Relation between Exercise Performance and Blood Storage Condition and Storage Time in Autologous Blood Doping
Abstract
:Simple Summary
Abstract
1. Introduction
2. Method
3. Results and Discussion
3.1. Blood Storage Techniques
3.2. Blood Storage Duration
4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peters, C.; Schulz, T.; Oberhoffer, R.; Michna, H. Doping und Dopingprävention: Kenntnisse, einstellungen und erwartungen von Athleten und trainern Doping and Doping Prevention: Knowledge, Attitudes and Expectations of Athletes and Coaches. Dtsch. Z. Sportmed. 2009, 60, 73–78. [Google Scholar]
- Chorbok, D. Zur Strafbarkeit nach dem Anti-Doping-Gesetz; Herbert Utz Verlag: Munich, Germany, 2017; Volume 116. [Google Scholar]
- Mørkeberg, J. Detection of autologous blood transfusions in athletes: A historical perspective. Transfus. Med. Rev. 2012, 26, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Birkland, K.I.; Hemmersbach, P. The future of doping control in athletes. Sports Med. 1999, 28, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, J.D.; Reilly, T. Blood Boosting and Sport. In Drugs in Sport; Mottram, D., Ed.; Routleg: London, UK, 2005; Volume 4, pp. 207–227. [Google Scholar]
- Bassett, J.D.R.; Howley, E.T. Blood doping: Then and now. A narrative review of the history, science and efficacy of blood doping in elite sport. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Jelkmann, W. Features of Blood Doping: Merkmale von Blutdoping. Dtsch. Z. Sportmed. 2016, 67, 255–262. [Google Scholar] [CrossRef]
- Pottgiesser, T.; Echteler, T.; Sottas, P.E.; Umhau, M.; Schumacher, Y.O. Hemoglobin mass and biological passport for the detection of autologous blood doping. Med. Sci. Sports Exerc. 2012, 44, 835. [Google Scholar] [CrossRef] [Green Version]
- Marina, S. Operation Aderlass: “Ein Eindeutiges Licht auf die Dopingsituation”. Available online: https://www.deutschlandfunk.de/operation-aderlass-ein-eindeutiges-licht-auf-die.1346.de.html?dram:article_id=485211 (accessed on 27 October 2020).
- Fiedler, M. Operation Aderlass: Angeklagter Arzt legt in Dopingprozess Umfassendes Geständnis ab. Available online: https://www.spiegel.de/sport/operation-aderlass-arzt-legt-in-doping-prozess-umfassendes-gestaendnis-ab-a-9be6fdba-9e20-4970-bf30-2614a76eda7e (accessed on 22 October 2020).
- Behr, M. Grenzwertig: Aus dem Leben eines Dopingdealers; Riva Sportverlag: Wien, Austria, 2011. [Google Scholar]
- Leigh-Smith, S. Blood boosting. Br. J. Sports Med. 2004, 38, 99–101. [Google Scholar] [CrossRef] [Green Version]
- Zorzoli, M. Blood monitoring in antidoping setting. In Recent Advances in Doping Analysis: Sport und Buch; Schänzer, W., Geyer, H., Gotzmann, A., Mareck, M., Eds.; Sportverlag Strauß: Köln, Germany, 2005; pp. 255–264. [Google Scholar]
- Jones, M.; Pedoe, D.T. Blood doping—A literature review. Br. J. Sports Med. 1989, 23, 84–88. [Google Scholar] [CrossRef]
- Lagerberg, J.W. Cryopreservation of red blood cells. In Cryopreservation and Freeze-Drying Protocols; Wolkers, W.F., Oldenhof, H., Eds.; Springer: New York, NY, USA, 2015; pp. 353–367. [Google Scholar]
- Mørkeberg, J.; Belhage, B.; Ashenden, M.; Bornø, A.; Sharpe, K.; Dziegiel, M.H.; Damsgaard, R. Screening for autologous blood transfusions. Int. J. Sports Med. 2009, 30, 285–292. [Google Scholar] [CrossRef]
