Omics Strategies in Current Advancements of Infectious Fish Disease Management
Abstract
:Simple Summary
Abstract
1. Introduction
2. Fish Pathogens
3. Current Advancements in Infectious Fish Disease Management
3.1. Active and Passive Immunization
Pathogens | Antigen Gene Insert | Host | Route | References |
---|---|---|---|---|
RNA Viruses | ||||
Spring viremia of carp virus (SVCV) | pEGFP-G | Common carp (Cyprinus carpio) | Immersion & intramuscular | [71] |
Viral Hemorrhagic Septicemia virus (VHSV) | pcDNA3-vhsG (DK-3592b, genotype Ia & BC-99-292, genotype IVa) | Pacific Herring (Clupea pallasii) | Intramuscular | [72] |
Infectious hematopoietic necrosis virus (IHNV) | Glycoprotein | Rainbow trout (Oncorhynchus mykiss) | Intramuscular | [73] |
DNA Virus | ||||
Channel catfish virus (CCV) | DNA vector expressing CCV ORF6 | Channel catfish | Intramuscular | [74] |
Iridovirus of Taiwan (TGIV) | TGIV major capsid protein (MCP) | Pearl gentian grouper | Immersion | [75] |
Koi herpesvirus (KHV) | ORF25 (glycosylated protein) | Koi | Intramuscular | [76] |
Bacterial | ||||
Vibrio alginolyticus | Lipopolysaccharides, whole-cell bacterin | Silver sea bream (Sparus sarba) | Intramuscular, immersion & oral | [77] |
Vibrio anguillarum | Outer membrane proteins (OmpK) | Flounder (Paralichthys olivaceus) | Intramuscular | [78] |
Vibrio harveyi | TssJ antigen from T6SS of V. harveyi | Golden pompano | Intramuscular | [79] |
3.2. Immunostimulants
3.3. Other Strategies
4. Multi-Omics Perspective on Infectious Fish Diseases Studies
4.1. Transcriptomics
4.2. Proteomics
4.3. Metabolomics
Fish Species | Pathogen | Organ/Tissue Samples | Method | Reference |
---|---|---|---|---|
Transcriptomics | ||||
Crucian carp (Carassius auratus) | Aeromonas hydrophila (bacteria) | Head kidney | Illumina Hiseq sequencer | [146] |
Tilapia (Oreochromis niloticus) | Streptococcus iniae (bacteria) | Spleen | Illumina HiSeq 2000 instrument | [100] |
Brown-marbled grouper (Epinephelus fuscoguttatus) | Vibrio vulnificus (bacteria) | Gill and whole-body tissue | Illumina HiSeq. 4000 | [103] |
Turbot (Scophthalmus maximus) | Vibrio anguillarum (bacteria) | Intestine | Illumina HiSeq 4000 | [147] |
Orange-spotted grouper (Epinephelus coioides) | Vibrio alginolyticus (bacteria) | Whole body tissue | Illumina HiSeq 2000 | [102] |
Rainbow trout (Oncorhynchus mykiss) | Flavobacterium (bacteria) | Spleen | Illumina TruSeq | [148] |
Soiny mullet (Liza haematocheila) | Streptococcus dysgalactiae (bacteria) | Spleen | Illumina HiSeq 2000 | [149] |
Rainbow trout (Oncorhynchus mykiss) | Ichthyophthirius multifiliis (parasite) | Gill | Illumina HiSeq 2500 | [99] |
Large yellow croaker (Larimichthys crocea) | Cryptocaryan irritans (parasite) | Liver | Illumina HiSeq2000 | [114] |
Orange-spotted grouper (Epinephelus coioides) | Cryptocaryon irritans (parasite) | Skin | Illumina HiSeq 2500 | [150] |
Striped snakehead (Channa striata) | Red-spotted grouper nervous necrosis virus (RGNNV) | Striped snakehead fish cells (SSN-1) | Illumina HiSeq 2000 | [151] |
Atlantic salmon (Salmo salar) | Infectious salmon anemia virus (ISAV) | Spleen | Illumina MiSeq sequencer | [152] |
Grass carp (Ctenopharyngodon idellus) | Grass carp reovirus (GCRV) | Kidney | Illumina NextSeq500 | [98] |
Asian seabass (Lates calcarifer) | Nervous necrosis virus (NNV) | Epithelial cells | Illumina HiSeq™ 2000 | [113] |
Koi (Cyprinus carpio) | Cyprinid herpesvirus 3 (CyHV3) | Spleen | Illumina HiSeq 2500 | [153] |
Pacific cod (Gadus microcephalus) | General/Not specified | Thymus and head kidney | Illumina HiSeq 2000 platform | [101] |
Proteomics | ||||
Brown-marbled grouper (Epinephelus fuscoguttatus) | Vibrio parahaemolyticus (bacteria) | Blood | 2D gel electrophoresis, Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS/MS) analysis. | [16] |
Rainbow trout (Oncorhynchus mykiss) | Yersinia ruckeri (bacteria) | Intestine | Micro Liquid chromatography coupled with electrospray ionization and quadrupole time of flight tandem- mass spectrometry (LC-ESI-qTOF-MS/MS) analysis. | [154] |
Zebrafish (Danio rerio) | Aeromonas hydrophila (bacteria) | Skin | 2D gel electrophoresis, MALDI-TOF-MS analysis, Liquid chromatography–mass spectrometry (LC-MS/MS) analysis. | [125] |
Yellow catfish (Pelteobagrus fulvidraco) | Edwardsiella ictalurid (bacteria) | Skin mucus | LC-MS/MS analysis | [155] |
Common carp (Cyprinus Carpio) | Aeromonas hydrophila (bacteria) | Intestine | LC-MS/MS analysis | [119] |
Pufferfish (Takifugu obscurus) | Aeromonas hydrophila (bacteria) | Spleen | LC-MS/MS analysis | [156] |
Japanese flounder (Paralichthys olivaceus) | Edwardsiella tarda (bacteria) | Liver | isobaric tags for relative and absolute quantification (iTRAQ) analysis, LC-MS/MS analysis. | [118] |
Atlantic salmon (Salmo salar) | Neoparamoeba Perurans (parasite) | Gill | 2D gel electrophoresis, LC-MS/MS analysis | [120] |
Lumpsucker (Cyclopterus lumpus) | General/Not specified | Skin mucus | 2D gel electrophoresis, LC-MS/MS analysis | [157] |
