-
Cannabinoid Effects on the Hippocampus
-
Evaluating Mathematical Concordance Between Taxonomic and Functional Diversity Metrics in Benthic Macroinvertebrate Communities
-
DNA Specimen Preservation Using DESS and DNA Extraction in Museum Collections
-
Modified Lipid Particle Recognition: A Link Between Atherosclerosis and Cancer?
Journal Description
Biology
Biology
is an international, peer-reviewed, open access journal of biological sciences published monthly online by MDPI. The Spanish Society for Nitrogen Fixation (SEFIN) and Federation of European Laboratory Animal Science Associations (FELASA) are affiliated with Biology, and their members receive discounts on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, PubAg, CAPlus / SciFinder, and other databases.
- Journal Rank: JCR - Q1 (Biology) / CiteScore - Q1 (General Agricultural and Biological Sciences)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 17.4 days after submission; acceptance to publication is undertaken in 2.5 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
3.5 (2024);
5-Year Impact Factor:
4.0 (2024)
Latest Articles
Botanical Assessment of Disturbed Urban Population of Threatened Gopher Tortoise (Gopherus polyphemus) Habitat in SE Florida During Drought
Biology 2025, 14(8), 1038; https://doi.org/10.3390/biology14081038 - 12 Aug 2025
Abstract
►
Show Figures
Gopher tortoises (Gopherus polyphemus) are threatened burrowing keystone ecosystem engineers indigenous to open uplands in the Southeastern United States. Perils to the species include habitat degradation and fragmentation, anthropogenic disturbances, predation, parasites, and disease. Problems are severe in the SE Florida
[...] Read more.
Gopher tortoises (Gopherus polyphemus) are threatened burrowing keystone ecosystem engineers indigenous to open uplands in the Southeastern United States. Perils to the species include habitat degradation and fragmentation, anthropogenic disturbances, predation, parasites, and disease. Problems are severe in the SE Florida study area due to coastal urban sprawl, confining the tortoises in small, scattered, unnatural pockets subject to novel stresses. The annual South Florida February to ca. late May dry season became a severe drought in 2025. The present project centered on the broad question of foodplant resilience through the drought. The tortoise-grazed areas host three dominant groundcover species, in order of abundance: non-native Richardia grandiflora, native grass Paspalum setaceum, and non-native sedge Fimbristylis cymosa. Key findings were as follows: 1. The most abundant and most-often grazed species, Richardia grandiflora, when tortoises were excluded, expanded despite the drought (from 39% to 49.5% mean coverage). Under combined drought and grazing, that species cover decreased slightly (42.5% to 39.4%). Tortoise-free, Paspalum setaceum declined slightly during the drought (32.7% to 27.1% mean coverage), and showed mixed results with little net effect exposed to drought and to grazing. Never observed to be grazed during the study, Fimbristylis cymosa formed a nearly monospecific lawn in a sizeable portion of the study area. During the drought, it mostly browned, retaining green rosette centers, and tortoise exclusion showed no discernable effect. With transition to late spring, however, with increased rainfall, tortoise exclusion allowed rapid competition from grasses among the Fimbristylis rosettes. Adjacent unenclosed grazing, by contrast, maintained the Fimbristylis lawn without increase in grass coverage. Conclusions are that the two chief “fodder” species, Richardia grandiflora and Paspalum setaceum, were robust to drought and grazing. The introduced Fimbristylis cymosa appears to be facilitated by selective grazing-suppressing grass competitors.
Full article
Open AccessArticle
Population Dynamics of Bigeye Grunt Brachydeuterus auritus (Valenciennes, 1831) in the Coastal Waters of Sierra Leone: A Near-Threatened Species on the IUCN Red List
by
Guoqing Zhao, Chunlei Feng, Hewei Liu, Taichun Qu, Ruiliang Fan, Ivorymae C. R. Coker, Lahai Duramany Seisay, Hongliang Huang and Lingzhi Li
Biology 2025, 14(8), 1037; https://doi.org/10.3390/biology14081037 - 12 Aug 2025
Abstract
Bigeye grunt (Brachydeuterus auritus) is a dominant fish species and mostly a major target species in both artisanal and industrial fisheries in the coastal waters of Sierra Leone. It was listed as near threatened in 2015 by the International Union for
[...] Read more.
Bigeye grunt (Brachydeuterus auritus) is a dominant fish species and mostly a major target species in both artisanal and industrial fisheries in the coastal waters of Sierra Leone. It was listed as near threatened in 2015 by the International Union for Conservation of Nature (IUCN) Red List. Although this species has been repeatedly assessed as overexploited by the Fishery Committee for the Eastern Central Atlantic (CECAF) in the majority of its range in the Eastern Central Atlantic, there have never been studies of stock assessment in the coastal waters of Sierra Leone. We conducted a study on the population dynamics of bigeye grunt in the coastal waters of Sierra Leone, which is crucial for completing the resource status of this species in the Eastern Central Atlantic. The results showed that the bigeye grunt had a wide distribution in the coastal waters of Sierra Leone, with significant spatiotemporal variation characteristics in biomass and abundance. The growth parameters of bigeye grunt varied across different months, but all E values were below 0.5, indicating that no overfishing occurred. These findings were further corroborated by the results of the Length-Based Bayesian Biomass Estimation method (LBB). The results of the Generalized Additive Model (GAM) show that there is a certain nonlinear relationship between the resource abundance of the bigeye grunt and both environmental factors and geographical locations, among which the influence of latitude is the greatest. This study posits that the bigeye grunt in Sierra Leone’s coastal waters exhibits moderate exploitation potential. The findings are anticipated to provide a scientific framework for informing evidence-based management strategies for this fishery resource.
Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
►▼
Show Figures