- Bizjak, D.A.; Grolle, A.; Urena, J.A.N.; Bloch, W.; Deitenbeck, R.; Grau, M. Monitoring of RBC rheology after cryopreservation to detect autologous blood doping in vivo? A pilot study. Clin. Hemorheol. Microcirc. 2020, 1–13, preprint. [Google Scholar] [CrossRef]
- Böning, D.; Maassen, N.; Pries, A. The hematocrit paradox—How does blood doping really work? Int. J. Sports Med. 2011, 32, 242–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solheim, S.A.; Bejder, J.; Breenfeldt Andersen, A.; Mørkeberg, J.; Nordsborg, N.B. Autologous Blood Transfusion Enhances Exercise Performance-Strength of the Evidence and Physiological Mechanisms. Sports Med. Open 2019, 5, 30–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bejder, J.; Breenfeldt, A.A.; Solheim, S.A.; Gybel-Brask, M.; Secher, N.H.; Johansson, P.I.; Nordsborg, N.B. Time Trial Performance is Sensitive to Low-Volume Autologous Blood Transfusion. Med. Sci. Sports Exerc. 2019, 51, 692–700. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma, G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS ONE 2009, 6. [Google Scholar] [CrossRef] [Green Version]
- MDPI. Publishing Standards and Guidelines. Available online: https://www.mdpi.com/editorial_process#standards (accessed on 25 December 2020).
- Lippi, G.; Franchini, M.; Salvagno, G.L.; Guidi, G.C. Biochemistry, physiology, and complications of blood doping: Facts and speculation. Crit. Rev. Clin. Lab. Sci. 2006, 43, 349–391. [Google Scholar] [CrossRef]
- Dowling, P. Erythropoietin a review. Sports Health 1990, 8, 30–32. [Google Scholar]
- Berglund, B. Development of techniques for the detection of blood doping in sport. Sports Med. 1988, 5, 127–135. [Google Scholar] [CrossRef]
- Nelson, M.; Ashend, M.; Langsahw, M.; Popp, H. Detection of homologous blood transfusion by flow cytometry: A deterrent against blood doping. Haematologica 2002, 87, 881–882. [Google Scholar] [CrossRef]
- Nelson, M.; Popp, H.; Sharpe, K.; Ashend, M. Proof of homologous blood transfusion through quantification of blood group antigens. Haematologica 2003, 88, 1284–1295. [Google Scholar]
- Voss, S.C.; Thevis, M.; Schinkothe, T.; Schänzer, W. Detection of homologous blood transfusion. Int. J. Sports Med. 2007, 28, 633–637. [Google Scholar] [CrossRef]
- Cazzola, M. A global strategy for prevention and detection of blood doping with erythropoietin and related drugs. Haematologica 2000, 85, 561–563. [Google Scholar] [PubMed]
- Malcovati, L.; Pascutto, C.; Cazzola, M. Hematologic passport for athletes competing in endurance sports: A feasibility study. Haematologica 2003, 88, 570–581. [Google Scholar] [PubMed]
- Gore, C.J.; Parisotto, R.; Ashenden, M.J.; Stray-Gundersen, J.; Sharpe, K.; Hopkins, W.; Emslie, K.R.; Howe, C.; Trout, G.J.; Kazlauskas, R.; et al. Second-generation blood tests to detect erythropoietin abuse by athletes. Haematologica 2003, 88, 333–344. [Google Scholar] [CrossRef] [PubMed]
- WADA. Athlete Biological Passport Operating Guidelines and Compilation of Required Elements. Volume 2.1. Available online: https://www.wada-ama.org/sites/default/files/resources/files/WADA_ABP_OperatingGuidelines_EN_2.1.pdf (accessed on 10 November 2020).