Gilthead seabream (Sparus aurata L.) | General/Not specified | Skin mucus | 2D gel electrophoresis, Peptide mass fingerprinting-mass spectrometry (PMF-MS/MS) analysis, LC-MS/MS analysis | [158] |
Metabolomics | ||||
Atlantic salmon (Salmo salar) | Aeromonas salmonicida (bacteria) | Kidney | Nuclear magnetic resonance (H-NMR) analysis. | [40] |
Brown-marbled grouper (Epinephelus fuscoguttatus) | Vibrio vulnificus (bacteria) | Caudal fin | Fourier-transform infrared spectroscopy (FTIR) analysis. | [4] |
Zebrafish (Danio rerio) | Vibrio alginolyticus (bacteria) | Whole body tissue | Gas chromatography–mass spectrometry (GC-MS) analysis. | [159] |
Brown marble grouper (Epinephelus fuscoguttatus) | Vibrio vulnificus (bacteria) | Muscle tissue | GC-MS analysis | [136,142] |
Tilapia (Oreochromis niloticus) | Streptococcus iniae (bacteria) | Liver | GC-MS analysis | [133] |
Tilapia (Oreochromis niloticus) | Streptococcus iniae (bacteria) | Liver | GC-MS analysis | [160] |
Tilapia (Oreochromis niloticus) | Streptococcus agalactiae (bacteria) | Liver | ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS) analysis. | [161] |
Zebrafish (Danio rerio) | Edwardsiella tarda (bacteria) | Muscle tissue | GC-MS analysis | [162] |
Japanese puffer (Takifugu rubripes) | Cryptocaryon irritans (parasite) | Blood serum | LC-MS analysis | [163] |
Tiger puffer fish (Takifugu rubripes) | Myxosporea (parasite) | Blood serum | GC-MS analysis | [164] |
Mandarin fish (Siniperca chuatsi) | Infectious spleen and kidney necrosis virus (ISKNV) | Chinese perch brain cell line | ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) analysis. | [165] |
Grouper | Red-spotted grouper nervous necrosis virus (RGNNV) | Spleen | LC-MS analysis | [166] |
Crucian carp blood (Carassius auratus gibelio) | Cyprinid herpesvirus 2 | Blood | LC-MS analysis | [167] |
5. Application of Multi-Omics for Identification of Biomarker
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wana, T.G. A Review on the Causes for the Loss of Major Fishes and Prospects for Future Research in Ethiopia. J. Biol. Agric. Healthc. 2016, 6. [Google Scholar]
- Lee, M.-K.; Yoo, S.-H. The role of the capture fisheries and aquaculture sectors in the Korean national economy: An input–output analysis. Mar. Policy 2014, 44, 448–456. [Google Scholar] [CrossRef]
- Cashion, T.; Le Manach, F.; Zeller, D.; Pauly, D. Most fish destined for fishmeal production are food-grade fish. Fish Fish. 2017, 18, 837–844. [Google Scholar] [CrossRef]
- Nurdalila, A.; Bunawan, H.; Kumar, S.; Rodrigues, K.; Baharum, S. Homogeneous nature of Malaysian marine fish Epinephelus fuscoguttatus (Perciformes; Serranidae): Evidence based on molecular markers, morphology and fourier transform infrared analysis. Int. J. Mol. Sci. 2015, 16, 14884–14900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodger, H.D. Fish Disease Causing Economic Impact in Global Aquaculture. In Fish Vaccines, 1st ed.; Adams, A., Ed.; Springer: Basel, Switzerland, 2016; pp. 1–34. [Google Scholar]
- Castro, R.; Jouneau, L.; Tacchi, L.; Macqueen, D.J.; Alzaid, A.; Secombes, C.J.; Martin, S.A.M.; Boudinot, P. Disparate developmental patterns of immune responses to bacterial and viral infections in fish. Sci. Rep. 2015, 5, 15458. [Google Scholar] [CrossRef] [Green Version]
- Jeffries, K.M.; Hinch, S.G.; Sierocinski, T.; Pavlidis, P.; Miller, K.M. Transcriptomic responses to high water temperature in two species of Pacific salmon. Evol. Appl. 2014, 7, 286–300. [Google Scholar] [CrossRef]
- Martin, S.A.M.; Król, E. Nutrigenomics and immune function in fish: New insights from omics technologies. Dev. Comp. Immunol. 2017, 75, 86–98. [Google Scholar] [CrossRef] [Green Version]
- Jennings, S.; Stentiford, G.D.; Leocadio, A.M.; Jeffery, K.R.; Metcalfe, J.D.; Katsiadaki, I.; Auchterlonie, N.A.; Mangi, S.C.; Pinnegar, J.K.; Ellis, T.; et al. Aquatic food security: Insights into challenges and solutions from an analysis of interactions between fisheries, aquaculture, food safety, human health, fish and human welfare, economy and environment. Fish Fish. 2016, 17, 893–938. [Google Scholar] [CrossRef] [Green Version]
- Shapawi, R.; Ebi, I.; Yong, A.S.K.; Ng, W.K. Optimizing the growth performance of brown-marbled grouper, Epinephelus fuscoguttatus (Forskal), by varying the proportion of dietary protein and lipid levels. Anim. Feed Sci. Technol. 2014, 191, 98–105. [Google Scholar] [CrossRef]
- McLoughlin, M.F.; Graham, D.A. Alphavirus infections in salmonids -- a review. J. Fish Dis. 2007, 30, 511–531. [Google Scholar] [CrossRef] [PubMed]
- Thuy, N.T.T.; Nguyen, D.H.; Wergeland, H.I. Specific humoral immune response and protection against Vibrio parahaemolyticus in orange-spotted grouper Epinephelus coioides. Int. J. Aquat. Sci. 2013, 4, 24–35. [Google Scholar]
- Biller-Takahashi, J.D.; Urbinati, E.C. Fish Immunology. The modification and manipulation of the innate immune system: Brazilian studies. An. Acad. Bras. Cienc. 2014, 86, 1484–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veeramohan, R.; Azizan, K.A.; Aizat, W.M.; Goh, H.-H.; Mansor, S.M.; Yusof, N.S.M.; Baharum, S.N.; Ng, C.L. Metabolomics data of Mitragyna speciosa leaf using LC-ESI-TOF-MS. Data Br. 2018, 18. [Google Scholar] [CrossRef]