Figure 1
Open AccessArticle
High-Abundance Heterotrophic Bacteria Inhabit the 85° E Hydrothermal Plume of the Explosive Volcanic Zone at Gakkel Ridge, Arctic Ocean
by
Juan Yu, Yejian Wang, Xiqiu Han, Hanlin Wang, Tao Zhang, Weiwei Ding, Chi Yang, Yinxia Fang and Jiabiao Li
Biology 2025, 14(8), 1036; https://doi.org/10.3390/biology14081036 - 12 Aug 2025
Abstract
While under-ice submarine hydrothermal systems provide critical insights into extremophile adaptations, the ecological impacts of explosive volcanism on these ecosystems remain poorly constrained. We successfully detected evidence of hydrothermal activities and explosive volcanism at 85° E, the eastern volcanic zone, ultra-slow spreading Gakkel
[...] Read more.
While under-ice submarine hydrothermal systems provide critical insights into extremophile adaptations, the ecological impacts of explosive volcanism on these ecosystems remain poorly constrained. We successfully detected evidence of hydrothermal activities and explosive volcanism at 85° E, the eastern volcanic zone, ultra-slow spreading Gakkel Ridge. Hydrothermal plume, surface sediments, and volcanic glass samples were systematically collected to investigate the diversity of microbial communities. Our results revealed two distinct microbial regimes in hydrothermal plume: (1) chemoautotrophic bacteria (Sulfurimonas and SUP05_cluster), prevalent in global basaltic hydrothermal systems, potentially involved in carbon fixation through the CBB and rTCA cycles and (2) Alcanivorax (up to 82.5%), known for degrading hydrocarbons. Sediment profiles showed a depth-dependent decline of Alcanivorax, tightly coupled with TOC (1.05% to 0.45%, r = 0.75, p < 0.05). Additionally, the Alcanivorax MAGs demonstrated their potential in degrading various types of organic carbon, especially in alkane degradation. Strikingly, this pattern contrasts with hydrothermal plumes from effusive volcanic zones (Aurora and Polaris regions), where Alcanivorax was undetectable. We speculate that the surge of Alcanivorax in the 85° E hydrothermal plume was associated with the violent disturbances caused by explosive volcanism. This mechanism accelerates microbial-mediated carbon turnover rates compared to a stable hydrothermal ecosystem.
Full article
(This article belongs to the Special Issue The Biodiversity and Ecosystem Dynamics of Deep-Sea Hydrothermal Vents)
►▼
Show Figures

Figure 1
Open AccessReview
Can We Use CAR-T Cells to Overcome Immunosuppression in Solid Tumours?
by
Julia Gwadera, Maksymilian Grajewski, Hanna Chowaniec, Kasper Gucia, Jagoda Michoń, Zofia Mikulicz, Małgorzata Knast, Patrycja Pujanek, Amelia Tołkacz, Aleksander Murawa and Paula Dobosz
Biology 2025, 14(8), 1035; https://doi.org/10.3390/biology14081035 - 12 Aug 2025
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy has revolutionised haematological cancer treatment. However, its application in solid tumours remains significantly limited by the immunosuppressive tumour microenvironment (TME), poor antigen specificity, and physical barriers to infiltration. This review explores a compelling question: can CAR-T cells be
[...] Read more.
Chimeric antigen receptor (CAR)-T-cell therapy has revolutionised haematological cancer treatment. However, its application in solid tumours remains significantly limited by the immunosuppressive tumour microenvironment (TME), poor antigen specificity, and physical barriers to infiltration. This review explores a compelling question: can CAR-T cells be adapted to overcome immunosuppression in solid tumours effectively? We provide an in-depth analysis of the immunological, metabolic, and structural challenges posed by the TME and critically evaluate emerging engineering strategies designed to enhance CAR-T cells’ persistence, targeting, and function. These include metabolic reprogramming, hypoxia-responsive constructs, checkpoint-resistant designs, and innovative delivery techniques such as locoregional administration and nanotechnology-assisted targeting. We highlight promising preclinical and early clinical studies demonstrating that armoured CAR-T cells secreting cytokines like interleukin (IL)-12 and IL-18 can reprogram the TME, restoring antitumour immunity. Moreover, we examine synergistic combination therapies that integrate CAR-T cells with immune checkpoint inhibitors, radiotherapy, oncolytic viruses, and epigenetic modulators. Special attention is given to personalised strategies, such as bispecific targeting and precision delivery to tumour-associated vasculature or stromal elements, which are showing encouraging results in overcoming resistance mechanisms. This review aims not only to synthesise current advancements but also to ignite optimism in the potential of CAR-T-cell therapy to breach the immunological fortress of solid tumours. As we enter a new era of synthetic immunology, this evolving landscape offers hope for durable remissions and novel treatment paradigms. For clinicians, researchers, and biotech innovators, this paper provides a roadmap toward transforming a therapeutic dream into clinical reality.
Full article
(This article belongs to the Section Cancer Biology)
►▼
Show Figures

Figure 1
Open AccessArticle
Transcriptomic Analysis of Peripheral Blood Mononuclear Cells During Ostertagia ostertagi Infection in Cattle Highlights a Generalized Host Immune Reaction
by
Damarius S. Fleming, Mariam Bakshi, Peter Thompson, Ethiopia Beshah and Wenbin Tuo
Biology 2025, 14(8), 1034; https://doi.org/10.3390/biology14081034 - 12 Aug 2025
Abstract
One of the most concerning ruminant infections is the parasite Ostertagia ostertagi. Known commonly as the brown stomach worm, it is ingested by grazing cattle where it then progresses its life stages, occupying the host abomasum and then the intestine, causing illness.
[...] Read more.
One of the most concerning ruminant infections is the parasite Ostertagia ostertagi. Known commonly as the brown stomach worm, it is ingested by grazing cattle where it then progresses its life stages, occupying the host abomasum and then the intestine, causing illness. This results in lower commercial production and at worst, death of young calves. Over time, anthelmintic treatment has become less efficacious against cattle nematodes. As a result, alternative control strategies are needed. Our study looked to elucidate mechanisms underlying attenuation of the host immune response by examining global immune expression in cattle during infection. To this end, four steers were infected with the third stage larvae (L3) of O. ostertagi, then peripheral blood mononuclear cells (PBMCs) were collected weekly for 26 days post-infection (dpi). After sequencing, gene expression was compared between each timepoint. The analyses indicated that the immune responses to Ostertagia are targeted to the parasite’s life stages and mimics anti-viral gene expression. Overall, the results showed that O. ostertagi led to host immune responses characterized by multiple gene ontology and pathway terms indicating that by 26 dpi the host immune system transitions from fighting the parasite to repairing the host intestine.
Full article
(This article belongs to the Special Issue Immune Response Regulation in Animals)
►▼
Show Figures