- Sanchis-Gomar, F.; Pareja-Galeano, H.; Brioche, T.; Martinez-Bello, V.; Lippi, G. Altitude exposure in sports: The Athlete Biological Passport standpoint. Drug Test. Anal. 2004, 6, 190–193. [Google Scholar] [CrossRef]
- Segura, J.; Minfort, N.; Ventura, R. Detection methods for autologous blood doping. Drug Test. Anal. 2012, 4, 876–881. [Google Scholar] [CrossRef]
- Sottas, P.-E.; Robinson, N.; Saugy, M. The athlete’s biological passport and indirect markers of blood doping. In Doping in Sports: Biochemical Principles, Effects and Analysis; Thieme, D., Hemmersbach, P., Eds.; Springer: Berlin, Germany, 2010; pp. 305–326. [Google Scholar]
- Bizjak, D.A.; Jungen, P.; Bloch, W.; Grau, M. Cryopreservation of red blood cells: Effect on rheologic properties and associated metabolic and nitric oxide related parameters. Cryobiology 2018, 84, 59–68. [Google Scholar] [CrossRef]
- Cade, W.T.; Bohnert, K.L.; Reeda, D.N.; Peterson, L.R.; Bittel, A.J.; Bashir, A.; Byrne, B.J.; Taylor, C.L. Peak oxygen uptake (VO2peak) across childhood, adolescence and young adulthood in Barth syndrome: Data from cross-sectional and longitudinal studies. PLoS ONE 2018, 13. [Google Scholar] [CrossRef]
- Hollmann, W.; Strüder, K.; Predel, H.-G.; Tagarakis, C. Kardiopulmonale Leistungsdiagnostik des Gesunden und Kranken; Schattauer: Stuttgart, Germany, 2006. [Google Scholar]
- Huggett, D.L.; Connelly, D.M.; Overend, T.J. Maximal aerobic capacity testing of older adults: A critical review. J. Gerontol. Ser. A Biol. Sci. Med Sci. 2005, 60, 57–66. [Google Scholar] [CrossRef]
- Green, S.; Askew, C. VO2peak is an acceptable estimate of cardiorespiratory fitness but not VO2max. J. Appl. Physiol. 2018, 125, 229–232. [Google Scholar] [CrossRef] [Green Version]
- Nicolò, A.; Sacchetti, M.; Girardi, M.; McCormick, A.; Angius, L.; Bazzucchi, I.; Marcora, S.M. A comparison of different methods to analyse data collected during time-to-exhaustion tests. Sports Sci. Health 2019, 15, 667–679. [Google Scholar] [CrossRef] [Green Version]
- Laursen, P.B.; Francis, G.T.; Abbiss, C.R.; Newton, M.J.; Nosaka, K. Reliability of time-to-exhaustion versus time-trial running tests in runners. Med. Sci. Sports Exerc. 2007, 39, 1374–1379. [Google Scholar] [CrossRef] [PubMed]
- Bennett-Guerrero, E.; Lockhart, E.L.; Bandarenko, N.; Campbell, M.L.; Natoli, M.J.; Jamnik, V.K.; Carter, R.C.; Moon, R.E. A randomized controlled pilot study of VO2 max testing: A potential model for measuring relative in vivo efficacy of different red blood cell products. Transfusions 2017, 57, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Berglund, B.; Birgegård, G.; Wide, L.; Pihlstedt, P. Effects of blood transfusions on some hematological variables in endurance athletes. Med. Sci. Sports Exerc. 1989, 21, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Berglund, B.; Hemmingson, P. Effect of reinfusion of autologous blood on exercise performance in cross-country skiers. Int. J. Sports Med. 1987, 8, 231–233. [Google Scholar] [CrossRef] [PubMed]
- Berglund, B.; Hemmingson, P.; Birgegård, G. Detection of autologous blood transfusions in cross-country skiers. Int. J. Sports Med. 1987, 8, 66–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brien, A.J.; Simon, T.L. The effects of red blood cell infusion on 10-km race time. JAMA 1987, 257, 2761–2765. [Google Scholar] [CrossRef]