- Kordon, A.O.; Karsi, A.; Pinchuk, L. Innate immune responses in fish: Antigen presenting cells and professional phagocytes. Turk. J. Fish. Aquat. Sci. 2018, 18, 1123–1139. [Google Scholar] [CrossRef]
- Low, C.-F.; Shamsudin, M.N.; Chee, H.-Y.; Aliyu-Paiko, M.; Idrus, E.S. Putative apolipoprotein A-I, natural killer cell enhancement factor and lysozyme g are involved in the early immune response of brown-marbled grouper, Epinephelus fuscoguttatus, Forskal, to Vibrio alginolyticus. J. Fish Dis. 2014, 37, 693–701. [Google Scholar] [CrossRef]
- Smith, N.C.; Rise, M.L.; Christian, S.L. A comparison of the innate and adaptive immune systems in cartilaginous fish, ray-finned fish, and lobe-finned fish. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Semple, S.L.; Dixon, B. Salmonid antibacterial immunity: An aquaculture perspective. Biology 2020, 9, 331. [Google Scholar] [CrossRef]
- Austin, B.; Austin, D.A. Bacterial Fish Pathogens: Disease of Farmed and Wild Fish; Springer Netherlands: Dordrecht, The Netherlands, 2012; ISBN 978-94-007-4883-5. [Google Scholar]
- Kalia, V.C.; Kumar, P.; Kumar, R.; Mishra, A.; Koul, S. Genome wide analysis for rapid identification of Vibrio species. Indian J. Microbiol. 2015, 55, 375–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toranzo, A.E.; Magariños, B.; Avendano–Herrera, R. Vibriosis: Vibrio anguillarum, V. ordalii and Aliivibrio salmonicida. In Fish Viruses and Bacteria: Pathobiology and Protection; PTK, W., Cipriono, R.C., Eds.; CAB International: Wallingford, UK, 2017. [Google Scholar]
- Mohamad, N.; Amal, M.N.A.; Yasin, I.S.M.; Zamri Saad, M.; Nasruddin, N.S.; Al-saari, N.; Mino, S.; Sawabe, T. Vibriosis in cultured marine fishes: A review. Aquaculture 2019, 512, 734289. [Google Scholar] [CrossRef]
- Rameshkumar, P.; Nazar, A.K.A.; Pradeep, M.A.; Kalidas, C.; Jayakumar, R.; Tamilmani, G.; Sakthivel, M.; Samal, A.K.; Sirajudeen, S.; Venkatesan, V.; et al. Isolation and characterization of pathogenic Vibrio alginolyticus from sea cage cultured cobia (Rachycentron canadum (Linnaeus 1766)) in India. Lett. Appl. Microbiol. 2017, 65, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.M.; Dong, C.F.; Weng, S.P.; He, J.G. The high prevalence of pathogenic Vibrio harveyi with multiple antibiotic resistance in scale drop and muscle necrosis disease of the hybrid grouper, Epinephelus fuscoguttatus (♀) × E. lanceolatus (♂), in China. J. Fish Dis. 2017, 19, 191–198. [Google Scholar] [CrossRef]
- Low, C.-F.; Mariana, N.S.; Maha, A.; Chee, H.-Y.; Fatimah, M.Y. Identification of immune response-related genes and signalling pathways in spleen of Vibrio parahaemolyticus -infected Epinephelus fuscoguttatus (Forskal) by next-generation sequencing. J. Fish Dis. 2016, 39, 389–394. [Google Scholar] [CrossRef]
- Dong, H.T.; Taengphu, S.; Sangsuriya, P.; Charoensapsri, W.; Phiwsaiya, K.; Sornwatana, T.; Khunrae, P.; Rattanarojpong, T.; Senapin, S. Recovery of Vibrio harveyi from scale drop and muscle necrosis disease in farmed barramundi, Lates calcarifer in Vietnam. Aquaculture 2017, 473, 89–96. [Google Scholar] [CrossRef]
- Albert, V.; Ransangan, J. Effect of water temperature on susceptibility of culture marine fish species to vibriosis. Int. J. Res. Pure Appl. Microbiol. 2013, 3, 48–52. [Google Scholar]
- Qin, Y.X.; Wang, J.; Su, Y.Q.; Wang, D.X.; Chen, X.Z. Studies on the pathogenic bacterium of ulcer disease in Epinephelus awoara. Acta Oceanol. Sin. 2006, 25, 154–159. [Google Scholar]
- Zorrilla, I.; Arijo, S.; Chabrillon, M.; Diaz, P.; Martinez-Manzanares, E.; Balebona, M.C.; Morinigo, M.A. Vibrio species isolated from diseased farmed sole, Solea senegalensis (Kaup), and evaluation of the potential virulence role of their extracellular products. J. Fish Dis. 2003, 26, 103–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labella, A.; Vida, M.; Alonso, M.C.; Infante, C.; Cardenas, S.; Lopez–Romalde, S.; Manchado, M.; Borrego, J.J. First isolation of Photobacterium damselae ssp. damselae from cultured redbanded seabream, Pagrus auriga Valenciennes, in Spain. J. Fish Dis. 2006, 2, 175–179. [Google Scholar] [CrossRef]
- Haenen, O.L.M.; Fouz Rodríguez, B.; Amaro González, C.; Isern, M.M.; Mikkelsen, H.; Zrnčić, S.; Travers, M.A.; Renault, T.; Hellstrom, A.; Dalsgaard, I. Vibriosis in aquaculture. 16th EAFP Conference, Tampere, Finland, 4th September 2013. B. Eur. Assoc. Fish Pat. 2014, 34, 138–147. [Google Scholar]
- Ina-Salwany, M.Y.; Al-saari, N.; Mohamad, A.; Mursidi, F.; Mohd-Aris, A.; Amal, M.N.A.; Kasai, H.; Mino, S.; Sawabe, T.; Zamri-Saad, M. Vibriosis in Fish: A review on disease development and prevention. J. Aquat. Anim. Health 2019, 31, 3–22. [Google Scholar] [CrossRef]
- Bruno, D.W. Furunculosis, Revised ed.; Leaflet No, 5; ICES ID Leaflets for Diseases and Parasites of Fish and Shellfish; International Council for the Exploration of the Sea: Copenhagen, Denmark, 2015. [Google Scholar]
