Omics Strategies in Current Advancements of Infectious Fish Disease Management
Abstract
Simple Summary
Abstract
1. Introduction
2. Fish Pathogens
3. Current Advancements in Infectious Fish Disease Management
3.1. Active and Passive Immunization
Pathogens | Antigen Gene Insert | Host | Route | References |
---|---|---|---|---|
RNA Viruses | ||||
Spring viremia of carp virus (SVCV) | pEGFP-G | Common carp (Cyprinus carpio) | Immersion & intramuscular | [71] |
Viral Hemorrhagic Septicemia virus (VHSV) | pcDNA3-vhsG (DK-3592b, genotype Ia & BC-99-292, genotype IVa) | Pacific Herring (Clupea pallasii) | Intramuscular | [72] |
Infectious hematopoietic necrosis virus (IHNV) | Glycoprotein | Rainbow trout (Oncorhynchus mykiss) | Intramuscular | [73] |
DNA Virus | ||||
Channel catfish virus (CCV) | DNA vector expressing CCV ORF6 | Channel catfish | Intramuscular | [74] |
Iridovirus of Taiwan (TGIV) | TGIV major capsid protein (MCP) | Pearl gentian grouper | Immersion | [75] |
Koi herpesvirus (KHV) | ORF25 (glycosylated protein) | Koi | Intramuscular | [76] |
Bacterial | ||||
Vibrio alginolyticus | Lipopolysaccharides, whole-cell bacterin | Silver sea bream (Sparus sarba) | Intramuscular, immersion & oral | [77] |
Vibrio anguillarum | Outer membrane proteins (OmpK) | Flounder (Paralichthys olivaceus) | Intramuscular | [78] |
Vibrio harveyi | TssJ antigen from T6SS of V. harveyi | Golden pompano | Intramuscular | [79] |
3.2. Immunostimulants
3.3. Other Strategies
4. Multi-Omics Perspective on Infectious Fish Diseases Studies
4.1. Transcriptomics
4.2. Proteomics
4.3. Metabolomics
Fish Species | Pathogen | Organ/Tissue Samples | Method | Reference |
---|---|---|---|---|
Transcriptomics | ||||
Crucian carp (Carassius auratus) | Aeromonas hydrophila (bacteria) | Head kidney | Illumina Hiseq sequencer | [146] |
Tilapia (Oreochromis niloticus) | Streptococcus iniae (bacteria) | Spleen | Illumina HiSeq 2000 instrument | [100] |
Brown-marbled grouper (Epinephelus fuscoguttatus) | Vibrio vulnificus (bacteria) | Gill and whole-body tissue | Illumina HiSeq. 4000 | [103] |
Turbot (Scophthalmus maximus) | Vibrio anguillarum (bacteria) | Intestine | Illumina HiSeq 4000 | [147] |
Orange-spotted grouper (Epinephelus coioides) | Vibrio alginolyticus (bacteria) | Whole body tissue | Illumina HiSeq 2000 | [102] |
Rainbow trout (Oncorhynchus mykiss) | Flavobacterium (bacteria) | Spleen | Illumina TruSeq | [148] |
Soiny mullet (Liza haematocheila) | Streptococcus dysgalactiae (bacteria) | Spleen | Illumina HiSeq 2000 | [149] |
Rainbow trout (Oncorhynchus mykiss) | Ichthyophthirius multifiliis (parasite) | Gill | Illumina HiSeq 2500 | [99] |
Large yellow croaker (Larimichthys crocea) | Cryptocaryan irritans (parasite) | Liver | Illumina HiSeq2000 | [114] |
Orange-spotted grouper (Epinephelus coioides) | Cryptocaryon irritans (parasite) | Skin | Illumina HiSeq 2500 | [150] |
Striped snakehead (Channa striata) | Red-spotted grouper nervous necrosis virus (RGNNV) | Striped snakehead fish cells (SSN-1) | Illumina HiSeq 2000 | [151] |
Atlantic salmon (Salmo salar) | Infectious salmon anemia virus (ISAV) | Spleen | Illumina MiSeq sequencer | [152] |
Grass carp (Ctenopharyngodon idellus) | Grass carp reovirus (GCRV) | Kidney | Illumina NextSeq500 | [98] |
Asian seabass (Lates calcarifer) | Nervous necrosis virus (NNV) | Epithelial cells | Illumina HiSeq™ 2000 | [113] |
Koi (Cyprinus carpio) | Cyprinid herpesvirus 3 (CyHV3) | Spleen | Illumina HiSeq 2500 | [153] |
Pacific cod (Gadus microcephalus) | General/Not specified | Thymus and head kidney | Illumina HiSeq 2000 platform | [101] |
Proteomics | ||||
Brown-marbled grouper (Epinephelus fuscoguttatus) | Vibrio parahaemolyticus (bacteria) | Blood | 2D gel electrophoresis, Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS/MS) analysis. | [16] |
Rainbow trout (Oncorhynchus mykiss) | Yersinia ruckeri (bacteria) | Intestine | Micro Liquid chromatography coupled with electrospray ionization and quadrupole time of flight tandem- mass spectrometry (LC-ESI-qTOF-MS/MS) analysis. | [154] |
Zebrafish (Danio rerio) | Aeromonas hydrophila (bacteria) | Skin | 2D gel electrophoresis, MALDI-TOF-MS analysis, Liquid chromatography–mass spectrometry (LC-MS/MS) analysis. | [125] |
Yellow catfish (Pelteobagrus fulvidraco) | Edwardsiella ictalurid (bacteria) | Skin mucus | LC-MS/MS analysis | [155] |
Common carp (Cyprinus Carpio) | Aeromonas hydrophila (bacteria) | Intestine | LC-MS/MS analysis | [119] |
Pufferfish (Takifugu obscurus) | Aeromonas hydrophila (bacteria) | Spleen | LC-MS/MS analysis | [156] |
Japanese flounder (Paralichthys olivaceus) | Edwardsiella tarda (bacteria) | Liver | isobaric tags for relative and absolute quantification (iTRAQ) analysis, LC-MS/MS analysis. | [118] |
Atlantic salmon (Salmo salar) | Neoparamoeba Perurans (parasite) | Gill | 2D gel electrophoresis, LC-MS/MS analysis | [120] |
Lumpsucker (Cyclopterus lumpus) | General/Not specified | Skin mucus | 2D gel electrophoresis, LC-MS/MS analysis | [157] |
Gilthead seabream (Sparus aurata L.) | General/Not specified | Skin mucus | 2D gel electrophoresis, Peptide mass fingerprinting-mass spectrometry (PMF-MS/MS) analysis, LC-MS/MS analysis | [158] |
Metabolomics | ||||
Atlantic salmon (Salmo salar) | Aeromonas salmonicida (bacteria) | Kidney | Nuclear magnetic resonance (H-NMR) analysis. | [40] |
Brown-marbled grouper (Epinephelus fuscoguttatus) | Vibrio vulnificus (bacteria) | Caudal fin | Fourier-transform infrared spectroscopy (FTIR) analysis. | [4] |
Zebrafish (Danio rerio) | Vibrio alginolyticus (bacteria) | Whole body tissue | Gas chromatography–mass spectrometry (GC-MS) analysis. | [159] |
Brown marble grouper (Epinephelus fuscoguttatus) | Vibrio vulnificus (bacteria) | Muscle tissue | GC-MS analysis | [136,142] |
Tilapia (Oreochromis niloticus) | Streptococcus iniae (bacteria) | Liver | GC-MS analysis | [133] |
Tilapia (Oreochromis niloticus) | Streptococcus iniae (bacteria) | Liver | GC-MS analysis | [160] |
Tilapia (Oreochromis niloticus) | Streptococcus agalactiae (bacteria) | Liver | ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS) analysis. | [161] |
Zebrafish (Danio rerio) | Edwardsiella tarda (bacteria) | Muscle tissue | GC-MS analysis | [162] |
Japanese puffer (Takifugu rubripes) | Cryptocaryon irritans (parasite) | Blood serum | LC-MS analysis | [163] |