- Buick, F.J.; Gledhill, N.; Froese, A.B.; Spriet, L.; Meyers, E.C. Effect of induced erythrocythemia on aerobic work capacity. J. Appl. Physiol. 1980, 48, 636–642. [Google Scholar] [CrossRef]
- Celsing, F.; Nystrom, J.; Pihlstedt, P.; Werner, B.; Ekblom, B. Effect of long-term anemia and retransfusion on central circulation during exercise. J. Appl. Physiol. 1986, 61, 1358–1362. [Google Scholar] [CrossRef]
- Celsing, F.; Svedenhag, J.; Pihlstedt, P.; Ekblom, B. Effects of anaemia and stepwise-induced polycythaemia on maximal aerobic power in individuals with high and low haemoglobin concentrations. Acta Physiol. Scand. 1987, 129, 47–54. [Google Scholar] [CrossRef]
- Ekblom, B.; Goldbarg, A.N.; Gullbring, B. Response to exercise after blood loss and reinfusion. J. Appl. Physiol. 1972, 33, 175–180. [Google Scholar] [CrossRef]
- Ekblom, B.; Wilson, G.; Astrand, P.O. Central circulation during exercise after venesection and reinfusion of red blood cells. J. Appl. Physiol. 1976, 40, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Goforth, J.H.W.; Hodgdon, J.A.; Sucec, A.A.; Campbell, N.L.; Rasmussen, W.T. Effect of Induced Erythrocythemia on Aerobic Capacity, Ventilatory Threshold, and Run Performance; Naval Health Research Center: San Diego, CA, USA, 1999. [Google Scholar]
- Gullbring, B.; Holmgren, A.; Sjöstrand, T.; Strandell, T. The effect of blood volume variations on the pulse rate in supine and upright positions and during exercise. Acta Physiol. Scand. 1960, 50, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Kanstrup, I.L.; Ekblom, B. Blood volume and hemoglobin concentration as determinants of maximal aerobic power. Med. Sci. Sports Exerc. 1984, 16, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Kots, Y.M.; Shcherba, M.M.; Kolker, Y.S.; Gorodetskii, V.D.; Sin, L.D. Experimental study of the relationship between the blood hemoglobin concentration and phyiscal aerobic working capacity. Hum. Physiol. 1978, 4, 43–49. [Google Scholar] [PubMed]
- Lamberti, N.; Finotti, A.; Gasparello, J.; Lampronti, I.; Zambon, C.; Cosenza, L.C.; Fabbri, E.; Dalla Corte, F.; Govoni, M.; Reverberi, R.; et al. Changes in hemoglobin profile reflect autologous blood transfusion misuse in sports. Intern. Emerg. Med. 2018, 13, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Malm, C.B.; Khoo, N.S.; Granlund, I.; Lindstedt, E.; Hult, A. Autologous doping with cryo-preserved red blood cells–effects on physical performance and detection by multivariate statistics. PLoS ONE 2016, 11, e0156157. [Google Scholar] [CrossRef] [PubMed]
- Muza, S.R.; Sawka, M.N.; Young, A.J.; Dennis, R.C.; Gonzalez, R.R. Elite Special Forces: Physiological Description and Ergogenic Influence of Blood Infusion. Aviat. Space Envon. Med. 1987, 58, 1001–1004. [Google Scholar]
- Pottgiesser, T.; Specker, W.; Umhau, M.; Dickhuth, H.H.; Roecker, K.; Schumacher, Y.O. Recovery of hemoglobin mass after blood donation. Transfusion 2008, 48, 1390–1397. [Google Scholar] [CrossRef]
- Pottgiesser, T.; Umhau, M.; Ahlgrim, C.; Ruthardt, S.; Roecker, K.; Schumacher, Y.O. Hb mass measurement suitable to screen for illicit autologous blood transfusions. Med. Sci. Sports Exerc. 2007, 39, 1748–1756. [Google Scholar] [CrossRef]