Figure 1
Open AccessArticle
Study of the Therapeutic Effect of Cytokine-Preconditioned Mesenchymal Stem Cells and Their Exosomes in a Mouse Model of Psoriasis
by
Aidar Dairov, Assel Issabekova, Madina Sarsenova, Aliya Sekenova, Miras Shakhatbayev, Symbat Alimbek, Gulshakhar Kudaibergen, Assiya Nurkina, Ilyas Akhmetollayev, Kyung-Sun Kang and Vyacheslav Ogay
Biology 2025, 14(8), 1033; https://doi.org/10.3390/biology14081033 - 11 Aug 2025
Abstract
Mesenchymal stem cells (MSCs) are a type of multipotent, non-hematopoietic cells of mesodermal origin. Due to their strong immunomodulatory, immunosuppressive, and regenerative potential, MSCs are used in cell therapy for inflammatory, immune-mediated, and degenerative diseases. Exosomes derived from MSCs have several advantages over
[...] Read more.
Mesenchymal stem cells (MSCs) are a type of multipotent, non-hematopoietic cells of mesodermal origin. Due to their strong immunomodulatory, immunosuppressive, and regenerative potential, MSCs are used in cell therapy for inflammatory, immune-mediated, and degenerative diseases. Exosomes derived from MSCs have several advantages over MSC therapy, including non-immunogenicity, lack of infusion toxicity, ease of isolation, manipulation, and storage, cargo specificity, and the absence of tumor-forming potential and ethical concerns. We hypothesized that preconditioning human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) with the proinflammatory cytokines interleukin 17 (IL-17), IL-22, and tumor necrosis factor alpha (TNF-α), the increased levels of which are typical in psoriasis patients, can significantly increase the therapeutic efficacy of both hUCB-MSCs and their exosomes (hUCB-MSC-Exo). Our aim was to compare the therapeutic effects of hUCB-MSCs preconditioned with various combinations of proinflammatory cytokines and their hUCB-MSC-Exo, in an in vivo imiquimod-induced psoriasis-like skin inflammation model in mice. Our results showed a significant attenuation of psoriasis symptoms (erythema, scaling, and skin thickness) in mice treated with intact hUCB-MSCs, hUCB-MSCs preconditioned with IL-22 and TNF-α, and hUCB-MSC-Exo preconditioned with IL-17, IL-22 and TNF-α (MSC-Exo 3C). However, the most pronounced therapeutic effect was observed with MSC-Exo 3C treatment. In summary, we demonstrated that MSC-Exo 3C transplantation has therapeutic potential for treating psoriasis-like skin lesions.
Full article
(This article belongs to the Section Biotechnology)
►▼
Show Figures

Figure 1
Open AccessArticle
Compound Eye Structure and Phototactic Dimorphism in the Yunnan Pine Shoot Beetle, Tomicus yunnanensis (Coleoptera: Scolytinae)
by
Hua Xie, Hui Yuan, Yuyun Wang, Xinyu Tang, Meiru Yang, Li Zheng and Zongbo Li
Biology 2025, 14(8), 1032; https://doi.org/10.3390/biology14081032 - 11 Aug 2025
Abstract
►▼
Show Figures
Tomicus yunnanensis, a notorious forest pest in southwest China, primarily employs infochemicals to coordinate mass attacks that overcome host tree defenses. However, secondary visual cues, particularly detection of host color changes, also aid host location. This study characterized the compound eye structure
[...] Read more.
Tomicus yunnanensis, a notorious forest pest in southwest China, primarily employs infochemicals to coordinate mass attacks that overcome host tree defenses. However, secondary visual cues, particularly detection of host color changes, also aid host location. This study characterized the compound eye structure and vision of T. yunnanensis using electron microscopy and phototaxis tests. The apposition eye contains 224–266 ommatidia, with asymmetry between left and right. Quadrilateral facets occupy the dorsal third, while hexagonal facets dominate elsewhere. Each ommatidium comprises a large corneal lens, an acone-type crystalline cone from four cone cells, and an open-type rhabdom formed by eight retinular cells (R7–R8 centrally, R1–R6 peripherally), surrounded by two primary and at least seventeen secondary pigment cells. Dark/light adaptation alters cone size/shape and rhabdom cross-sectional area/outline (without pigment granule movement) to regulate light reaching the photoreceptors. Behavioral observations showed peak flight activity occurs between 7:00–11:00 AM, with no nighttime activity. Phototaxis tests revealed females are highly sensitive to 360 nm, 380 nm, and 700 nm wavelengths, while males exhibit high sensitivity to 360 nm and 400 nm. This work enhances knowledge on the integration of visual and olfactory sensory information in beetles for host location and non-host avoidance.
Full article