- Austin, B.; Austin, D.A. Aeromonadaceae Representative (Aeromonas salmonicida). In Bacterial Fish Pathogens; Springer International Publishing: Cham, Switzerland, 2016; pp. 215–321. [Google Scholar]
- Braden, L.M.; Whyte, S.K.; Brown, A.B.J.; Iderstine, C.V.; Letendre, C.; Groman, D.; Lewis, J.; Purcell, S.L.; Hori, T.; Fast, M.D. Vaccine-induced protection against furunculosis involves pre-emptive priming of humoral immunity in Arctic charr. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef]
- De Ocenda, V.-R.; Almeida-Prieto, S.; Luzardo-Álvarez, A.; Barja, J.L.; Otero-Espinar, F.J.; Blanco-Méndez, J. Pharmacokinetic model of florfenicol in turbot (Scophthalmus maximus): Establishment of optimal dosage and administration in medicated feed. J. Fish Dis. 2017, 40, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Devadason, C. Lysozyme level during acute infection of bacterium Aeromonas salmonicida subsp Salmonicida in halibut and Atlantic salmon. J. Exp. Biol. Agric. Sci. 2018, 6, 236–242. [Google Scholar] [CrossRef]
- Du, Y.; Yi, M.; Xiao, P.; Meng, L.; Li, X.; Sun, G.; Liu, Y. The impact of Aeromonas salmonicida infection on innate immune parameters of Atlantic salmon (Salmo salar L). Fish Shellfish Immunol. 2015, 44, 307–315. [Google Scholar] [CrossRef]
- Marana, M.H.; von Jørgensen, L.G.; Skov, J.; Chettri, J.K.; Holm Mattsson, A.; Dalsgaard, I.; Kania, P.W.; Buchmann, K. Subunit vaccine candidates against Aeromonas salmonicida in rainbow trout Oncorhynchus mykiss. PLoS ONE 2017, 12, e0171944. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.F.; Du, Y.; Meng, L.; Li, X.; Liu, Y. Metabolic profiling in kidneys of Atlantic salmon infected with Aeromonas salmonicida based on 1 H NMR. Fish Shellfish Immunol. 2016, 58, 292–301. [Google Scholar] [CrossRef]
- Pham, T.H.; Cheng, T.; Wang, P.; Chen, S. Genotypic diversity, and molecular and pathogenic characterization of Photobacterium damselae subsp. piscicida isolated from different fish species in Taiwan. J. Fish Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Romalde, J.L. Photobacterium damselae subsp. piscicida: An integrated view of a bacterial fish pathogen. Int. Microbiol. 2002, 5, 3–9. [Google Scholar] [CrossRef]
- Belinda, V.; José, R.V.; Jimena, B.; Begona, A.; Maria, L.D.; Arbelo, F.A.; Kumar, D. Effect of different culture conditions on the (twitching) displacement of Photobacterium Damselae Subsp. Piscicida. J. Bacteriol. Mycol. Open Access. 2017, 4, 134–141. [Google Scholar] [CrossRef] [Green Version]
- He, T.; Jin, M.; Zhang, X. Marine Viruses. In Virus Infection and Tumorigenesis; Springer Singapore: Singapore, 2019; pp. 25–62. [Google Scholar]
- Volpe, E.; Gustinelli, A.; Caffara, M.; Errani, F.; Quaglio, F.; Fioravanti, M.L.; Ciulli, S. Viral nervous necrosis outbreaks caused by the RGNNV/SJNNV reassortant betanodavirus in gilthead sea bream (Sparus aurata) and European sea bass (Dicentrarchus labrax). Aquaculture 2020, 523, 735155. [Google Scholar] [CrossRef]
- Ni, S.; Yu, Y.; Wei, J.; Zhou, L.; Wei, S.; Yan, Y.; Huang, X.; Huang, Y.; Qin, Q. MicroRNA-146a promotes red spotted grouper nervous necrosis virus (RGNNV) replication by targeting TRAF6 in orange spotted grouper, Epinephelus Coioides. Fish Shellfish Immunol. 2018, 72, 9–13. [Google Scholar] [CrossRef]
- Wen, C.M. Characterization and viral susceptibility of a brain cell line from brown-marbled grouper Epinephelus fuscoguttatus (Forsskål) with persistent betanodavirus infection. J. Fish Dis. 2016, 39, 1335–1346. [Google Scholar] [CrossRef]
- Zorriehzahra, M.J. Viral Nervous Necrosis Disease. In Emerging and Reemerging Viral Pathogens; Academic Press: London, UK, 2020; pp. 673–703. [Google Scholar]
- Low, C.-F.; Syarul Nataqain, B.; Chee, H.-Y.; Rozaini, M.Z.H.; Najiah, M. Betanodavirus: Dissection of the viral life cycle. J. Fish Dis. 2017, 40, 1489–1496. [Google Scholar] [CrossRef]
- Nishi, S.; Yamashita, H.; Kawato, Y.; Nakai, T. Cell culture isolation of piscine nodavirus (betanodavirus) in fish-rearing seawater. Appl. Environ. Microbiol. 2016, 82, 2537–2544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandín, I.; Souto, S. Betanodavirus and VER disease: A 30-year research review. Pathogens 2020, 9, 106. [Google Scholar] [CrossRef] [Green Version]
- Valverde, E.J.; Cano, I.; Castro, D.; Paley, R.K.; Borrego, J.J. Rapid and sensitive detection of lymphocystis disease virus genotype VII by loop-mediated isothermal amplification. Food Environ. Virol. 2017, 9, 114–122. [Google Scholar] [CrossRef]
- Nagasawa, K.; Cruz-Lacierda, E.R. (Eds.) Diseases of Cultured Groupers; Southeast Asian Fisheries Development Center, Aquaculture Department: Illoilo, Philippines, 2004; ISBN 971-8511-70-9. [Google Scholar]
- Colorni, A.; Diamant, A. Infectious diseases of warmwater fish in marine and brackish waters. In Diseases and Disorders of Finfish in Cage Culture; CABI: Wallingford, UK, 2014; pp. 155–192. [Google Scholar]
- Borrego, J.J.; Valverde, E.J.; Labella, A.M.; Castro, D. Lymphocystis disease virus: Its importance in aquaculture. Rev. Aquac. 2017, 9, 179–193. [Google Scholar] [CrossRef]