- Robertson, R.J.; Gilcher, R.; Metz, K.F.; Caspersen, C.J.; Allison, T.G.; Abbott, R.A.; Skrinar, G.S.; Krause, R.J.; Nixon, P.A. Hemoglobin concentration and aerobic work capacity in women following induced erythrocythemia. J. Appl. Physiol. 1984, 57, 568–575. [Google Scholar] [CrossRef]
- Robinson, B.F.; Epstein, S.E.; Kahler, R.L.; Braunwald, E. Circulatory effects of acute expansion of blood volume: Studies during maximal exercise and at rest. Circ. Res. 1966, 19, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Sallet, P.; Brunet-Guedj, E.; Mornex, R.; Baverel, G. Study of a new indirect method based on absolute norms of variation to detect autologous blood transfusion. Int. J. Hematol. 2008, 88, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Sawka, M.N.; Dennis, R.C.; Gonzalez, R.R.; Young, A.J.; Muza, S.R.; Martin, J.W.; Wenger, C.B.; Francesconi, R.P.; Pandolf, K.B.; Valeri, C.R. Influence of polycythemia on blood volume and thermoregulation during exercise-heat stress. J. Appl. Physiol. 1987, 62, 912–918. [Google Scholar] [CrossRef] [PubMed]
- Sawka, M.N.; Young, A.J.; Muza, S.R.; Gonzalez, R.R.; Pandolf, K.B. Erythrocyte reinfusion and maximal aerobic power: An examination of modifying factors. JAMA 1987, 257, 1496–1499. [Google Scholar] [CrossRef]
- Spriet, L.L.; Gledhill, N.; Froese, A.B.; Wilkes, D.L. Effect of graded erythrocythemia on cardiovascular and metabolic responses to exercise. J. Appl. Physiol. 1986, 61, 1942–1948. [Google Scholar] [CrossRef]
- Thomson, J.M.; Stone, J.A.; Ginsburg, A.D.; Hamilton, P. The effects of blood reinfusion during prolonged, heavy exercise. Canadian journal of applied sport sciences. J. Can. Des Sci. Appl. Au Sport 1983, 8, 72–78. [Google Scholar]
- Thomson, J.M.; Stone, J.A.; Ginsburg, A.D.; Hamilton, P. O2 transport during exercise following blood reinfusion. J. Appl. Physiol. 1982, 53, 1213–1219. [Google Scholar] [CrossRef]
- Turner, D.L.; Hoppeler, H.; Noti, C.; Gurtner, H.P.; Gerber, H.; Schena, F.; Ferretti, G. Limitations to VO2max in humans after blood retransfusion. Respir. Physiol. 1993, 92, 329–341. [Google Scholar] [CrossRef]
- Williams, M.; Goodwin, A.; Perkins, R.; Bocrie, J. Effect of blood reinjection upon endurance capacity and heart rate. Med. Sci. Sports 1973, 5, 181–186. [Google Scholar] [CrossRef]
- Williams, M.H.; Lindhjem, M.; Schuster, R. The effect of blood infusion upon endurance capacity and ratings of perceived exertion. Med. Sci. Sports 1978, 10, 113–118. [Google Scholar]
- Williams, M.H.; Wesseldine, S.; Somma, T.; Schuster, R. The effect of induced erythrocythemia upon 5-mile treadmill run time. Med. Sci. Sports Exerc. 1981, 13, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, A.K.; Grand, J.; Stangerup, I.; Nielsen, H.J.; Dela, F.; Magnussen, K.; Helge, J.W. Time course for the recovery of physical performance, blood hemoglobin, and ferritin content after blood donation. Transfusion 2015, 55, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Grau, M.; Friedrichs, P.; Krehan, S.; Koliamitra, C.; Suhr, F.; Bloch, W. Decrease in red blood cell deformability is associated with a reduction in RBC-NOS activation during storage. Clin Hemorheol. Microcirc. 2015, 60, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Sum, J.; Solomon, S.B.; Klein, H.G.; Natanson, C. Transfusion of older stored blood and risk of death: A meta-analysis. Transfusion 2012, 52, 1184–1195. [Google Scholar] [CrossRef] [Green Version]