Tiger puffer fish (Takifugu rubripes) | Myxosporea (parasite) | Blood serum | GC-MS analysis | [164] |
Mandarin fish (Siniperca chuatsi) | Infectious spleen and kidney necrosis virus (ISKNV) | Chinese perch brain cell line | ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) analysis. | [165] |
Grouper | Red-spotted grouper nervous necrosis virus (RGNNV) | Spleen | LC-MS analysis | [166] |
Crucian carp blood (Carassius auratus gibelio) | Cyprinid herpesvirus 2 | Blood | LC-MS analysis | [167] |
5. Application of Multi-Omics for Identification of Biomarker
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wana, T.G. A Review on the Causes for the Loss of Major Fishes and Prospects for Future Research in Ethiopia. J. Biol. Agric. Healthc. 2016, 6. [Google Scholar]
- Lee, M.-K.; Yoo, S.-H. The role of the capture fisheries and aquaculture sectors in the Korean national economy: An input–output analysis. Mar. Policy 2014, 44, 448–456. [Google Scholar] [CrossRef]
- Cashion, T.; Le Manach, F.; Zeller, D.; Pauly, D. Most fish destined for fishmeal production are food-grade fish. Fish Fish. 2017, 18, 837–844. [Google Scholar] [CrossRef]
- Nurdalila, A.; Bunawan, H.; Kumar, S.; Rodrigues, K.; Baharum, S. Homogeneous nature of Malaysian marine fish Epinephelus fuscoguttatus (Perciformes; Serranidae): Evidence based on molecular markers, morphology and fourier transform infrared analysis. Int. J. Mol. Sci. 2015, 16, 14884–14900. [Google Scholar] [CrossRef] [PubMed]
- Rodger, H.D. Fish Disease Causing Economic Impact in Global Aquaculture. In Fish Vaccines, 1st ed.; Adams, A., Ed.; Springer: Basel, Switzerland, 2016; pp. 1–34. [Google Scholar]
- Castro, R.; Jouneau, L.; Tacchi, L.; Macqueen, D.J.; Alzaid, A.; Secombes, C.J.; Martin, S.A.M.; Boudinot, P. Disparate developmental patterns of immune responses to bacterial and viral infections in fish. Sci. Rep. 2015, 5, 15458. [Google Scholar] [CrossRef]
- Jeffries, K.M.; Hinch, S.G.; Sierocinski, T.; Pavlidis, P.; Miller, K.M. Transcriptomic responses to high water temperature in two species of Pacific salmon. Evol. Appl. 2014, 7, 286–300. [Google Scholar] [CrossRef]
- Martin, S.A.M.; Król, E. Nutrigenomics and immune function in fish: New insights from omics technologies. Dev. Comp. Immunol. 2017, 75, 86–98. [Google Scholar] [CrossRef]
- Jennings, S.; Stentiford, G.D.; Leocadio, A.M.; Jeffery, K.R.; Metcalfe, J.D.; Katsiadaki, I.; Auchterlonie, N.A.; Mangi, S.C.; Pinnegar, J.K.; Ellis, T.; et al. Aquatic food security: Insights into challenges and solutions from an analysis of interactions between fisheries, aquaculture, food safety, human health, fish and human welfare, economy and environment. Fish Fish. 2016, 17, 893–938. [Google Scholar] [CrossRef]
- Shapawi, R.; Ebi, I.; Yong, A.S.K.; Ng, W.K. Optimizing the growth performance of brown-marbled grouper, Epinephelus fuscoguttatus (Forskal), by varying the proportion of dietary protein and lipid levels. Anim. Feed Sci. Technol. 2014, 191, 98–105. [Google Scholar] [CrossRef]
- McLoughlin, M.F.; Graham, D.A. Alphavirus infections in salmonids -- a review. J. Fish Dis. 2007, 30, 511–531. [Google Scholar] [CrossRef] [PubMed]
- Thuy, N.T.T.; Nguyen, D.H.; Wergeland, H.I. Specific humoral immune response and protection against Vibrio parahaemolyticus in orange-spotted grouper Epinephelus coioides. Int. J. Aquat. Sci. 2013, 4, 24–35. [Google Scholar]
- Biller-Takahashi, J.D.; Urbinati, E.C. Fish Immunology. The modification and manipulation of the innate immune system: Brazilian studies. An. Acad. Bras. Cienc. 2014, 86, 1484–1506. [Google Scholar] [CrossRef] [PubMed]
- Veeramohan, R.; Azizan, K.A.; Aizat, W.M.; Goh, H.-H.; Mansor, S.M.; Yusof, N.S.M.; Baharum, S.N.; Ng, C.L. Metabolomics data of Mitragyna speciosa leaf using LC-ESI-TOF-MS. Data Br. 2018, 18. [Google Scholar] [CrossRef]
- Kordon, A.O.; Karsi, A.; Pinchuk, L. Innate immune responses in fish: Antigen presenting cells and professional phagocytes. Turk. J. Fish. Aquat. Sci. 2018, 18, 1123–1139. [Google Scholar] [CrossRef]
- Low, C.-F.; Shamsudin, M.N.; Chee, H.-Y.; Aliyu-Paiko, M.; Idrus, E.S. Putative apolipoprotein A-I, natural killer cell enhancement factor and lysozyme g are involved in the early immune response of brown-marbled grouper, Epinephelus fuscoguttatus, Forskal, to Vibrio alginolyticus. J. Fish Dis. 2014, 37, 693–701. [Google Scholar] [CrossRef]
- Smith, N.C.; Rise, M.L.; Christian, S.L. A comparison of the innate and adaptive immune systems in cartilaginous fish, ray-finned fish, and lobe-finned fish. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef]
- Semple, S.L.; Dixon, B. Salmonid antibacterial immunity: An aquaculture perspective. Biology 2020, 9, 331. [Google Scholar] [CrossRef]
- Austin, B.; Austin, D.A. Bacterial Fish Pathogens: Disease of Farmed and Wild Fish; Springer Netherlands: Dordrecht, The Netherlands, 2012; ISBN 978-94-007-4883-5. [Google Scholar]
- Kalia, V.C.; Kumar, P.; Kumar, R.; Mishra, A.; Koul, S. Genome wide analysis for rapid identification of Vibrio species. Indian J. Microbiol. 2015, 55, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Toranzo, A.E.; Magariños, B.; Avendano–Herrera, R. Vibriosis: Vibrio anguillarum, V. ordalii and Aliivibrio salmonicida. In Fish Viruses and Bacteria: Pathobiology and Protection; PTK, W., Cipriono, R.C., Eds.; CAB International: Wallingford, UK, 2017. [Google Scholar]
- Mohamad, N.; Amal, M.N.A.; Yasin, I.S.M.; Zamri Saad, M.; Nasruddin, N.S.; Al-saari, N.; Mino, S.; Sawabe, T. Vibriosis in cultured marine fishes: A review. Aquaculture 2019, 512, 734289. [Google Scholar] [CrossRef]
- Rameshkumar, P.; Nazar, A.K.A.; Pradeep, M.A.; Kalidas, C.; Jayakumar, R.; Tamilmani, G.; Sakthivel, M.; Samal, A.K.; Sirajudeen, S.; Venkatesan, V.; et al. Isolation and characterization of pathogenic Vibrio alginolyticus from sea cage cultured cobia (Rachycentron canadum (Linnaeus 1766)) in India. Lett. Appl. Microbiol. 2017, 65, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.M.; Dong, C.F.; Weng, S.P.; He, J.G. The high prevalence of pathogenic Vibrio harveyi with multiple antibiotic resistance in scale drop and muscle necrosis disease of the hybrid grouper, Epinephelus fuscoguttatus (♀) × E. lanceolatus (♂), in China. J. Fish Dis. 2017, 19, 191–198. [Google Scholar] [CrossRef]