Figure 1
Open AccessArticle
Assessment of Lumbar Vertebrae L1–L7 and Proximal Femur Microstructure in Sheep as a Large Animal Model for Osteoporosis Research
by
José A. Camassa, Vera V. Barros, Pedro S. Babo, Fábio A. M. Pereira, José J. L. Morais, Aureliano Fertuzinhos, Jorge T. Azevedo, Rui L. Reis, Manuela E. Gomes, Ana Martins-Bessa, Carlos A. Viegas, Sílvio H. de Freitas, Nuno Dourado and Isabel R. Dias
Biology 2025, 14(8), 1031; https://doi.org/10.3390/biology14081031 - 11 Aug 2025
Abstract
►▼
Show Figures
Sheep have been widely used as a model for osteoporosis research. This study aimed to characterise changes in microstructure and composition in lumbar vertebrae L1–L7 and the proximal femur after implementation of a bone loss induction protocol (in this species). A sham control
[...] Read more.
Sheep have been widely used as a model for osteoporosis research. This study aimed to characterise changes in microstructure and composition in lumbar vertebrae L1–L7 and the proximal femur after implementation of a bone loss induction protocol (in this species). A sham control and experimental group (glucocorticoid-treated ovariectomized sheep) were used (n = 6/group), with a study duration up to the 24th postoperative week. Through micro-computed tomography, vertebrae and femoral head trabecular bones from the experimental group presented a consistent decrease in bone volume fraction (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N) and an increase in trabecular separation (Tb.Sp) and total porosity (p > 0.05). The mineral density of the femoral heads from the experimental group showed a statistically significant decrease (p ˂ 0.05). The entire histomorphometric analysis of the vertebrae in the experimental group showed an increase in cortical porosity (Ct.Po) and a decrease in cortical thickness (Ct.Th) (p ˂ 0.0001 and p ˂ 0.001, respectively). Vertebrae L6 and L7 were the most affected, showing a significant increase in Ct.Po (p < 0.05) and a significant decrease in Ct.Th at the L6 level (p < 0.05). Regarding the trabecular bone at the vertebral level, only L4 showed a significant increase in Tb.Sp (p ˂ 0.05). In the femoral heads’ subchondral cortical layer, the Ct.Po increased significantly and Ct.Th decreased (p < 0.01), and at the trabecular level, the BV/TV, Tb.Th, and Tb.N decreased significantly, while Tb.Sp increased (p < 0.05). In conclusion, the L4, L6 and L7 vertebrae seem the most suitable for further preclinical and translational studies of vertebral augmentation or spinal fusion in this animal model.
Full article

Figure 1
Open AccessArticle
Integrating Multi-Domain Approach for Identification of Neo Anti-DHPS Inhibitors Against Pathogenic Stenotrophomonas maltophilia
by
Alhumaidi Alabbas
Biology 2025, 14(8), 1030; https://doi.org/10.3390/biology14081030 - 11 Aug 2025
Abstract
Background: The increasing number of resistant bacterial strains is reducing the effectiveness of antimicrobial drugs in preventing infections. It has been shown that resistant strains invade living organisms and cause a wide range of illnesses, leading to a surprisingly high death rate. Objective:
[...] Read more.
Background: The increasing number of resistant bacterial strains is reducing the effectiveness of antimicrobial drugs in preventing infections. It has been shown that resistant strains invade living organisms and cause a wide range of illnesses, leading to a surprisingly high death rate. Objective: The present study aimed to identify novel dihydropteroate synthase (DHPS) inhibitors from Stenotrophomonas maltophilia using structure-based computational techniques. Methodology: This in silico study used various bioinformatics and cheminformatics approaches to find new DHPS inhibitors. It began by retrieving the crystal structure via PDB ID: 7L6P, followed by energy minimization. The DHPS enzyme was virtually screened against the CHEMBL library to target S. maltophilia through enzyme inhibition. Then, absorption, distribution, metabolism, and excretion (ADME) analysis was performed to select the top hits. This process identified the top-10 hits. Additionally, imidazole (control) was used for comparative assessment. Furthermore, a 100 ns molecular dynamics simulation and post-simulation analyses were conducted. The docking results were validated through binding free energy calculations and entropy energy estimation approaches. Results: The docking results prioritized 10 compounds based on their binding scores, with a maximum threshold of −7 kcal/mol for selection. The ADME assessment shortlisted 3 out of 10 compounds: CHEMBL2322256, CHEMBL2316475, and CHEMBL2334441. These compounds satisfied Lipinski’s rule of five and were considered drug-like. The identified inhibitors demonstrated greater stability and less deviation compared to the control (imidazole). The average RMSD stayed below 2 Å, indicating overall stability without major deviations in the DHPS–ligand complexes. Post-simulation analysis assessed the stability and interaction profiles of the complexes under physiological conditions. Hydrogen bonding analysis showed the control to be more stable than the three tested complexes. Increased salt bridge interactions suggested stronger electrostatic stabilization, while less alteration of the protein’s secondary structure indicated better structural compatibility. These findings support the potential of these novel ligands as potent DHPS inhibitors. Binding energy estimates showed that CHEMBL2322256 was the most stable, with scores of −126.49 and −124.49 kcal/mol. Entropy calculations corroborated these results, indicating that CHEMBL2322256 had an estimated entropy of 8.63 kcal/mol. Conclusions: The newly identified compounds showed more promising results compared to the control. While these compounds have potential as innovative drugs, further research is needed to confirm their effectiveness as anti-DHPS agents against antibiotic resistance and S. maltophilia infections.
Full article
(This article belongs to the Special Issue Advancing Translational Science Using Bioinformatics and Big Data-Driven Approaches)
►▼
Show Figures