- Stefanic, M.; Ward, K.; Tawfik, H.; Seemann, R.; Baulin, V.; Guo, Y.; Fleury, J.-B.; Drouet, C. Apatite nanoparticles strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation. Biomaterials 2017, 140, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Hess, J.R. Measures of stored red blood cell quality. Vox Sang. 2014, 107, 1–9. [Google Scholar] [CrossRef]
- Stoll, C.; Holovati, J.L.; Acker, J.P.; Wolkers, W.F. Synergistic effects of liposomes, trehalose, and hydroxyethyl starch for cryopreservation of human erythrocytes. Biotechnol. Prog. 2012, 28, 364–371. [Google Scholar] [CrossRef]
- Kim-Shapiro, D.B.; Lee, J.; Gladwin, M.T. Storage lesion: Role of red blood cell breakdown. Transfusion 2011, 51, 844–851. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Prudent, M.; D’Alessandro, A. Red blood cell storage lesion: Causes and potential clinical consequences. Blood Transfus. 2019, 17, 27–52. [Google Scholar] [CrossRef]
- Islamzada, E.; Meatthews, K.; Guo, Q.; Santoso, A.T.; Duffy, S.P.; Scott, M.D.; Ma, H. Deformability based sorting of stored red bloodcells reveals donor-dependent aging curves. R. Soc. Chem. 2020, 20, 226–235. [Google Scholar] [CrossRef]
- Arias, C.F. How do red blood cells know when to die? R. Soc. Open Sci. 2017, 4, 160850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bizjak, D.A.; Brinkmann, C.; Bloch, W.; Grau, M. Increase in red blood cell-nitric oxide synthase dependent nitric oxide production during red blood cell aging in health and disease: A study on age dependent changes of rheologic and enzymatic properties in red blood cells. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pallotta, V.; D’Amici, G.; D’Alessandro, A.; Rossetti, R.; Zolla, L. Red blood cell processing for cryopreservation: From fresh blood to deglycerolization. Blood Cells Mol. Dis. 2012, 48, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.A.; Martin, D.T.; Telford, R.D.; Ballas, S.K. Greater erythrocyte deformability in world-class endurance athletes. Am. J. Physiol. Heart Circ. Physiol. 1999, 276, 2188–2193. [Google Scholar] [CrossRef] [PubMed]
- Damsgaard, R.; Munch, T.; Mørkeberg, J.; Mortensen, S.P.; Gonzalez-Alonso, J. Effects of blood withdrawal and reinfusion on biomarkers of erythropoiesis in humans: Implications for anti-doping strategies. Haematologica 2006, 91, 1006–1008. [Google Scholar] [CrossRef] [PubMed]
- Kornes, A. Verhafteter Doping-Arzt Hortete in Seiner Garage 40 Blutbeutel; Augsburger Allgemeine: Augsburg, Germany, 2019. [Google Scholar]
- De Marées, H. Sportphysiologie (9. Aufl.); Sportverlag Strauß: Köln, Geramny, 2003. [Google Scholar]
- Weineck, J. Sportbiologie (10. Aufl.); Spitta: Balingen, Geramny, 2010. [Google Scholar]
- Goodnough, L.T.; Price, T.H.; Rudnick, S.; Soegiarso, R.W. Preoperative red cell production in patients undergoing aggressive autologous blood phlebotomy with and without erythropoietin therapy. Transfus. Apher. Sci. 1992, 32, 441–445. [Google Scholar] [CrossRef]