- Low, C.-F.; Mariana, N.S.; Maha, A.; Chee, H.-Y.; Fatimah, M.Y. Identification of immune response-related genes and signalling pathways in spleen of Vibrio parahaemolyticus -infected Epinephelus fuscoguttatus (Forskal) by next-generation sequencing. J. Fish Dis. 2016, 39, 389–394. [Google Scholar] [CrossRef]
- Dong, H.T.; Taengphu, S.; Sangsuriya, P.; Charoensapsri, W.; Phiwsaiya, K.; Sornwatana, T.; Khunrae, P.; Rattanarojpong, T.; Senapin, S. Recovery of Vibrio harveyi from scale drop and muscle necrosis disease in farmed barramundi, Lates calcarifer in Vietnam. Aquaculture 2017, 473, 89–96. [Google Scholar] [CrossRef]
- Albert, V.; Ransangan, J. Effect of water temperature on susceptibility of culture marine fish species to vibriosis. Int. J. Res. Pure Appl. Microbiol. 2013, 3, 48–52. [Google Scholar]
- Qin, Y.X.; Wang, J.; Su, Y.Q.; Wang, D.X.; Chen, X.Z. Studies on the pathogenic bacterium of ulcer disease in Epinephelus awoara. Acta Oceanol. Sin. 2006, 25, 154–159. [Google Scholar]
- Zorrilla, I.; Arijo, S.; Chabrillon, M.; Diaz, P.; Martinez-Manzanares, E.; Balebona, M.C.; Morinigo, M.A. Vibrio species isolated from diseased farmed sole, Solea senegalensis (Kaup), and evaluation of the potential virulence role of their extracellular products. J. Fish Dis. 2003, 26, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Labella, A.; Vida, M.; Alonso, M.C.; Infante, C.; Cardenas, S.; Lopez–Romalde, S.; Manchado, M.; Borrego, J.J. First isolation of Photobacterium damselae ssp. damselae from cultured redbanded seabream, Pagrus auriga Valenciennes, in Spain. J. Fish Dis. 2006, 2, 175–179. [Google Scholar] [CrossRef]
- Haenen, O.L.M.; Fouz Rodríguez, B.; Amaro González, C.; Isern, M.M.; Mikkelsen, H.; Zrnčić, S.; Travers, M.A.; Renault, T.; Hellstrom, A.; Dalsgaard, I. Vibriosis in aquaculture. 16th EAFP Conference, Tampere, Finland, 4th September 2013. B. Eur. Assoc. Fish Pat. 2014, 34, 138–147. [Google Scholar]
- Ina-Salwany, M.Y.; Al-saari, N.; Mohamad, A.; Mursidi, F.; Mohd-Aris, A.; Amal, M.N.A.; Kasai, H.; Mino, S.; Sawabe, T.; Zamri-Saad, M. Vibriosis in Fish: A review on disease development and prevention. J. Aquat. Anim. Health 2019, 31, 3–22. [Google Scholar] [CrossRef]
- Bruno, D.W. Furunculosis, Revised ed.; Leaflet No, 5; ICES ID Leaflets for Diseases and Parasites of Fish and Shellfish; International Council for the Exploration of the Sea: Copenhagen, Denmark, 2015. [Google Scholar]
- Austin, B.; Austin, D.A. Aeromonadaceae Representative (Aeromonas salmonicida). In Bacterial Fish Pathogens; Springer International Publishing: Cham, Switzerland, 2016; pp. 215–321. [Google Scholar]
- Braden, L.M.; Whyte, S.K.; Brown, A.B.J.; Iderstine, C.V.; Letendre, C.; Groman, D.; Lewis, J.; Purcell, S.L.; Hori, T.; Fast, M.D. Vaccine-induced protection against furunculosis involves pre-emptive priming of humoral immunity in Arctic charr. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef]
- De Ocenda, V.-R.; Almeida-Prieto, S.; Luzardo-Álvarez, A.; Barja, J.L.; Otero-Espinar, F.J.; Blanco-Méndez, J. Pharmacokinetic model of florfenicol in turbot (Scophthalmus maximus): Establishment of optimal dosage and administration in medicated feed. J. Fish Dis. 2017, 40, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Devadason, C. Lysozyme level during acute infection of bacterium Aeromonas salmonicida subsp Salmonicida in halibut and Atlantic salmon. J. Exp. Biol. Agric. Sci. 2018, 6, 236–242. [Google Scholar] [CrossRef]
- Du, Y.; Yi, M.; Xiao, P.; Meng, L.; Li, X.; Sun, G.; Liu, Y. The impact of Aeromonas salmonicida infection on innate immune parameters of Atlantic salmon (Salmo salar L). Fish Shellfish Immunol. 2015, 44, 307–315. [Google Scholar] [CrossRef]
- Marana, M.H.; von Jørgensen, L.G.; Skov, J.; Chettri, J.K.; Holm Mattsson, A.; Dalsgaard, I.; Kania, P.W.; Buchmann, K. Subunit vaccine candidates against Aeromonas salmonicida in rainbow trout Oncorhynchus mykiss. PLoS ONE 2017, 12, e0171944. [Google Scholar] [CrossRef]
- Liu, P.F.; Du, Y.; Meng, L.; Li, X.; Liu, Y. Metabolic profiling in kidneys of Atlantic salmon infected with Aeromonas salmonicida based on 1 H NMR. Fish Shellfish Immunol. 2016, 58, 292–301. [Google Scholar] [CrossRef]
- Pham, T.H.; Cheng, T.; Wang, P.; Chen, S. Genotypic diversity, and molecular and pathogenic characterization of Photobacterium damselae subsp. piscicida isolated from different fish species in Taiwan. J. Fish Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Romalde, J.L. Photobacterium damselae subsp. piscicida: An integrated view of a bacterial fish pathogen. Int. Microbiol. 2002, 5, 3–9. [Google Scholar] [CrossRef]
- Belinda, V.; José, R.V.; Jimena, B.; Begona, A.; Maria, L.D.; Arbelo, F.A.; Kumar, D. Effect of different culture conditions on the (twitching) displacement of Photobacterium Damselae Subsp. Piscicida. J. Bacteriol. Mycol. Open Access. 2017, 4, 134–141. [Google Scholar] [CrossRef][Green Version]
- He, T.; Jin, M.; Zhang, X. Marine Viruses. In Virus Infection and Tumorigenesis; Springer Singapore: Singapore, 2019; pp. 25–62. [Google Scholar]
- Volpe, E.; Gustinelli, A.; Caffara, M.; Errani, F.; Quaglio, F.; Fioravanti, M.L.; Ciulli, S. Viral nervous necrosis outbreaks caused by the RGNNV/SJNNV reassortant betanodavirus in gilthead sea bream (Sparus aurata) and European sea bass (Dicentrarchus labrax). Aquaculture 2020, 523, 735155. [Google Scholar] [CrossRef]
- Ni, S.; Yu, Y.; Wei, J.; Zhou, L.; Wei, S.; Yan, Y.; Huang, X.; Huang, Y.; Qin, Q. MicroRNA-146a promotes red spotted grouper nervous necrosis virus (RGNNV) replication by targeting TRAF6 in orange spotted grouper, Epinephelus Coioides. Fish Shellfish Immunol. 2018, 72, 9–13. [Google Scholar] [CrossRef]
- Wen, C.M. Characterization and viral susceptibility of a brain cell line from brown-marbled grouper Epinephelus fuscoguttatus (Forsskål) with persistent betanodavirus infection. J. Fish Dis. 2016, 39, 1335–1346. [Google Scholar] [CrossRef]
- Zorriehzahra, M.J. Viral Nervous Necrosis Disease. In Emerging and Reemerging Viral Pathogens; Academic Press: London, UK, 2020; pp. 673–703. [Google Scholar]
- Low, C.-F.; Syarul Nataqain, B.; Chee, H.-Y.; Rozaini, M.Z.H.; Najiah, M. Betanodavirus: Dissection of the viral life cycle. J. Fish Dis. 2017, 40, 1489–1496. [Google Scholar] [CrossRef]