Figure 1
Open AccessArticle
Fungal Pathogen Infection by Metarhizium anisopliae Alters Climbing Behavior of Lymantria dispar with Tree-Top Disease Induced by LdMNPV
by
Qi Song, Yu-Shan Wei and Dun Wang
Biology 2025, 14(8), 1029; https://doi.org/10.3390/biology14081029 - 11 Aug 2025
Abstract
Certain parasites manipulate host behavior following infection to enhance their own dispersal and transmission. Lepidopteran larvae infected with baculoviruses exhibit increased locomotion, ascending to the apex of their host plant where they ultimately die in a characteristic inverted, liquefied posture suspended by their
[...] Read more.
Certain parasites manipulate host behavior following infection to enhance their own dispersal and transmission. Lepidopteran larvae infected with baculoviruses exhibit increased locomotion, ascending to the apex of their host plant where they ultimately die in a characteristic inverted, liquefied posture suspended by their prolegs—a phenomenon termed “tree-top disease”. Although numerous studies have investigated the underlying causes of this behavior, the precise mechanism governing tree-top disease formation remains unresolved. In this study, Lymantria dispar larvae were infected with Metarhizium anisopliae and Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV). We compared symptom profiles across infection modes and assessed virulence, demonstrating that M. anisopliae infection alters the hyperactive state induced by LdMNPV in larvae exhibiting tree-top disease. Specifically, M. anisopliae promoted tree-top disease behavior during early infection stages but suppressed it during later stages. Furthermore, the symptomatology of larvae co-infected with both pathogens differed significantly from that observed in larvae infected with either M. anisopliae or LdMNPV alone. Co-infected larvae also exhibited accelerated mortality compared to those infected with a single pathogen. The above findings indicate that L. dispar larvae, when co-infected with LdMNPV and M. anisopliae may change behavioral responses that could further modulate the pathogenesis of LdMNPV-induced tree-top disease. Furthermore, a synergistic interaction between M. anisopliae and LdMNPV was observed in the biocontrol of L. dispar.
Full article
(This article belongs to the Special Issue Ecological Regulation of Forest and Grassland Pests)
►▼
Show Figures

Figure 1
Open AccessArticle
Evidence for Semantic Communication in Alarm Calls of Wild Sichuan Snub-Nosed Monkeys
by
Fang-Jun Cao, James R. Anderson, Wei-Wei Fu, Ni-Na Gou, Jie-Na Shen, Fu-Shi Cen, Yi-Ran Tu, Min Mao, Kai-Feng Wang, Bin Yang and Bao-Guo Li
Biology 2025, 14(8), 1028; https://doi.org/10.3390/biology14081028 - 11 Aug 2025
Abstract
The alarm calls of non-human primates help us to understand the evolution of animal vocal communication and the origin of human language. However, as there is a lack of research on alarm calls in primates living in multilevel societies, we studied these calls
[...] Read more.
The alarm calls of non-human primates help us to understand the evolution of animal vocal communication and the origin of human language. However, as there is a lack of research on alarm calls in primates living in multilevel societies, we studied these calls in wild Sichuan snub-nosed monkeys. By means of playback experiments, we analyzed whether call receivers understood the meaning of the alarm calls, making appropriate behavioral responses. Results showed that receivers made appropriate and specific anti-predator responses to two types of alarm calls. After hearing the aerial predator alarm call (“GEGEGE”), receivers’ first gaze direction was usually upward (towards the sky), and upward gaze duration was longer than the last gaze before playback. After hearing the terrestrial predator alarm call (“O-GA”), the first gaze direction was usually downward (towards the ground), and this downward gaze duration was longer than the gaze before playback. These reactions provide evidence for external referentiality of alarm calls in Sichuan snub-nosed monkeys, that is, information about the type of predator or the appropriate response is encoded acoustically in the calls.
Full article
(This article belongs to the Section Behavioural Biology)
►▼
Show Figures

Figure 1
Open AccessReview
The Development of Horns in Bovidae and the Genetic Mechanisms Underpinning This Process
by
Xiaoli Xu, Wenwen Yan, Jiazhong Guo, Dinghui Dai, Li Li and Hongping Zhang
Biology 2025, 14(8), 1027; https://doi.org/10.3390/biology14081027 - 11 Aug 2025
Abstract
►▼
Show Figures
Horns in Bovidae, including bovines, sheep, and goats, are evolutionarily conserved cranial structures derived from cranial neural crest cells and composed of a bony core, dermis, epidermis, and keratinous sheath. Their development follows a shared trajectory across species, progressing through placode, fleshy, and
[...] Read more.
Horns in Bovidae, including bovines, sheep, and goats, are evolutionarily conserved cranial structures derived from cranial neural crest cells and composed of a bony core, dermis, epidermis, and keratinous sheath. Their development follows a shared trajectory across species, progressing through placode, fleshy, and mature stages. Genetic regulators such as RXFP2, FOXL2, HOXD1, and TWIST1 have been identified as pivotal determinants controlling horn morphogenesis, sexual dimorphism, and the polled phenotype. This review synthesizes current advances in the evolutionary origins, morphological progression, and genetic regulation of horn formation in bovines, sheep, and goats to provide a comprehensive understanding of horn formation and variation. These findings lay the groundwork for future efforts to manipulate horn traits through genetic selection or genome editing, with implications for animal welfare and breeding.
Full article

Figure 1
Open AccessReview
The Genetics and Evolution of Human Pigmentation
by
Dorra Guermazi and Elie Saliba
Biology 2025, 14(8), 1026; https://doi.org/10.3390/biology14081026 - 10 Aug 2025
Abstract
Human skin pigmentation is one of the most visible and variable traits among populations and has been shaped primarily by natural selection in response to ultraviolet (UV) radiation. This review synthesizes the current understanding of the genetic and evolutionary mechanisms that underlie pigmentation
[...] Read more.
Human skin pigmentation is one of the most visible and variable traits among populations and has been shaped primarily by natural selection in response to ultraviolet (UV) radiation. This review synthesizes the current understanding of the genetic and evolutionary mechanisms that underlie pigmentation differences across the globe. The roles of key pigmentation-related genes, such as MC1R, SLC24A5, TYR, and OCA2, are examined in terms of how different versions of these genes have been favored in different UV environments to balance the need for photoprotection and vitamin-D synthesis. Evidence of convergent evolution in lighter skin pigmentation is explored among populations in Europe and East Asia, along with the relatively stable presence of darker pigmentation alleles in equatorial regions. We also highlight how recent research has integrated ecological, anthropological, and genomic data to paint a fuller picture of these adaptive patterns. Finally, we discuss the biomedical implications of these evolutionary processes, including how historical adaptations influence current differences in skin cancer risk, vitamin-D metabolism, and pigmentary disorders. By tracing the evolutionary history of skin color, this review emphasizes the intricate interplay between our genetics, environment, and health.
Full article
(This article belongs to the Section Evolutionary Biology)
►▼
Show Figures