- Xu, G.; Sheng, X.; Xing, J.; Zhan, W. Effect of temperature on immune response of Japanese flounder (Paralichthys olivaceus) to inactivated lymphocystis disease virus (LCDV). Fish Shellfish Immunol. 2011, 30, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Rameshkumar, G.; Ravichandran, S. Problems caused by isopod parasites in commercial fishes. J. Parasit. Dis. 2014, 38, 138–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byadgi, O.; Beraldo, P.; Volpatti, D.; Massimo, M.; Bulfon, C.; Galeotti, M. Expression of infection-related immune response in European sea bass (Dicentrarchus labrax) during a natural outbreak from a unique dinoflagellate Amyloodinium ocellatum. Fish Shellfish Immunol. 2019, 84, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Lokanathan, Y.; Mohd-Adnan, A.; Kua, B.-C.; Nathan, S. Cryptocaryon irritans recombinant proteins as potential antigens for sero-surveillance of cryptocaryonosis. J. Fish Dis. 2016, 39, 1069–1083. [Google Scholar] [CrossRef]
- Qiao, Y.; Mao, Y.; Wang, J.; Chen, R.; Libing, Z.; Su, Y.-Q.; Chen, J.; Zheng, W.-Q. Analysis of liver and gill miRNAs of Larimichthys crocea against Cryptocryon irritans challenge. Fish Shellfish Immunol. 2016, 59, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.G.M.; Aboyadak, I.M.; El-Sayed, H.S. Chemotherapeutic control of Gram-positive infection in white sea bream (Diplodus sargus, Linnaeus 1758) broodstock. Vet. World 2019, 12, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Miranda, C.D.; Godoy, F.A.; Lee, M.R. Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Cijiang He, J.; Chuang, P.Y.; Ma’Ayan, A.; Iyengar, R. Systems biology of kidney diseases. Kidney Int. 2012, 81, 22–39. [Google Scholar] [CrossRef] [Green Version]
- Samad, A.P.A.; Santoso, U.; Lee, M.-C.; Nan, F.-H. Effects of dietary katuk (Sauropus androgynus L. Merr.) on growth, non-specific immune and diseases resistance against Vibrio alginolyticus infection in grouper Epinephelus coioides. Fish Shellfish Immunol. 2014, 36, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.; Strepparava, N.; Wahli, T.; Segner, H. Exploring the immune response, tolerance and resistance in proliferative kidney disease of salmonids. Dev. Comp. Immunol. 2019, 90, 165–175. [Google Scholar] [CrossRef]
- Rajan, B.; Løkka, G.; Koppang, E.O.; Austbø, L. Passive immunization of farmed fish. J. Immunol. 2017, 198, 4195–4202. [Google Scholar] [CrossRef]
- Mohd-Aris, A.; Muhamad-Sofie, M.H.N.; Zamri-Saad, M.; Daud, H.M.; Ina-Salwany, M.Y. Live vaccines against bacterial fish diseases: A review. Vet. World 2019, 12, 1806–1815. [Google Scholar] [CrossRef]
- Bulfon, C.; Volpatti, D.; Galeotti, M. Current research on the use of plant-derived products in farmed fish. Aquac. Res. 2015, 46, 513–551. [Google Scholar] [CrossRef]
- Mercer, K.L. Antibiotic resistance. J. AWWA 2020, 112, 1. [Google Scholar] [CrossRef]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Zhao, Z.; Zha, J.-W.; Wang, G.-X.; Zhu, B. Single-walled carbon nanotubes as delivery vehicles enhance the immunoprotective effect of a DNA vaccine against spring viremia of carp virus in common carp. Fish Shellfish Immunol. 2017, 71, 191–201. [Google Scholar] [CrossRef]
- Hart, L.M.; Lorenzen, N.; Einer-Jensen, K.; Purcell, M.K.; Hershberger, P.K. Influence of temperature on the efficacy of homologous and heterologous dna vaccines against viral hemorrhagic septicemia in Pacific herring. J. Aquat. Anim. Health 2017, 29, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.R.; Rutan, B.J.; Wargo, A.R. Impact of vaccination and pathogen exposure dosage on shedding kinetics of infectious hematopoietic necrosis virus (IHNV) in rainbow trout. J. Aquat. Anim. Health 2020, 32, 95–108. [Google Scholar] [CrossRef]
- Taylor, E.B.; Chinchar, V.G.; Quiniou, S.M.A.; Wilson, M.; Bengtén, E. Cloning and characterization of antiviral cytotoxic T lymphocytes in channel catfish, Ictalurus punctatus. Virology 2020, 540, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.-Y.; Wang, E.-L.; Qu, X.-Y.; Yang, K.-C.; Zhang, Z.-Y.; Liu, J.-Y.; Zhang, C.; Zhu, B.; Wang, G.-X. Single-walled carbon nanotubes enhance the immune protective effect of a bath subunit vaccine for pearl gentian grouper against Iridovirus of Taiwan. Fish Shellfish Immunol. 2020, 106, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.-X.; Wang, H.; Li, X.-W.; Zhu, X.; Lu, W.-L.; Zhang, D.-M. Construction of KHV-CJ ORF25 DNA vaccine and immune challenge test. J. Fish Dis. 2014, 37, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, S.; Woo, N. Vaccination of Silver Sea Bream (Sparus sarba) against Vibrio alginolyticus: Protective evaluation of different vaccinating modalities. Int. J. Mol. Sci. 2015, 17, 40. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Xing, J.; Tang, X.; Sheng, X.; Zhan, W. Intramuscular administration of a DNA vaccine encoding OmpK antigen induces humoral and cellular immune responses in flounder (Paralichthys olivaceus) and improves protection against Vibrio Anguillarum. Fish Shellfish Immunol. 2019, 86, 618–626. [Google Scholar] [CrossRef]