- Nishi, S.; Yamashita, H.; Kawato, Y.; Nakai, T. Cell culture isolation of piscine nodavirus (betanodavirus) in fish-rearing seawater. Appl. Environ. Microbiol. 2016, 82, 2537–2544. [Google Scholar] [CrossRef] [PubMed]
- Bandín, I.; Souto, S. Betanodavirus and VER disease: A 30-year research review. Pathogens 2020, 9, 106. [Google Scholar] [CrossRef]
- Valverde, E.J.; Cano, I.; Castro, D.; Paley, R.K.; Borrego, J.J. Rapid and sensitive detection of lymphocystis disease virus genotype VII by loop-mediated isothermal amplification. Food Environ. Virol. 2017, 9, 114–122. [Google Scholar] [CrossRef]
- Nagasawa, K.; Cruz-Lacierda, E.R. (Eds.) Diseases of Cultured Groupers; Southeast Asian Fisheries Development Center, Aquaculture Department: Illoilo, Philippines, 2004; ISBN 971-8511-70-9. [Google Scholar]
- Colorni, A.; Diamant, A. Infectious diseases of warmwater fish in marine and brackish waters. In Diseases and Disorders of Finfish in Cage Culture; CABI: Wallingford, UK, 2014; pp. 155–192. [Google Scholar]
- Borrego, J.J.; Valverde, E.J.; Labella, A.M.; Castro, D. Lymphocystis disease virus: Its importance in aquaculture. Rev. Aquac. 2017, 9, 179–193. [Google Scholar] [CrossRef]
- Xu, G.; Sheng, X.; Xing, J.; Zhan, W. Effect of temperature on immune response of Japanese flounder (Paralichthys olivaceus) to inactivated lymphocystis disease virus (LCDV). Fish Shellfish Immunol. 2011, 30, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Rameshkumar, G.; Ravichandran, S. Problems caused by isopod parasites in commercial fishes. J. Parasit. Dis. 2014, 38, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Byadgi, O.; Beraldo, P.; Volpatti, D.; Massimo, M.; Bulfon, C.; Galeotti, M. Expression of infection-related immune response in European sea bass (Dicentrarchus labrax) during a natural outbreak from a unique dinoflagellate Amyloodinium ocellatum. Fish Shellfish Immunol. 2019, 84, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Lokanathan, Y.; Mohd-Adnan, A.; Kua, B.-C.; Nathan, S. Cryptocaryon irritans recombinant proteins as potential antigens for sero-surveillance of cryptocaryonosis. J. Fish Dis. 2016, 39, 1069–1083. [Google Scholar] [CrossRef]
- Qiao, Y.; Mao, Y.; Wang, J.; Chen, R.; Libing, Z.; Su, Y.-Q.; Chen, J.; Zheng, W.-Q. Analysis of liver and gill miRNAs of Larimichthys crocea against Cryptocryon irritans challenge. Fish Shellfish Immunol. 2016, 59, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.G.M.; Aboyadak, I.M.; El-Sayed, H.S. Chemotherapeutic control of Gram-positive infection in white sea bream (Diplodus sargus, Linnaeus 1758) broodstock. Vet. World 2019, 12, 316–324. [Google Scholar] [CrossRef]
- Miranda, C.D.; Godoy, F.A.; Lee, M.R. Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Cijiang He, J.; Chuang, P.Y.; Ma’Ayan, A.; Iyengar, R. Systems biology of kidney diseases. Kidney Int. 2012, 81, 22–39. [Google Scholar] [CrossRef]
- Samad, A.P.A.; Santoso, U.; Lee, M.-C.; Nan, F.-H. Effects of dietary katuk (Sauropus androgynus L. Merr.) on growth, non-specific immune and diseases resistance against Vibrio alginolyticus infection in grouper Epinephelus coioides. Fish Shellfish Immunol. 2014, 36, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.; Strepparava, N.; Wahli, T.; Segner, H. Exploring the immune response, tolerance and resistance in proliferative kidney disease of salmonids. Dev. Comp. Immunol. 2019, 90, 165–175. [Google Scholar] [CrossRef]
- Rajan, B.; Løkka, G.; Koppang, E.O.; Austbø, L. Passive immunization of farmed fish. J. Immunol. 2017, 198, 4195–4202. [Google Scholar] [CrossRef]
- Mohd-Aris, A.; Muhamad-Sofie, M.H.N.; Zamri-Saad, M.; Daud, H.M.; Ina-Salwany, M.Y. Live vaccines against bacterial fish diseases: A review. Vet. World 2019, 12, 1806–1815. [Google Scholar] [CrossRef]
- Bulfon, C.; Volpatti, D.; Galeotti, M. Current research on the use of plant-derived products in farmed fish. Aquac. Res. 2015, 46, 513–551. [Google Scholar] [CrossRef]
- Mercer, K.L. Antibiotic resistance. J. AWWA 2020, 112, 1. [Google Scholar] [CrossRef]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, Z.; Zha, J.-W.; Wang, G.-X.; Zhu, B. Single-walled carbon nanotubes as delivery vehicles enhance the immunoprotective effect of a DNA vaccine against spring viremia of carp virus in common carp. Fish Shellfish Immunol. 2017, 71, 191–201. [Google Scholar] [CrossRef]
- Hart, L.M.; Lorenzen, N.; Einer-Jensen, K.; Purcell, M.K.; Hershberger, P.K. Influence of temperature on the efficacy of homologous and heterologous dna vaccines against viral hemorrhagic septicemia in Pacific herring. J. Aquat. Anim. Health 2017, 29, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.R.; Rutan, B.J.; Wargo, A.R. Impact of vaccination and pathogen exposure dosage on shedding kinetics of infectious hematopoietic necrosis virus (IHNV) in rainbow trout. J. Aquat. Anim. Health 2020, 32, 95–108. [Google Scholar] [CrossRef]
- Taylor, E.B.; Chinchar, V.G.; Quiniou, S.M.A.; Wilson, M.; Bengtén, E. Cloning and characterization of antiviral cytotoxic T lymphocytes in channel catfish, Ictalurus punctatus. Virology 2020, 540, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.-Y.; Wang, E.-L.; Qu, X.-Y.; Yang, K.-C.; Zhang, Z.-Y.; Liu, J.-Y.; Zhang, C.; Zhu, B.; Wang, G.-X. Single-walled carbon nanotubes enhance the immune protective effect of a bath subunit vaccine for pearl gentian grouper against Iridovirus of Taiwan. Fish Shellfish Immunol. 2020, 106, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.-X.; Wang, H.; Li, X.-W.; Zhu, X.; Lu, W.-L.; Zhang, D.-M. Construction of KHV-CJ ORF25 DNA vaccine and immune challenge test. J. Fish Dis. 2014, 37, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, S.; Woo, N. Vaccination of Silver Sea Bream (Sparus sarba) against Vibrio alginolyticus: Protective evaluation of different vaccinating modalities. Int. J. Mol. Sci. 2015, 17, 40. [Google Scholar] [CrossRef]
- Xu, H.; Xing, J.; Tang, X.; Sheng, X.; Zhan, W. Intramuscular administration of a DNA vaccine encoding OmpK antigen induces humoral and cellular immune responses in flounder (Paralichthys olivaceus) and improves protection against Vibrio Anguillarum. Fish Shellfish Immunol. 2019, 86, 618–626. [Google Scholar] [CrossRef]
- Sun, Y.; Ding, S.; He, M.; Liu, A.; Long, H.; Guo, W.; Cao, Z.; Xie, Z.; Zhou, Y. Construction and analysis of the immune effect of Vibrio harveyi subunit vaccine and DNA vaccine encoding TssJ antigen. Fish Shellfish Immunol. 2020, 98, 45–51. [Google Scholar] [CrossRef]