Figure 1
Open AccessReview
Trans-Scale Insights into Variability in Radiation Cancer Risk Across Tissues, Individuals, and Species
by
Tatsuhiko Imaoka
Biology 2025, 14(8), 1025; https://doi.org/10.3390/biology14081025 - 9 Aug 2025
Abstract
Diversity is evident in various aspects of life and the human population. The current radiological protection system considers the diversity in disease susceptibility and incorporates some of it to provide a unified risk model for the human population. This paper focuses on variability
[...] Read more.
Diversity is evident in various aspects of life and the human population. The current radiological protection system considers the diversity in disease susceptibility and incorporates some of it to provide a unified risk model for the human population. This paper focuses on variability in cancer risk among cells/tissues, individuals, and animal species. At the cell/tissue level, radiation cancer risk per unit dose varies among tissues, as indicated by epidemiological and animal studies. This variation is most likely due to the epigenetics of cells. At the individual level, radiation risks vary considerably depending on physiological, environmental, and genetic factors. At the species level, epidemiology is considered the most relevant source of radiological information, and limitations have been recognized in extrapolating animal data to human risks. A recent study demonstrated a fundamental relationship between cancer risk and somatic mutation rate in humans and mice. This relationship could lead to a new extrapolation method, which could be used to protect a wider range of species, including humans and other mammals. Thus, considering diversity in radiation cancer risk provides insight into the underlying aspects of radiobiology of radiological protection.
Full article
(This article belongs to the Special Issue Radiation and Biology: Investigating Cellular, Organismal, and Environmental Responses)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Phenotypic, Chemotaxonomic, and Genome-Based Classification of Phyllobacterium Strains: Two Proposed Novel Species, Phyllobacterium chamaecytisi sp. nov. and Phyllobacterium lublinensis sp. nov
by
Sylwia Wdowiak-Wróbel, Karolina Włodarczyk-Ciekańska, Monika Marek-Kozaczuk, Marta Palusińska-Szysz, Piotr Koper and Jerzy Wielbo
Biology 2025, 14(8), 1024; https://doi.org/10.3390/biology14081024 - 8 Aug 2025
Abstract
►▼
Show Figures
The taxonomic status of two bacterial strains, KW56T and 2063T, isolated from root nodules of Chamaecytisus albus (Spanish broom), was investigated using a polyphasic approach. Both isolates belong to the genus Phyllobacterium, yet exhibit significant genotypic and phenotypic differences
[...] Read more.
The taxonomic status of two bacterial strains, KW56T and 2063T, isolated from root nodules of Chamaecytisus albus (Spanish broom), was investigated using a polyphasic approach. Both isolates belong to the genus Phyllobacterium, yet exhibit significant genotypic and phenotypic differences from all currently described species. Whole-genome comparisons revealed that strain KW56T is most closely related to Phyllobacterium trifolii PETP 02T, while strain 2063T is related to Phyllobacterium brassicacearum strains STM 196T and 29-15. However, digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values between the new isolates and their closest relatives were below established species delineation thresholds, supporting their recognition as novel species. Phenotypic analyses confirmed morphological and growth characteristics typical for Phyllobacterium, while also revealing several discriminatory physiological traits. Fatty acid profiling showed that cyclopropyl 19:0 was the major fatty acid in both strains, though each exhibited a unique fatty acid composition. Chemotaxonomic markers included 3-OH 14:0, a19:1, and 21:0 for strain KW56T, and 3-OH 14:0, 3-OH 17:0, and 3-OH 18:0 for strain 2063T. Based on the genomic, phenotypic, and chemotaxonomic data, we propose that strains KW56T and 2063T represent two novel species, for which the names Phyllobacterium chamaecytisi sp. nov. (DSM 113831) and Phyllobacterium lublinensis sp. nov. (DSM 113830) are proposed.
Full article

Graphical abstract
Open AccessArticle
Herbicide-Induced Fragmentation: Regenerative Ability of Cabomba Fragments After Exposure to Flumioxazin
by
Junfeng Xu, Tobias Oliver Bickel and Steve Adkins
Biology 2025, 14(8), 1023; https://doi.org/10.3390/biology14081023 - 8 Aug 2025
Abstract
►▼
Show Figures
Cabomba caroliniana A. Gray (cabomba) is an invasive alien aquatic plant (IAAP) posing a significant threat to aquatic ecosystems in Australia. Its ongoing spread is primarily driven by its rapid growth rate and ability to readily regenerate from stem fragments. Flumioxazin, an effective
[...] Read more.
Cabomba caroliniana A. Gray (cabomba) is an invasive alien aquatic plant (IAAP) posing a significant threat to aquatic ecosystems in Australia. Its ongoing spread is primarily driven by its rapid growth rate and ability to readily regenerate from stem fragments. Flumioxazin, an effective herbicide for controlling cabomba, has been registered for use in Australia since 2021. However, exposing cabomba to flumioxazin can induce stem fragmentation, potentially facilitating further spread. This study aims to determine whether stem fragments of cabomba following treatment at different flumioxazin doses (i.e., 25, 50, 100, or 200 ppb a.i.) can regenerate new healthy shoots that could contribute to its future spread in a new environment, in either summer or winter. This study also aims to investigate how this regrowth potential changes over time after herbicide application. Results show that flumioxazin suppressed the regeneration of replanted stem fragments in a dose-dependent manner in both winter and summer. In winter, complete regeneration was suppressed at the highest concentration tested (200 ppb a.i.), while low concentrations (25 and 50 ppb a.i.) resulted in an average 45% lower regeneration rate and 93% lower regenerated biomass than the control. In summer, suppression of regeneration was lower; at 200 ppb a.i., partial regeneration (18%) occurred with a 97% biomass reduction. At lower concentrations (25 and 50 ppb a.i.), more stem fragments regenerated (66%) and biomass reduction was lower (69%) compared to winter. Furthermore, in summer, the plants gradually regained their ability to regenerate over time after herbicide exposure, regardless of flumioxazin concentration, while no such recovery occurred in winter at any concentration. The findings show that the highest tested dose (200 ppb a.i.) can effectively suppress cabomba regenerative ability, which will greatly reduce the risk of new infestations caused by dispersed fragments, particularly in winter, when cooler temperatures and lower light are suboptimal for cabomba growth. This suggests that winter may be a more effective season for flumioxazin application. However, since some regeneration still occurred in summer, even at the highest tested dose, the highest registered label rate (400 ppb a.i.) may be necessary to ensure effective suppression under warmer conditions. Further studies are needed to evaluate this higher dose and its long-term efficacy.
Full article