- Sun, Y.; Ding, S.; He, M.; Liu, A.; Long, H.; Guo, W.; Cao, Z.; Xie, Z.; Zhou, Y. Construction and analysis of the immune effect of Vibrio harveyi subunit vaccine and DNA vaccine encoding TssJ antigen. Fish Shellfish Immunol. 2020, 98, 45–51. [Google Scholar] [CrossRef]
- Sherif, A.H.; Mahfouz, M.E. Immune status of Oreochromis niloticus experimentally infected with Aeromonas hydrophila following feeding with 1, 3 β-glucan and levamisole immunostimulants. Aquaculture 2019, 509, 40–46. [Google Scholar] [CrossRef]
- Mehana, E.; Rahmani, A.; Aly, S. Immunostimulants and fish culture: An overview. Annu. Res. Rev. Biol. 2015, 5, 477–489. [Google Scholar] [CrossRef]
- Barman, D.; Nen, P. Immunostimulants for aquaculture health management. J. Mar. Sci. Res. Dev. 2013, 03. [Google Scholar] [CrossRef] [Green Version]
- Dawood, M.A.O.; Koshio, S.; Esteban, M.Á. Beneficial roles of feed additives as immunostimulants in aquaculture: A review. Rev. Aquac. 2018, 10, 950–974. [Google Scholar] [CrossRef]
- Cheng, S.S.; Senoo, S.; Siddiquee, S.; Rodrigues, K.F. Genetic variation in the mitochondrial genome of the giant grouper Epinephelus lanceolatus (Bloch, 1790) and its application for the identification of broodstock. Aquac. Rep. 2015, 2, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Nie, L.; Zhu, G.; Xiang, L.; Shao, J. Advances in research of fish immune-relevant genes: A comparative overview of innate and adaptive immunity in teleosts. Dev. Comp. Immunol. 2013, 39, 39–62. [Google Scholar] [CrossRef] [PubMed]
- Parvez, M.M.; Bhuyain, M.A.B.; Shahabuddin, A.M.; Farque, A.R.; Shine, A.S. Environmentally sustainable control measure of argulus in freshwater ponds in Bangladesh. Int. J. Sustain. Agric. Technol. 2013, 9, 64–70. [Google Scholar]
- Dawood, M.A.O.; Koshio, S.; Abdel-Daim, M.M.; Van Doan, H. Probiotic application for sustainable aquaculture. Rev. Aquac. 2019, 11, 907–924. [Google Scholar] [CrossRef]
- Fečkaninová, A.; Koščová, J.; Mudroňová, D.; Popelka, P.; Toropilová, J. The use of probiotic bacteria against Aeromonas infections in salmonid aquaculture. Aquaculture 2017, 469, 1–8. [Google Scholar] [CrossRef]
- George Kerry, R.; Patra, J.K.; Gouda, S.; Park, Y.; Shin, H.-S.; Das, G. Benefaction of probiotics for human health: A review. J. Food Drug Anal. 2018, 26, 927–939. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Sharma, N. Characterization of potential probiotic lactic acid bacteria- Pediococcus acidilactici Ch-2 isolated from Chuli- a traditional apricot product of Himalayan Region for the production of novel bioactive compounds with special therapeutic properties. J. Food Microbiol. Saf. Hyg. 2017, 02. [Google Scholar] [CrossRef]
- Lee, S. Systems Biology - A pivotal research methodology for understanding the mechanisms of traditional medicine. J. Pharmacopunct. 2015, 18, 11–18. [Google Scholar] [CrossRef]
- Natnan, M.E.; Low, C.-F.; Chong, C.-M.; Bunawan, H.; Baharum, S.N. Integration of omics tools for understanding the fish immune response due to microbial challenge. Front. Mar. Sci. 2021, 8, 668771. [Google Scholar] [CrossRef]
- Bersanelli, M.; Mosca, E.; Remondini, D.; Giampieri, E.; Sala, C.; Castellani, G.; Milanesi, L. Methods for the integration of multi-omics data: Mathematical aspects. BMC Bioinform. 2016, 17, S15. [Google Scholar] [CrossRef] [Green Version]
- Del Boccio, P.; Rossi, C.; di Ioia, M.; Cicalini, I.; Sacchetta, P.; Pieragostino, D. Integration of metabolomics and proteomics in multiple sclerosis: From biomarkers discovery to personalized medicine. PROTEOMICS - Clin. Appl. 2016, 10, 470–484. [Google Scholar] [CrossRef] [PubMed]
- Shivam, S.; El-Matbouli, M.; Kumar, G. Development of Fish Parasite Vaccines in the OMICs Era: Progress and Opportunities. Vaccines 2021, 9, 179. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Chen, L.; Hoare, R.; Huang, Y.; ZaoheWu; Jian, J. Identification of DLD, by immunoproteomic analysis and evaluation as a potential vaccine antigen against three Vibrio species in Epinephelus coioides. Vaccine 2016, 34, 1225–1231. [Google Scholar] [CrossRef]
- Du, C.; Yang, M.; Li, M.-Y.; Yang, J.; Peng, B.; Li, H.; Peng, X. Metabolic mechanism for l-leucine-induced metabolome to eliminate Streptococcus iniae. J. Proteome Res. 2017, 16, 1880–1889. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; He, L.; Luo, L.; Huang, R.; Liao, L.; Li, Y.; Zhu, Z.; Wang, Y. Transcriptomics sequencing provides insights into understanding the mechanism of grass carp reovirus infection. Int. J. Mol. Sci. 2018, 19, 488. [Google Scholar] [CrossRef]
- Syahputra, K.; Kania, P.W.; Al-Jubury, A.; Jafaar, R.M.; Dirks, R.P.; Buchmann, K. Transcriptomic analysis of immunity in rainbow trout (Oncorhynchus mykiss) gills infected by Ichthyophthirius multifiliis. Fish Shellfish Immunol. 2019, 86, 486–496. [Google Scholar] [CrossRef]
- Zhu, J.; Li, C.; Ao, Q.; Tan, Y.; Luo, Y.; Guo, Y.; Lan, G.; Jiang, H.; Gan, X. Trancriptomic profiling revealed the signatures of acute immune response in tilapia (Oreochromis niloticus) following Streptococcus iniae challenge. Fish Shellfish Immunol. 2015, 46, 346–353. [Google Scholar] [CrossRef]