- Sherif, A.H.; Mahfouz, M.E. Immune status of Oreochromis niloticus experimentally infected with Aeromonas hydrophila following feeding with 1, 3 β-glucan and levamisole immunostimulants. Aquaculture 2019, 509, 40–46. [Google Scholar] [CrossRef]
- Mehana, E.; Rahmani, A.; Aly, S. Immunostimulants and fish culture: An overview. Annu. Res. Rev. Biol. 2015, 5, 477–489. [Google Scholar] [CrossRef]
- Barman, D.; Nen, P. Immunostimulants for aquaculture health management. J. Mar. Sci. Res. Dev. 2013, 03. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S.; Esteban, M.Á. Beneficial roles of feed additives as immunostimulants in aquaculture: A review. Rev. Aquac. 2018, 10, 950–974. [Google Scholar] [CrossRef]
- Cheng, S.S.; Senoo, S.; Siddiquee, S.; Rodrigues, K.F. Genetic variation in the mitochondrial genome of the giant grouper Epinephelus lanceolatus (Bloch, 1790) and its application for the identification of broodstock. Aquac. Rep. 2015, 2, 139–143. [Google Scholar] [CrossRef][Green Version]
- Zhu, L.; Nie, L.; Zhu, G.; Xiang, L.; Shao, J. Advances in research of fish immune-relevant genes: A comparative overview of innate and adaptive immunity in teleosts. Dev. Comp. Immunol. 2013, 39, 39–62. [Google Scholar] [CrossRef] [PubMed]
- Parvez, M.M.; Bhuyain, M.A.B.; Shahabuddin, A.M.; Farque, A.R.; Shine, A.S. Environmentally sustainable control measure of argulus in freshwater ponds in Bangladesh. Int. J. Sustain. Agric. Technol. 2013, 9, 64–70. [Google Scholar]
- Dawood, M.A.O.; Koshio, S.; Abdel-Daim, M.M.; Van Doan, H. Probiotic application for sustainable aquaculture. Rev. Aquac. 2019, 11, 907–924. [Google Scholar] [CrossRef]
- Fečkaninová, A.; Koščová, J.; Mudroňová, D.; Popelka, P.; Toropilová, J. The use of probiotic bacteria against Aeromonas infections in salmonid aquaculture. Aquaculture 2017, 469, 1–8. [Google Scholar] [CrossRef]
- George Kerry, R.; Patra, J.K.; Gouda, S.; Park, Y.; Shin, H.-S.; Das, G. Benefaction of probiotics for human health: A review. J. Food Drug Anal. 2018, 26, 927–939. [Google Scholar] [CrossRef]
- Gupta, A.; Sharma, N. Characterization of potential probiotic lactic acid bacteria- Pediococcus acidilactici Ch-2 isolated from Chuli- a traditional apricot product of Himalayan Region for the production of novel bioactive compounds with special therapeutic properties. J. Food Microbiol. Saf. Hyg. 2017, 02. [Google Scholar] [CrossRef]
- Lee, S. Systems Biology - A pivotal research methodology for understanding the mechanisms of traditional medicine. J. Pharmacopunct. 2015, 18, 11–18. [Google Scholar] [CrossRef]
- Natnan, M.E.; Low, C.-F.; Chong, C.-M.; Bunawan, H.; Baharum, S.N. Integration of omics tools for understanding the fish immune response due to microbial challenge. Front. Mar. Sci. 2021, 8, 668771. [Google Scholar] [CrossRef]
- Bersanelli, M.; Mosca, E.; Remondini, D.; Giampieri, E.; Sala, C.; Castellani, G.; Milanesi, L. Methods for the integration of multi-omics data: Mathematical aspects. BMC Bioinform. 2016, 17, S15. [Google Scholar] [CrossRef]
- Del Boccio, P.; Rossi, C.; di Ioia, M.; Cicalini, I.; Sacchetta, P.; Pieragostino, D. Integration of metabolomics and proteomics in multiple sclerosis: From biomarkers discovery to personalized medicine. PROTEOMICS - Clin. Appl. 2016, 10, 470–484. [Google Scholar] [CrossRef] [PubMed]
- Shivam, S.; El-Matbouli, M.; Kumar, G. Development of Fish Parasite Vaccines in the OMICs Era: Progress and Opportunities. Vaccines 2021, 9, 179. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Chen, L.; Hoare, R.; Huang, Y.; ZaoheWu; Jian, J. Identification of DLD, by immunoproteomic analysis and evaluation as a potential vaccine antigen against three Vibrio species in Epinephelus coioides. Vaccine 2016, 34, 1225–1231. [Google Scholar] [CrossRef]
- Du, C.; Yang, M.; Li, M.-Y.; Yang, J.; Peng, B.; Li, H.; Peng, X. Metabolic mechanism for l-leucine-induced metabolome to eliminate Streptococcus iniae. J. Proteome Res. 2017, 16, 1880–1889. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; He, L.; Luo, L.; Huang, R.; Liao, L.; Li, Y.; Zhu, Z.; Wang, Y. Transcriptomics sequencing provides insights into understanding the mechanism of grass carp reovirus infection. Int. J. Mol. Sci. 2018, 19, 488. [Google Scholar] [CrossRef]
- Syahputra, K.; Kania, P.W.; Al-Jubury, A.; Jafaar, R.M.; Dirks, R.P.; Buchmann, K. Transcriptomic analysis of immunity in rainbow trout (Oncorhynchus mykiss) gills infected by Ichthyophthirius multifiliis. Fish Shellfish Immunol. 2019, 86, 486–496. [Google Scholar] [CrossRef]
- Zhu, J.; Li, C.; Ao, Q.; Tan, Y.; Luo, Y.; Guo, Y.; Lan, G.; Jiang, H.; Gan, X. Trancriptomic profiling revealed the signatures of acute immune response in tilapia (Oreochromis niloticus) following Streptococcus iniae challenge. Fish Shellfish Immunol. 2015, 46, 346–353. [Google Scholar] [CrossRef]
- Mao, M.G.; Li, X.; Perálvarez-Marín, A.; Jiang, J.L.; Jiang, Z.Q.; Wen, S.H.; Lü, H.Q. Transcriptomic analysis and biomarkers (Rag1 and Igμ) for probing the immune system development in Pacific cod, Gadus macrocephalus. Fish Shellfish Immunol. 2015, 44, 622–632. [Google Scholar] [CrossRef]
- Wang, Y.-D.; Huang, S.-J.; Chou, H.-N.; Liao, W.-L.; Gong, H.-Y.; Chen, J.-Y. Transcriptome analysis of the effect of Vibrio alginolyticus infection on the innate immunity-related complement pathway in Epinephelus coioides. BMC Genom. 2014, 15, 1102. [Google Scholar] [CrossRef]
- Jazamuddin, F.M.; Aizat, W.M.; Goh, H.-H.; Low, C.-F.; Baharum, S.N. Transcriptome data of Epinephelus fuscoguttatus infected by Vibrio vulnificus. Data Br. 2018, 16, 466–469. [Google Scholar] [CrossRef]
- Maekawa, S.; Byadgi, O.; Chen, Y.-C.; Aoki, T.; Takeyama, H.; Yoshida, T.; Hikima, J.-I.; Sakai, M.; Wang, P.-C.; Chen, S.-C. Transcriptome analysis of immune response against Vibrio harveyi infection in orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol. 2017, 70, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Asmamaw, B. Hepcidin and Its Roles in Fishes. J. Zool. Stud. 2016, 3, 1–10. [Google Scholar]
- Brinchmann, M.; Patel, D.; Pinto, N.; Iversen, M. Functional aspects of fish mucosal lectins—interaction with non-self. Molecules 2018, 23, 1119. [Google Scholar] [CrossRef] [PubMed]