Figure 1
Open AccessArticle
Unveiling Genetic Variation in the Seed Bug Spilostethus pandurus (Scopoli, 1763) (Hemiptera: Lygaeidae) in Thailand Using Mitochondrial CO1 Sequence
by
Warayutt Pilap, Nakorn Pradit, Chavanut Jaroenchaiwattanachote, Jatupon Saijuntha, Watee Kongbuntad, Wittaya Tawong, Chairat Tantrawatpan and Weerachai Saijuntha
Biology 2025, 14(8), 1022; https://doi.org/10.3390/biology14081022 - 8 Aug 2025
Abstract
Spilostethus pandurus is a phytophagous insect widely distributed across Asia, Europe, and Africa, yet its genetic variation remains poorly understood. This study presents the first comprehensive analysis of the genetic diversity and structure of S. pandurus in Thailand using mitochondrial cytochrome c oxidase
[...] Read more.
Spilostethus pandurus is a phytophagous insect widely distributed across Asia, Europe, and Africa, yet its genetic variation remains poorly understood. This study presents the first comprehensive analysis of the genetic diversity and structure of S. pandurus in Thailand using mitochondrial cytochrome c oxidase subunit 1 (CO1) sequences from 202 individuals across 27 localities. A total of 58 haplotypes were identified, with high haplotype and nucleotide diversity observed, suggesting substantial genetic variation. The haplotype network revealed a star-like topology, indicating recent population expansion or ongoing gene flow. Neutrality tests and mismatch distribution analyses showed no strong signal of recent demographic expansion. Phylogenetic analysis confirmed that all Thai specimens clustered within a well-supported S. pandurus clade along with sequences from India, Namibia, and Europe. Analysis of Molecular Variance (AMOVA) revealed significant genetic differentiation among four continental groups, indicating that geographic isolation and restricted gene flow have shaped genetic divergence at a broad biogeographic scale. Further research using highly polymorphic nuclear markers is recommended to better resolve the population structure and evolutionary history of S. pandurus in Thailand and beyond.
Full article
(This article belongs to the Special Issue Genetic Variability within and between Populations)
►▼
Show Figures

Figure 1
Open AccessArticle
Effects of Probiotic-Fermented Corn Wet Distillers Grains on the Growth Performance, Carcass Characteristics, and Heavy Metal Residue Levels of Finishing Pigs
by
Wang Liao, Xudong Wu, Zaigui Wang and Shuhao Fan
Biology 2025, 14(8), 1021; https://doi.org/10.3390/biology14081021 - 8 Aug 2025
Abstract
This study evaluated the effects of dietary probiotic-fermented corn wet distillers grains (FCWDGs) on finishing pigs. Three Bacillus subtilis strains (CGMCC21218, CCTCC2022073, and CICC10275) were used to ferment corn wet distillers grains, yielding FCWDGs-1, FCWDGs-2, and FCWDGs-3. A total of 128 130-day-old Anqing
[...] Read more.
This study evaluated the effects of dietary probiotic-fermented corn wet distillers grains (FCWDGs) on finishing pigs. Three Bacillus subtilis strains (CGMCC21218, CCTCC2022073, and CICC10275) were used to ferment corn wet distillers grains, yielding FCWDGs-1, FCWDGs-2, and FCWDGs-3. A total of 128 130-day-old Anqing six white pigs were randomly assigned to four groups: a control group and groups supplemented with 6% FCWDGs-1 (T1), FCWDGs-2 (T2), and FCWDGs-3 (T3). Over a 60-day trial, FCWDGs significantly enhanced growth performance, with T1 and T3 groups showing higher final weight and average daily gain (ADG) compared to the control (p < 0.05), and feed-to-gain ratios were reduced in all treatments (p < 0.05). Loin muscle depth (LMD) was significantly greater in all treatments (p < 0.05), and the lean meat percentage (LMP) was significantly higher in the T1 group (p < 0.05). Antioxidant activity (T-AOC, SOD, and GSH-Px) was enhanced in all treatments, with the highest values observed in the T1 group (p < 0.05). Notably, FCWDGs reduced heavy-metal residues (As, Pb, Cu) in muscle, liver, and kidney tissues, particularly in the T1 group. The results highlight the potential of Bacillus subtilis-fermented FCWDGs to enhance growth performance and carcass traits, and reduce heavy metal accumulation in pig tissues.
Full article
Open AccessArticle
Bacterial Community Changes in Early-Stage Engineering Simulation of Red Mud/Phosphogypsum-Based Artificial Soil Vegetation Restoration
by
Yong Liu, Binbin Xue, Hefeng Wan, Lishuai Zhang, Zhi Yang, Jingfu Wang, Lirong Wang and Xiaohong Lin
Biology 2025, 14(8), 1020; https://doi.org/10.3390/biology14081020 - 8 Aug 2025
Abstract
►▼
Show Figures
Preparing red mud/phosphogypsum-based artificial soils for vegetation restoration is promising. However, how artificial soil develops during vegetation restoration is unclear, especially regarding the relationship between the bacterial community and the development of artificial soil. The bacterial community changes in the early-stage engineering simulation
[...] Read more.
Preparing red mud/phosphogypsum-based artificial soils for vegetation restoration is promising. However, how artificial soil develops during vegetation restoration is unclear, especially regarding the relationship between the bacterial community and the development of artificial soil. The bacterial community changes in the early-stage engineering simulation of red mud/phosphogypsum-based artificial soil vegetation restoration were analyzed for the first time in this paper. The results showed that the structure of the bacterial community was simple at the beginning, mainly consisting of Proteobacteria, Firmicutes, and Bacteroidota, with total abundances of 74.5% and 89.3% in the two plots, respectively. The richness, diversity, and evenness of the bacterial communities all significantly increased over time (p < 0.05), indicating that the compositions of the bacterial communities in artificial soils undergo constant development, adjustment, and optimization. There were good correlations between bacterial communities and environmental factors (e.g., pH, WH2O, OM, TN, TK, AK, TP), which generally reflected the significant synergistic development and interaction between the quality of the soil environmental and bacterial communities. There were complex dynamic changes in the functions of the bacteria during the development of artificial soils, which were mainly reflected in the decline in the abundances of chemoheterotrophy, aerobic chemoheterotrophy, and animal parasites or symbionts, but there was an increase in the abundances of phototrophy, cyanobacteria, and dark sulfide oxidation. This reflects the highly active physiological and biochemical reaction functions of bacterial communities in the development of artificial soils, which is of great significance for continuously enhancing the fertility quality and ecological attributes of artificial soils.
Full article