- Goodnough, L.T.; Goodnough, L.T. The role of iron in erythropoiesis in the absence and presence of erythropoietin therapy. Nephrol. Dial. Transplant. 2002, 17, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Tasaki, T.; Ohto, H.; Hashimoto, C.; Abe, R.; Saitoh, A.; Kikuchi, S. Recombinant human erythropoietin for autologous blood donation: Effects on perioperative red-blood-cell and serum erythropoietin production. Lancet 1992, 339, 773–775. [Google Scholar] [CrossRef]
- Spivak, J.L. The Mechanism of Action of Erythropoietin. Int. J. Cell Cloning 1986, 4, 139–166. [Google Scholar] [CrossRef]
- Hattangadi, S.M.; Wong, P.; Zhang, L.; Flygare, J.; Lodish, H.F. From stem cell to red cell: Regulation of erythropoiesis at multiple levels bymultiple proteins, RNAs, and chromatin modifications. Am. Soc. Hematol. 2011, 118, 6258–6268. [Google Scholar] [CrossRef] [Green Version]
- Dudrick, S.J.; O’Donnell, J.J.; Raleigh, D.P.; Matheny, R.G.; Unkel, S.P. Rapid restoration of red blood cell mass in severely anemic surgical patients who refuse transfusion. Arch. Surg. 1985, 120, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Lorentz, A.; Jendrissek, A.; Eckardt, K.U.; Schipplick, M.; Osswald, P.M.; Kurtz, A. Serial immunoreactive erythropoietin levels in autologous blood donors. Transfusion 1991, 31, 650–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Högler, W.; Mayer, W.; Messmer, C.; Eibl, G.; Innerhofer, P.; Schönitzer, D.; Nussbaumer, W. Prolonged iron depletion afterallogeneic 2-unit RBC apheresis. Transfusion 2001, 41, 602–605. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K. Erythropoiesis: The Roles of Erythropoietin and Iron. In Textbook of Nephro-Endocrinology, 2nd ed.; Singh, A.K., Williams, G.H., Eds.; Academic Press: Cambridge, UK, 2018; pp. 207–215. [Google Scholar]
- Webster, J.; Watson, R.T. Analyzing the past to prepare for the future: Writing a literature review. Mis Q. 2002, 26, xiii–xxiii. [Google Scholar]
Article | n | Fitness | Donated | Stored | Infused | TTE/TT | VO2m/p | RBC | Hb |
---|---|---|---|---|---|---|---|---|---|
Bejder et al. [20] | 9M | ht | 450 mL | CS 4 wk | 136 mL | TT + 4.4% * | p/ | + 3.3% * | + 2.9% * |
CS 4 wk | 369 mL | TT + 5.1% * | p/ | + 9.8% * | + 8.9% * | ||||
Bennett-Guerrero et al. [43] | 4M | t | 900 mL | CS 1 wk | 900 mL | TTE + 8.4% * | m + 8.7% * | ||
4M | t | 900 mL | CS 1 wk | 900 mL | TTE − 2.6% * | m + 1.9% * | |||
Berglund et al. [44] | 8M+4F | t | 3 × 450 mL | CP ~14 wk | n/a | F + 18% * M + 12% * | |||
Berglund & Hemmingson [45] | 6M/F | ht | 1 × 900 mL + 1 × 450 mL | CS 4 wk | 1350 mL | TT + 5.3% * | + * | ||
Berglund et al. [46] | 6M/F | ht | 1 × 900 mL + 1 × 450 mL | CS 4 wk | 1350 mL | TT n/a | + 7.9% * | ||
Brien et al. [47] | 6M | t | 2 × 450 mL | CP | 400 mL | TT + * | |||
Buick et al. [48] | 11M | ht | 1000 mL | CP | 900 mL | TTE + 33% * | m + 5% * | + 8% * | |
Celsing et al. [49] | 9M | t | 5 × 450 mL | CS + CP 1–9 wk | 1800 mL | m/ | |||
Celsing et al. [50] | 8M | t | 8 × 450 mL | 5–7 wk | n/a | m/ | |||
Ekblom et al. [51] | 3M | ut | 3 × 400 mL | 6 wk | n/a | TTE + 23% * | m + 9% * | + 18% * | + 13% * |
4M | ut | 800 mL | 4 wk | n/a | TTE + * | m + * | + 4.9% * | ||