- Lino, M.A.; Bezerra, R.F.; da Silva, C.D.C.; Carvalho, E.V.M.M.; Coelho, L.C.B.B. Fish Lectins: A Brief Review, Advances in Zoology Research; Nova Science Publishers Inc.: New York, NY, USA, 2013; Volume 5, pp. 95–114. [Google Scholar]
- Sánchez-Salgado, J.L.; Pereyra, M.A.; Agundis, C.; Vivanco-Rojas, O.; Sierra-Castillo, C.; Alpuche-Osorno, J.J.; Zenteno, E. Participation of lectins in crustacean immune system. Aquac. Res. 2017, 48, 4001–4011. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, X.; Yang, R.; Hu, J.; Zhou, S.; Yang, Q. Identification and characterization of interferon regulatory factor 1 from Lateolabrax japonicus involved in antiviral immune response against grouper nervous necrosis virus infection. Fish Shellfish Immunol. 2020, 97, 403–410. [Google Scholar] [CrossRef]
- Varela, M.; Figueras, A.; Novoa, B. Modelling viral infections using zebrafish: Innate immune response and antiviral research. Antivir. Res. 2017, 139, 59–68. [Google Scholar] [CrossRef]
- Wang, S.; Cao, Y.; Wang, S.; Cai, J.; Zhang, Z. DEHP induces immunosuppression through disturbing inflammatory factors and CYPs system homeostasis in common carp neutrophils. Fish Shellfish Immunol. 2020, 96, 26–31. [Google Scholar] [CrossRef]
- Wu, C.; Shan, J.; Feng, J.; Wang, J.; Qin, C.; Nie, G.; Ding, C. Effects of dietary Radix Rehmanniae Preparata polysaccharides on the growth performance, immune response and disease resistance of Luciobarbus capito. Fish Shellfish Immunol. 2019, 89, 641–646. [Google Scholar] [CrossRef]
- Liu, P.; Wang, L.; Kwang, J.; Yue, G.H.; Wong, S.M. Transcriptome analysis of genes responding to NNV infection in Asian seabass epithelial cells. Fish Shellfish Immunol. 2016, 54, 342–352. [Google Scholar] [CrossRef]
- Wang, P.; Wang, J.; Su, Y.Q.; Mao, Y.; Zhang, J.S.; Wu, C.W.; Ke, Q.Z.; Han, K.H.; Zheng, W.Q.; Xu, N. Di Transcriptome analysis of the Larimichthys crocea liver in response to Cryptocaryon irritans. Fish Shellfish Immunol. 2016, 48, 1–11. [Google Scholar] [CrossRef]
- Janssens, R.; Struyf, S.; Proost, P. The unique structural and functional features of CXCL12. Cell. Mol. Immunol. 2018, 15, 299–311. [Google Scholar] [CrossRef]
- Chen, K.; Bao, Z.; Tang, P.; Gong, W.; Yoshimura, T.; Wang, J.M. Chemokines in homeostasis and diseases. Cell. Mol. Immunol. 2018, 15, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Sokol, C.L.; Luster, A.D. The chemokine system in innate immunity. Cold Spring Harb. Perspect. Biol. 2015, 7, a016303. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shao, C.; Xu, W.; Zhou, Q.; Wang, N.; Chen, S. Proteome profiling reveals immune responses in Japanese flounder (Paralichthys olivaceus) infected with Edwardsiella tarda by iTRAQ analysis. Fish. Shellfish Immunol. 2017, 66, 325–333. [Google Scholar] [CrossRef]
- Di, G.; Li, H.; Zhang, C.; Zhao, Y.; Zhou, C.; Naeem, S.; Li, L.; Kong, X. Label-free proteomic analysis of intestinal mucosa proteins in common carp ( Cyprinus carpio ) infected with Aeromonas hydrophila. Fish. Shellfish Immunol. 2017, 66, 11–25. [Google Scholar] [CrossRef]
- Marcos-López, M.; Rodger, H.D.; O’Connor, I.; Braceland, M.; Burchmore, R.J.S.; Eckersall, P.D.; MacCarthy, E. A proteomic approach to assess the host response in gills of farmed Atlantic salmon Salmo salar L. affected by amoebic gill disease. Aquaculture 2017, 470, 1–10. [Google Scholar] [CrossRef]
- Wu, S.; Yu, L.; Fu, X.; Yan, X.; Lin, Q.; Liu, L.; Liang, H.; Li, N. iTRAQ-based proteomic profile analysis of ISKNV-infected CPB cells with emphasizing on glucose metabolism, apoptosis and autophagy pathways. Fish. Shellfish Immunol. 2018, 79, 102–111. [Google Scholar] [CrossRef]
- Le, Y.; Jia, P.; Jin, Y.; Liu, W.; Jia, K.; Yi, M. The antiviral role of heat shock protein 27 against red spotted grouper nervous necrosis virus infection in sea perch. Fish. Shellfish Immunol. 2017, 70, 185–194. [Google Scholar] [CrossRef]
- Das, S.; Mohapatra, A.; Sahoo, P.K. Expression analysis of heat shock protein genes during Aeromonas hydrophila infection in rohu, Labeo rohita, with special reference to molecular characterization of Grp78. Cell Stress Chaperones 2015, 20, 73–84. [Google Scholar] [CrossRef]
- Zhang, W.; Jia, K.; Jia, P.; Xiang, Y.; Lu, X.; Liu, W.; Yi, M. Marine medaka heat shock protein 90ab1 is a receptor for red-spotted grouper nervous necrosis virus and promotes virus internalization through clathrin-mediated endocytosis. PLOS Pathog. 2020, 16, e1008668. [Google Scholar] [CrossRef] [PubMed]
- Lü, A.; Hu, X.; Wang, Y.; Ming, Q.; Zhu, A.; Shen, L.; Feng, Z. Proteomic analysis of differential protein expression in the skin of zebrafish [Danio rerio (Hamilton, 1822)] infected with Aeromonas hydrophila. J. Appl. Ichthyol. 2014, 30, 28–34. [Google Scholar] [CrossRef]
- Anes, E. Acting on Actin During Bacterial Infection. In Cytoskeleton - Structure, Dynamics, Function and Disease; InTech: London, UK, 2017. [Google Scholar]
- Mao, Y.; Finnemann, S.C. Regulation of phagocytosis by Rho GTPases. Small GTPases 2015, 6, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Uribe-Querol, E.; Rosales, C. Control of phagocytosis by microbial pathogens. Front. Immunol. 2017, 8. [Google Scholar] [CrossRef]
- Batters, C.; Veigel, C.; Homsher, E.; Sellers, J.R. To understand muscle you must take it apart. Front. Physiol. 2014, 5. [Google Scholar] [CrossRef]
- Brito, C.; Sousa, S. Non-muscle myosin 2A (NM2A): Structure, regulation and function. Cells 2020, 9, 1590. [Google Scholar] [CrossRef]
- Habte-Tsion, H.-M.; Ren, M.; Liu, B.; Ge, X.; Xie, J.; Chen, R. Threonine modulates immune response, antioxidant status and gene expressions of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala). Fish. Shellfish Immunol. 2016, 51, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Rajan, B.; Lokesh, J.; Kiron, V.; Brinchmann, M.F. Differentially expressed proteins in the skin mucus of Atlantic cod (Gadus morhua) upon natural infection with Vibrio Anguillarum. BMC Vet. Res. 2013, 9, 103. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Ma, Y.; Li, H.; Peng, X. N-acetylglucosamine enhances survival ability of tilapias infected by Streptococcus iniae. Fish. Shellfish Immunol. 2014, 40, 524–530. [Google Scholar] [CrossRef]