- Mao, M.G.; Li, X.; Perálvarez-Marín, A.; Jiang, J.L.; Jiang, Z.Q.; Wen, S.H.; Lü, H.Q. Transcriptomic analysis and biomarkers (Rag1 and Igμ) for probing the immune system development in Pacific cod, Gadus macrocephalus. Fish Shellfish Immunol. 2015, 44, 622–632. [Google Scholar] [CrossRef]
- Wang, Y.-D.; Huang, S.-J.; Chou, H.-N.; Liao, W.-L.; Gong, H.-Y.; Chen, J.-Y. Transcriptome analysis of the effect of Vibrio alginolyticus infection on the innate immunity-related complement pathway in Epinephelus coioides. BMC Genom. 2014, 15, 1102. [Google Scholar] [CrossRef] [Green Version]
- Jazamuddin, F.M.; Aizat, W.M.; Goh, H.-H.; Low, C.-F.; Baharum, S.N. Transcriptome data of Epinephelus fuscoguttatus infected by Vibrio vulnificus. Data Br. 2018, 16, 466–469. [Google Scholar] [CrossRef]
- Maekawa, S.; Byadgi, O.; Chen, Y.-C.; Aoki, T.; Takeyama, H.; Yoshida, T.; Hikima, J.-I.; Sakai, M.; Wang, P.-C.; Chen, S.-C. Transcriptome analysis of immune response against Vibrio harveyi infection in orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol. 2017, 70, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Asmamaw, B. Hepcidin and Its Roles in Fishes. J. Zool. Stud. 2016, 3, 1–10. [Google Scholar]
- Brinchmann, M.; Patel, D.; Pinto, N.; Iversen, M. Functional aspects of fish mucosal lectins—interaction with non-self. Molecules 2018, 23, 1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lino, M.A.; Bezerra, R.F.; da Silva, C.D.C.; Carvalho, E.V.M.M.; Coelho, L.C.B.B. Fish Lectins: A Brief Review, Advances in Zoology Research; Nova Science Publishers Inc.: New York, NY, USA, 2013; Volume 5, pp. 95–114. [Google Scholar]
- Sánchez-Salgado, J.L.; Pereyra, M.A.; Agundis, C.; Vivanco-Rojas, O.; Sierra-Castillo, C.; Alpuche-Osorno, J.J.; Zenteno, E. Participation of lectins in crustacean immune system. Aquac. Res. 2017, 48, 4001–4011. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, X.; Yang, R.; Hu, J.; Zhou, S.; Yang, Q. Identification and characterization of interferon regulatory factor 1 from Lateolabrax japonicus involved in antiviral immune response against grouper nervous necrosis virus infection. Fish Shellfish Immunol. 2020, 97, 403–410. [Google Scholar] [CrossRef]
- Varela, M.; Figueras, A.; Novoa, B. Modelling viral infections using zebrafish: Innate immune response and antiviral research. Antivir. Res. 2017, 139, 59–68. [Google Scholar] [CrossRef]
- Wang, S.; Cao, Y.; Wang, S.; Cai, J.; Zhang, Z. DEHP induces immunosuppression through disturbing inflammatory factors and CYPs system homeostasis in common carp neutrophils. Fish Shellfish Immunol. 2020, 96, 26–31. [Google Scholar] [CrossRef]
- Wu, C.; Shan, J.; Feng, J.; Wang, J.; Qin, C.; Nie, G.; Ding, C. Effects of dietary Radix Rehmanniae Preparata polysaccharides on the growth performance, immune response and disease resistance of Luciobarbus capito. Fish Shellfish Immunol. 2019, 89, 641–646. [Google Scholar] [CrossRef]
- Liu, P.; Wang, L.; Kwang, J.; Yue, G.H.; Wong, S.M. Transcriptome analysis of genes responding to NNV infection in Asian seabass epithelial cells. Fish Shellfish Immunol. 2016, 54, 342–352. [Google Scholar] [CrossRef]
- Wang, P.; Wang, J.; Su, Y.Q.; Mao, Y.; Zhang, J.S.; Wu, C.W.; Ke, Q.Z.; Han, K.H.; Zheng, W.Q.; Xu, N. Di Transcriptome analysis of the Larimichthys crocea liver in response to Cryptocaryon irritans. Fish Shellfish Immunol. 2016, 48, 1–11. [Google Scholar] [CrossRef]
- Janssens, R.; Struyf, S.; Proost, P. The unique structural and functional features of CXCL12. Cell. Mol. Immunol. 2018, 15, 299–311. [Google Scholar] [CrossRef]
- Chen, K.; Bao, Z.; Tang, P.; Gong, W.; Yoshimura, T.; Wang, J.M. Chemokines in homeostasis and diseases. Cell. Mol. Immunol. 2018, 15, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Sokol, C.L.; Luster, A.D. The chemokine system in innate immunity. Cold Spring Harb. Perspect. Biol. 2015, 7, a016303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Shao, C.; Xu, W.; Zhou, Q.; Wang, N.; Chen, S. Proteome profiling reveals immune responses in Japanese flounder (Paralichthys olivaceus) infected with Edwardsiella tarda by iTRAQ analysis. Fish. Shellfish Immunol. 2017, 66, 325–333. [Google Scholar] [CrossRef]
- Di, G.; Li, H.; Zhang, C.; Zhao, Y.; Zhou, C.; Naeem, S.; Li, L.; Kong, X. Label-free proteomic analysis of intestinal mucosa proteins in common carp ( Cyprinus carpio ) infected with Aeromonas hydrophila. Fish. Shellfish Immunol. 2017, 66, 11–25. [Google Scholar] [CrossRef]
- Marcos-López, M.; Rodger, H.D.; O’Connor, I.; Braceland, M.; Burchmore, R.J.S.; Eckersall, P.D.; MacCarthy, E. A proteomic approach to assess the host response in gills of farmed Atlantic salmon Salmo salar L. affected by amoebic gill disease. Aquaculture 2017, 470, 1–10. [Google Scholar] [CrossRef]
- Wu, S.; Yu, L.; Fu, X.; Yan, X.; Lin, Q.; Liu, L.; Liang, H.; Li, N. iTRAQ-based proteomic profile analysis of ISKNV-infected CPB cells with emphasizing on glucose metabolism, apoptosis and autophagy pathways. Fish. Shellfish Immunol. 2018, 79, 102–111. [Google Scholar] [CrossRef]