Ekblom et al. [52] | 5M | t | 800 mL | CS | 360 mL | m + 8% * | + 4.9% * | ||
Goforth et al. [53] | 6M | ht | 2 × 450 mL | CP | 330 mL | TT + 2% * | m + 11.9% * | + 10% * | |
Gullbring et al. [54] | 6M | ut | 530–689 mL | CS 1 wk | n/a | PWC + 3.9% * | / | ||
Kanstrup & Ekblom [55] | M | t | 900 mL + 500/750 mL | CS | 500/750 mL | TTE + 24% * | m + 2–11% * | + 4% * | |
Kots et al. [56] | 10M | ht/ut | 500 mL | 3 wk | 500 mL | TTE + 40% * | m/ | + 14.8% * | + 14.3% * |
Lamberti et al. [57] | 24M | t | 450 mL | CS/CP 5 wk | n/a | + * | + * | ||
Malm et al. [58] | 10M | t | 2 × 450 mL | CP 15 wk | n/a | TTE + 15% * | m + 17% * | + * | + * |
30M/F | t | 1 or 2 × 450 mL | CP 2 wk | n/a | / | / | |||
Mørkeberg et al. [16] | 23M | t | 3 × 450 mL | CS 4 wk | n/a | + 3.6%* | |||
CP 10 wk | + 6.5% * | ||||||||
Muza et al. [59]. | 12M | SF | 2 × 450 mL | CP ~12 wk | 600 mL | m + 11% * | + 11% * | + 10% * | |
Pottgiesser et al. [60] | 10M | n/a | 550 mL | CS 7 wk | 280–350 mL | + * | + 5–8% * | ||
Pottgiesser et al. [61] | 11M | n/a | 550 mL/1000 mL | CS 1 d | 330–550 mL | − * | |||
Robertson et al. [62] | 9F | n/a | 2 × 450 mL | CP ~9–17 wk | 475 mL | m + * | + * | + * | |
Robinson et al. [63] | 6M | n/a | 1000–1200 mL | ~2 wk | 1000–1200 mL | TTE + * | m/ | ||
Sallet et al. [64] | 7M | ht | 450 mL | CS ~3 wk | 450 mL | + | / | ||
Sawka et al. [65] | 30M | n/a | 450 mL | CP | 600 mL | m + * | + 10% * | ||
Sawka et al. [66] | 9M | t | 2 × 450 mL | CP 6 wk | 600 mL | m + 11% * | +11% * | + 10% * | |
Spriet et al. [67] | 4M | ht | 1 × 900 mL + 1 × 450 mL | CP ~10 wk | 450 mL | m/ | + * | ||
4M | ht | 900 mL | m + 7.5–10.7% * | + * | |||||
4M | ht | 1350 mL | m + 10–13.3% * | + * | |||||
Thomson et al. [68] | 4M | t | 2 × 500 mL | CP ~12 wk | n/a | TT + 10% * | m + * | + * | |
Thomson et al. [69] | 4M | ut | 2 × 500 mL | CP | n/a | TT + * | m + * | + * | |
Turner et al. [70] | 7M | n/a | 2 × 450 mL | CP | n/a | TT + 5.3% * | m + * | + 3.9% * | |
Williams et al. [71] | 5M | ht | 500 mL | CS 3 wk | 500 mL | TTE/ | |||
5M | ht | 275 mL | TTE/ | ||||||
Williams et al. [72] | 16M | ht | 460 mL | CP 3 wk | 460 mL | TTE/ | / | / | |
Williams et al. [73] | 12M | ht | 2 × 460 mL | CP ~9 wk | 920 mL | TT + * | + * | + * | |
Ziegler et al. [74] | 8M | n/a | 450 mL | ~4 wk | 245 mL | TT + 4.6% * | p + 4.8% * | + * | + * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seeger, B.; Grau, M. Relation between Exercise Performance and Blood Storage Condition and Storage Time in Autologous Blood Doping. Biology 2021, 10, 14. https://doi.org/10.3390/biology10010014
Seeger B, Grau M. Relation between Exercise Performance and Blood Storage Condition and Storage Time in Autologous Blood Doping. Biology. 2021; 10(1):14. https://doi.org/10.3390/biology10010014
Chicago/Turabian StyleSeeger, Benedikt, and Marijke Grau. 2021. "Relation between Exercise Performance and Blood Storage Condition and Storage Time in Autologous Blood Doping" Biology 10, no. 1: 14. https://doi.org/10.3390/biology10010014
APA StyleSeeger, B., & Grau, M. (2021). Relation between Exercise Performance and Blood Storage Condition and Storage Time in Autologous Blood Doping. Biology, 10(1), 14. https://doi.org/10.3390/biology10010014