- Padra, J.T.; Sundh, H.; Sundell, K.; Venkatakrishnan, V.; Jin, C.; Samuelsson, T.; Karlsson, N.G.; Lindén, S.K. Aeromonas salmonicida growth in response to Atlantic salmon mucins differs between epithelial sites, is governed by sialylated and N -acetylhexosamine-containing O -glycans, and is affected by Ca 2+. Infect. Immun. 2017, 85. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Huang, X.; Yang, M.; Wang, S.; Ren, S.; Li, H.; Peng, X. GC/MS-based metabolomics approach to identify biomarkers differentiating survivals from death in crucian carps infected by Edwardsiella tarda. Fish. Shellfish Immunol. 2014, 39, 215–222. [Google Scholar] [CrossRef]
- Nurdalila, A.A.; Natnan, M.E.; Baharum, S.N. The effects of amino acids and fatty acids on the disease resistance of Epinephelus fuscoguttatus in response to Vibrio vulnificus infection. 3 Biotech 2020, 10, 544. [Google Scholar] [CrossRef] [PubMed]
- Lardon, I.; Eyckmans, M.; Vu, T.N.; Laukens, K.; De Boeck, G.; Dommisse, R. 1H-NMR study of the metabolome of a moderately hypoxia-tolerant fish, the common carp (Cyprinus carpio). Metabolomics 2013, 9, 1216–1227. [Google Scholar] [CrossRef]
- Zhou, B.S.; Wu, R.S.S.; Randall, D.J.; Lam, P.K.S.; Ip, Y.K.; Chew, S.F. Metabolic adjustments in the common carp during prolonged hypoxia. J. Fish. Biol. 2000, 57, 1160–1171. [Google Scholar] [CrossRef]
- Wang, Y.; Haipeng, S.; Lu, G.; Ren, S.; Chen, J. Catabolism of branched-chain amino acids in heart failure: Insights from genetic models. Pediatr. Cardiol. 2011, 32, 305–310. [Google Scholar] [CrossRef]
- Lardon, I.; Nilsson, G.E.; Stecyk, J.A.W.; Vu, T.N.; Laukens, K.; Dommisse, R.; De Boeck, G. 1H-NMR study of the metabolome of an exceptionally anoxia tolerant vertebrate, the crucian carp (Carassius carassius). Metabolomics 2013, 9, 311–323. [Google Scholar] [CrossRef]
- Kokushi, E.; Uno, S.; Pal, S.; Koyama, J. Effects of chlorpyrifos on the metabolome of the freshwater carp, Cyprinus Carpio. Environ. Toxicol. 2015, 30, 253–260. [Google Scholar] [CrossRef]
- Nurdalila, A.A.; Mayalvanan, Y.; Baharum, S.N. Metabolite profiling of Epinephelus fuscoguttatus infected with vibriosis reveals Omega 9 as potential metabolite biomarker. Fish. Physiol. Biochem. 2019, 45, 1203–1215. [Google Scholar] [CrossRef]
- Corrêa-Oliveira, R.; Fachi, J.L.; Vieira, A.; Sato, F.T.; Vinolo, M.A.R. Regulation of immune cell function by short-chain fatty acids. Clin. Transl. Immunol. 2016, 5, e73. [Google Scholar] [CrossRef]
- Harrison, L.; Balan, K.; Babu, U. Dietary fatty acids and immune response to food-borne bacterial infections. Nutrients 2013, 5, 1801–1822. [Google Scholar] [CrossRef]
- Jalili, S.; Pour, F.; Zoriastein, N. Comparison fatty acid composition of orange-spotted grouper (Epinephelus coioides); four finger threadfins (Eleutheronema thetradactylium) in Khuzestan Coastal Waters (Persian Gulf). Am. J. Agric. Environ. Sci. 2013, 13, 826–830. [Google Scholar] [CrossRef]
- Ling, X.; Dong, W.; Zhang, Y.; Qian, X.; Zhang, W.; He, W.; Zhao, X.; Liu, J. Comparative transcriptomics and histopathological analysis of crucian carp infection by atypical Aeromonas salmonicida. Fish. Shellfish Immunol. 2019, 94, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Cai, X.; Fu, Q.; Yang, N.; Song, L.; Su, B.; Tan, F.; Liu, B.; Li, C. Dynamics of MiRNA Transcriptome in turbot (Scophthalmus maximus L.) intestine following Vibrio anguillarum infection. Mar. Biotechnol. 2019, 21, 550–564. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Rexroad, C.; Thorgaard, G.; Yao, J.; Salem, M. Characterization of the rainbow trout spleen transcriptome and identification of immune-related genes. Front. Genet. 2014, 5, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Wu, P.; Zhang, Q.; Wei, Y.; Wang, Z.; Qiu, M.; Shao, R.; Li, Y.; Gao, Q. Transcriptome analysis of soiny mullet (Liza haematocheila) spleen in response to Streptococcus dysgalactiae. Fish. Shellfish Immunol. 2016, 49, 194–204. [Google Scholar] [CrossRef]
- Hu, Y.; Li, A.; Xu, Y.; Jiang, B.; Lu, G.; Luo, X. Transcriptomic variation of locally-infected skin of Epinephelus coioides reveals the mucosal immune mechanism against Cryptocaryon irritans. Fish. Shellfish Immunol. 2017, 66, 398–410. [Google Scholar] [CrossRef]
- Chen, W.; Yi, L.; Feng, S.; Liu, X.; Asim, M.; Zhou, Y.; Lan, J.; Jiang, S.; Tu, J.; Lin, L. Transcriptomic profiles of striped snakehead fish cells (SSN-1) infected with red-spotted grouper nervous necrosis virus (RGNNV) with an emphasis on apoptosis pathway. Fish. Shellfish Immunol. 2017, 60, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Dettleff, P.; Moen, T.; Santi, N.; Martinez, V. Transcriptomic analysis of spleen infected with infectious salmon anemia virus reveals distinct pattern of viral replication on resistant and susceptible Atlantic salmon (Salmo salar). Fish. Shellfish Immunol. 2017, 61, 187–193. [Google Scholar] [CrossRef]
- Lee, X.; Yi, Y.; Weng, S.; Zeng, J.; Zhang, H.; He, J.; Dong, C. Transcriptomic analysis of koi (Cyprinus carpio) spleen tissue upon cyprinid herpesvirus 3 (CyHV3) infection using next generation sequencing. Fish. Shellfish Immunol. 2016, 49, 213–224. [Google Scholar] [CrossRef]
- Kumar, G.; Hummel, K.; Razzazi-Fazeli, E.; El-Matbouli, M. Modulation of posterior intestinal mucosal proteome in rainbow trout (Oncorhynchus mykiss) after Yersinia ruckeri infection. Vet. Res. 2019, 50, 54. [Google Scholar] [CrossRef]
- Xiong, Y.; Dan, C.; Ren, F.; Su, Z.; Zhang, Y.; Mei, J. Proteomic profiling of yellow catfish (Pelteobagrus fulvidraco) skin mucus identifies differentially-expressed proteins in response to Edwardsiella ictaluri infection. Fish. Shellfish Immunol. 2020, 100, 98–108. [Google Scholar] [CrossRef]
- Fu, S.; Ding, M.; Liang, Q.; Yang, Y.; Chen, M.; Wei, X.; Wang, A.; Liao, S.; Ye, J. The key differentially expressed genes and proteins related to immune response in the spleen of pufferfish (Takifugu obscurus) infected by Aeromonas Hydrophila. Fish. Shellfish Immunol. 2019, 91, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.M.; Brinchmann, M.F. Skin mucus proteins of lumpsucker (Cyclopterus lumpus). Biochem. Biophys. Rep. 2017, 9, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Jurado, J.; Fuentes-Almagro, C.A.; Guardiola, F.A.; Cuesta, A.; Esteban, M.Á.; Prieto-Álamo, M.-J. Proteomic profile of the skin mucus of farmed gilthead seabream (Sparus aurata). J. Proteom. 2015, 120, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Gong, Q.; Lai, S.; Cheng, Z.; Chen, Z.; Zheng, J.; Peng, B. Phenylalanine enhances innate immune response to clear ceftazidime-resistant Vibrio alginolyticus in Danio rerio. Fish. Shellfish Immunol. 2019, 84, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yang, M.; Wang, S.; Li, H.; Peng, X. Liver functional metabolomics discloses an action of l-leucine against Streptococcus iniae infection in tilapias. Fish. Shellfish Immunol. 2015, 45, 414–421. [Google Scholar] [CrossRef]
