Reproduction: Experimental Tools from Evolutionary Biology. Biology 2012, 1, 411-438. https://doi.org/10.3390/biology1020411
Grazer VM, Martin OY. Investigating Climate Change and Reproduction: Experimental Tools from Evolutionary Biology. Biology. 2012; 1(2):411-438. https://doi.org/10.3390/biology1020411
Chicago/Turabian StyleGrazer, Vera M., and Oliver Y. Martin. 2012. "Investigating Climate Change and Reproduction: Experimental Tools from Evolutionary Biology" Biology 1, no. 2: 411-438. https://doi.org/10.3390/biology1020411
APA StyleGrazer, V. M., & Martin, O. Y. (2012). Investigating Climate Change and Reproduction: Experimental Tools from Evolutionary Biology. Biology, 1(2), 411-438. https://doi.org/10.3390/biology1020411