Figure 1
Open AccessArticle
VaccineDesigner: A Web-Based Tool for Streamlined Multi-Epitope Vaccine Design
by
Dimitrios Trygoniaris, Anna Korda, Anastasia Paraskeva, Esmeralda Dushku, Georgios Tzimagiorgis, Minas Yiangou, Charalampos Kotzamanidis and Andigoni Malousi
Biology 2025, 14(8), 1019; https://doi.org/10.3390/biology14081019 - 7 Aug 2025
Abstract
Background: Multi-epitope vaccines have become the preferred strategy for protection against infectious diseases by integrating multiple MHC-restricted T-cell and B-cell epitopes that elicit both humoral and cellular immune responses against pathogens. Computational methods address various aspects independently, yet their orchestration is technically challenging,
[...] Read more.
Background: Multi-epitope vaccines have become the preferred strategy for protection against infectious diseases by integrating multiple MHC-restricted T-cell and B-cell epitopes that elicit both humoral and cellular immune responses against pathogens. Computational methods address various aspects independently, yet their orchestration is technically challenging, as most bioinformatics tools are accessible through heterogeneous interfaces and lack interoperability features. The present work proposes a novel framework for rationalized multi-epitope vaccine design that streamlines end-to-end analyses through an integrated web-based environment. Results: VaccineDesigner is a comprehensive web-based framework that streamlines the design of protective epitope-based vaccines by seamlessly integrating computational methods for B-cell, CTL, and HTL epitope prediction. VaccineDesigner incorporates single-epitope prediction and evaluation as well as additional analyses, such as multi-epitope vaccine generation, estimation of population coverage, molecular mimicry, and proteasome cleavage. The functionalities are transparently integrated into a modular architecture, providing a single access point for rationalized, multi-epitope vaccine generation in a time- and cost-effective manner. Conclusions: VaccineDesigner is a web-based tool that identifies and evaluates candidate B-cell, CTL, and HTL epitopes and constructs a library of multi-epitope vaccines that combine strong immunogenic responses, safety, and broad population coverage. The source code is available under the academic license and freely accessible.
Full article
(This article belongs to the Section Bioinformatics)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Biology Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Animals, Aquaculture Journal, Biology, Fishes, Hydrobiology
The Importance of Fish Phenotype in Aquaculture, Fisheries and Conservation
Topic Editors: Zonghang Zhang, Xiumei ZhangDeadline: 31 August 2025
Topic in
Agriculture, Agronomy, Grasses, Microorganisms, Plants, Biology
Evaluating the Functional Value of Agroecosystems under Different Management Scenarios
Topic Editors: Yuan Li, Yangzhou Xiang, Jihui Tian, Fuhong MiaoDeadline: 20 October 2025
Topic in
Biology, Data, Diversity, Fishes, Animals, Conservation, Hydrobiology
Intersection Between Macroecology and Data Science
Topic Editors: Paulo Branco, Gonçalo DuarteDeadline: 30 November 2025
Topic in
Applied Microbiology, Bioengineering, Biology, Environments, Microorganisms
Environmental Bioengineering and Geomicrobiology
Topic Editors: Xian-Chun Zeng, Deng LiuDeadline: 20 December 2025

Conferences
Special Issues
Special Issue in
Biology
Ferroptosis: Mechanisms and Human Disease
Guest Editor: Chan-Yen KuoDeadline: 15 August 2025
Special Issue in
Biology
Advances in Leishmaniasis and Chagas Disease: Biology, Epidemiology, Treatment and Control
Guest Editors: Fernando Almeida-Souza, Flávia de Oliveira Cardoso, Kátia Da Silva CalabreseDeadline: 15 August 2025
Special Issue in
Biology
Animal Models of Arthritis
Guest Editors: Nevena Arsenović-Ranin, Biljana BufanDeadline: 30 August 2025
Special Issue in
Biology
The Effect of Food- and Nutrient-Derived Molecules on Cells and Tissue
Guest Editors: Roberta Moschini, Francesca FeliceDeadline: 31 August 2025
Topical Collections
Topical Collection in
Biology
Abiotic Stress in Plants and Resilience: Recent Advances
Collection Editors: Chengliang Sun, Weiwei Zhou
Topical Collection in
Biology
Fish Immunity: From Genomes to Functional Understanding
Collection Editor: Brian Dixon
Topical Collection in
Biology
Abiotic Stress Tolerance in Cereals
Collection Editor: Dorothea Bartels