- Zhao, X.; Han, Y.; Ren, S.; Ma, Y.; Li, H.; Peng, X. l-proline increases survival of tilapias infected by Streptococcus agalactiae in higher water temperature. Fish. Shellfish Immunol. 2015, 44, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Peng, B.; Song, M.; Wu, C.; Yang, M.; Zhang, J.-Y.; Li, H. Live Edwardsiella tarda vaccine enhances innate immunity by metabolic modulation in zebrafish. Fish. Shellfish Immunol. 2015, 47, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.F.; Li, X.; Hua, X.T.; Cheng, J.X. Metabolomics profiling for the identification of potential biomarkers in blood serum of Takifugu rubripes challenged with Cryptocaryon Irritans. Aquac. Res. 2021, 52, 4512–4525. [Google Scholar] [CrossRef]
- Kodama, H.; Otani, K.; Iwasaki, T.; Takenaka, S.; Horitani, Y.; Togase, H. Metabolomic investigation of pathogenesis of myxosporean emaciation disease of tiger puffer fish Takifugu rubripes. J. Fish. Dis. 2014, 37, 619–627. [Google Scholar] [CrossRef]
- Fu, X.; Guo, X.; Wu, S.; Lin, Q.; Liu, L.; Liang, H.; Niu, Y.; Li, N. Non-targeted UHPLC-Q-TOF/MS-based metabolomics reveals a metabolic shift from glucose to glutamine in CPB cells during ISKNV infection cycle. Metabolites 2019, 9, 174. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Zheng, J.; Wang, L.; Qin, Q.; Huang, X. Metabolic profiles of fish nodavirus infection in vitro: RGNNV induced and exploited cellular fatty acid synthesis for virus infection. Cell. Microbiol. 2020, 22. [Google Scholar] [CrossRef]
- Tang, M.; Xu, X.; Li, S.; Wu, T.; Yan, Y.; Gu, W.; Wang, W.; Jiang, Y.; Meng, Q. The metabolic responses of crucian carp blood to Cyprinid herpesvirus 2 infection. Aquaculture 2019, 498, 72–82. [Google Scholar] [CrossRef]
- Quezada, H.; Guzmán-Ortiz, A.L.; Díaz-Sánchez, H.; Valle-Rios, R.; Aguirre-Hernández, J. Omics-based biomarkers: Current status and potential use in the clinic. Boletín Médico Del Hosp. Infant. México Engl. Ed. 2017, 74, 219–226. [Google Scholar] [CrossRef]
- Trzeciak, A.; Pietropaoli, A.P.; Kim, M. Biomarkers and associated immune mechanisms for early detection and therapeutic management of sepsis. Immune Netw. 2020, 20. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Sha, J.; Liu, S.; Bao, L.; Zhang, J.; Wang, R.; Yao, J.; Li, C.; Feng, J.; Sun, F.; et al. A genome-wide association study in catfish reveals the presence of functional hubs of related genes within QTLs for columnaris disease resistance. BMC Genom. 2015, 16. [Google Scholar] [CrossRef]
- Liu, P.F.; Xia, Y.; Hua, X.T.; Fan, K.; Li, X.; Zhang, Z.; Liu, Y. Quantitative proteomic analysis in serum of Takifugu rubripes infected with Cryptocaryon irritans. Fish. Shellfish Immunol. 2020, 104, 213–221. [Google Scholar] [CrossRef]
- Peng, B.; Ma, Y.; Zhang, J.; Li, H. Metabolome strategy against Edwardsiella tarda infection through glucose-enhanced metabolic modulation in tilapias. Fish. Shellfish Immunol. 2015, 45, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Barr, A.J. The biochemical basis of disease. Essays Biochem. 2018, 62, 619–642. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.S.; Carvalho, M.; Bastos, M.L.; Guedes de Pinho, P. Metabolomics analysis for biomarker discovery: Advances and challenges. Curr. Med. Chem. 2013, 20, 257–271. [Google Scholar] [CrossRef]
- Aretz, I.; Meierhofer, D. Advantages and pitfalls of mass spectrometry based metabolome profiling in systems biology. Int. J. Mol. Sci. 2016, 17, 632. [Google Scholar] [CrossRef] [PubMed]
- Wiktorowicz, J.E.; Soman, K.V. Discovery of Candidate Biomarkers. In Modern Proteomics–Sample Preparation, Analysis and Practical Applications; Mirzaei, H., Carrasco, M., Eds.; Springer: Cham, Switzerland, 2016; Volume 919, pp. 443–463. [Google Scholar]
Omics Approach | Fish/Infection | Organ/Tissue Samples | Technique | Potential Biomarkers | Study |
---|---|---|---|---|---|
Genomics | Channel catfish (Ictalurus punctatus) Columnaris disease (Flavobacterium columnare) | Blood | Affymetrix Axiom genotyping array technology | Genes:
| [170] |
Proteomics | Japanese puffer (Takifugu rubripes) (Cryptocaryon irritans) | Blood serum | Orbitrap coupled to UPLC/MS analysis | Proteins:
| [171] |
Metabolomics | Juvenille tilapias Edwardsiellosis (Edwardsiella tarda) | Liver | GC-MS analysis | Metabolite:
| [172] |
Metabolomics | Atlantic salmon Furunculosis (Aeromonas salmonisida) | Kidney | H-NMR analysis | Metabolite:
| [40] |
Metabolomics | Tilapias (Streptococcus iniae) | Liver | GC-MS analysis | Metabolite:
| [133] |
Metabolomics | Brown-marble grouper (Epinephelus fuscogutttus) Vibriosis (Vibrio vulnificus) | Muscle tissue | GC-MS analysis | Metabolite:
| [136] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natnan, M.E.; Mayalvanan, Y.; Jazamuddin, F.M.; Aizat, W.M.; Low, C.-F.; Goh, H.-H.; Azizan, K.A.; Bunawan, H.; Baharum, S.N. Omics Strategies in Current Advancements of Infectious Fish Disease Management. Biology 2021, 10, 1086. https://doi.org/10.3390/biology10111086
Natnan ME, Mayalvanan Y, Jazamuddin FM, Aizat WM, Low C-F, Goh H-H, Azizan KA, Bunawan H, Baharum SN. Omics Strategies in Current Advancements of Infectious Fish Disease Management. Biology. 2021; 10(11):1086. https://doi.org/10.3390/biology10111086
Chicago/Turabian StyleNatnan, Maya Erna, Yosmetha Mayalvanan, Fahmeeda Mohd Jazamuddin, Wan Mohd Aizat, Chen-Fei Low, Hoe-Han Goh, Kamalrul Azlan Azizan, Hamidun Bunawan, and Syarul Nataqain Baharum. 2021. "Omics Strategies in Current Advancements of Infectious Fish Disease Management" Biology 10, no. 11: 1086. https://doi.org/10.3390/biology10111086
APA StyleNatnan, M. E., Mayalvanan, Y., Jazamuddin, F. M., Aizat, W. M., Low, C.-F., Goh, H.-H., Azizan, K. A., Bunawan, H., & Baharum, S. N. (2021). Omics Strategies in Current Advancements of Infectious Fish Disease Management. Biology, 10(11), 1086. https://doi.org/10.3390/biology10111086