- Le, Y.; Jia, P.; Jin, Y.; Liu, W.; Jia, K.; Yi, M. The antiviral role of heat shock protein 27 against red spotted grouper nervous necrosis virus infection in sea perch. Fish. Shellfish Immunol. 2017, 70, 185–194. [Google Scholar] [CrossRef]
- Das, S.; Mohapatra, A.; Sahoo, P.K. Expression analysis of heat shock protein genes during Aeromonas hydrophila infection in rohu, Labeo rohita, with special reference to molecular characterization of Grp78. Cell Stress Chaperones 2015, 20, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Jia, K.; Jia, P.; Xiang, Y.; Lu, X.; Liu, W.; Yi, M. Marine medaka heat shock protein 90ab1 is a receptor for red-spotted grouper nervous necrosis virus and promotes virus internalization through clathrin-mediated endocytosis. PLOS Pathog. 2020, 16, e1008668. [Google Scholar] [CrossRef] [PubMed]
- Lü, A.; Hu, X.; Wang, Y.; Ming, Q.; Zhu, A.; Shen, L.; Feng, Z. Proteomic analysis of differential protein expression in the skin of zebrafish [Danio rerio (Hamilton, 1822)] infected with Aeromonas hydrophila. J. Appl. Ichthyol. 2014, 30, 28–34. [Google Scholar] [CrossRef]
- Anes, E. Acting on Actin During Bacterial Infection. In Cytoskeleton - Structure, Dynamics, Function and Disease; InTech: London, UK, 2017. [Google Scholar]
- Mao, Y.; Finnemann, S.C. Regulation of phagocytosis by Rho GTPases. Small GTPases 2015, 6, 89–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uribe-Querol, E.; Rosales, C. Control of phagocytosis by microbial pathogens. Front. Immunol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Batters, C.; Veigel, C.; Homsher, E.; Sellers, J.R. To understand muscle you must take it apart. Front. Physiol. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Brito, C.; Sousa, S. Non-muscle myosin 2A (NM2A): Structure, regulation and function. Cells 2020, 9, 1590. [Google Scholar] [CrossRef]
- Habte-Tsion, H.-M.; Ren, M.; Liu, B.; Ge, X.; Xie, J.; Chen, R. Threonine modulates immune response, antioxidant status and gene expressions of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala). Fish. Shellfish Immunol. 2016, 51, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Rajan, B.; Lokesh, J.; Kiron, V.; Brinchmann, M.F. Differentially expressed proteins in the skin mucus of Atlantic cod (Gadus morhua) upon natural infection with Vibrio Anguillarum. BMC Vet. Res. 2013, 9, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Z.; Ma, Y.; Li, H.; Peng, X. N-acetylglucosamine enhances survival ability of tilapias infected by Streptococcus iniae. Fish. Shellfish Immunol. 2014, 40, 524–530. [Google Scholar] [CrossRef]
- Padra, J.T.; Sundh, H.; Sundell, K.; Venkatakrishnan, V.; Jin, C.; Samuelsson, T.; Karlsson, N.G.; Lindén, S.K. Aeromonas salmonicida growth in response to Atlantic salmon mucins differs between epithelial sites, is governed by sialylated and N -acetylhexosamine-containing O -glycans, and is affected by Ca 2+. Infect. Immun. 2017, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, C.; Huang, X.; Yang, M.; Wang, S.; Ren, S.; Li, H.; Peng, X. GC/MS-based metabolomics approach to identify biomarkers differentiating survivals from death in crucian carps infected by Edwardsiella tarda. Fish. Shellfish Immunol. 2014, 39, 215–222. [Google Scholar] [CrossRef]
- Nurdalila, A.A.; Natnan, M.E.; Baharum, S.N. The effects of amino acids and fatty acids on the disease resistance of Epinephelus fuscoguttatus in response to Vibrio vulnificus infection. 3 Biotech 2020, 10, 544. [Google Scholar] [CrossRef] [PubMed]
- Lardon, I.; Eyckmans, M.; Vu, T.N.; Laukens, K.; De Boeck, G.; Dommisse, R. 1H-NMR study of the metabolome of a moderately hypoxia-tolerant fish, the common carp (Cyprinus carpio). Metabolomics 2013, 9, 1216–1227. [Google Scholar] [CrossRef]
- Zhou, B.S.; Wu, R.S.S.; Randall, D.J.; Lam, P.K.S.; Ip, Y.K.; Chew, S.F. Metabolic adjustments in the common carp during prolonged hypoxia. J. Fish. Biol. 2000, 57, 1160–1171. [Google Scholar] [CrossRef]
- Wang, Y.; Haipeng, S.; Lu, G.; Ren, S.; Chen, J. Catabolism of branched-chain amino acids in heart failure: Insights from genetic models. Pediatr. Cardiol. 2011, 32, 305–310. [Google Scholar] [CrossRef]
- Lardon, I.; Nilsson, G.E.; Stecyk, J.A.W.; Vu, T.N.; Laukens, K.; Dommisse, R.; De Boeck, G. 1H-NMR study of the metabolome of an exceptionally anoxia tolerant vertebrate, the crucian carp (Carassius carassius). Metabolomics 2013, 9, 311–323. [Google Scholar] [CrossRef]
- Kokushi, E.; Uno, S.; Pal, S.; Koyama, J. Effects of chlorpyrifos on the metabolome of the freshwater carp, Cyprinus Carpio. Environ. Toxicol. 2015, 30, 253–260. [Google Scholar] [CrossRef]
- Nurdalila, A.A.; Mayalvanan, Y.; Baharum, S.N. Metabolite profiling of Epinephelus fuscoguttatus infected with vibriosis reveals Omega 9 as potential metabolite biomarker. Fish. Physiol. Biochem. 2019, 45, 1203–1215. [Google Scholar] [CrossRef]
- Corrêa-Oliveira, R.; Fachi, J.L.; Vieira, A.; Sato, F.T.; Vinolo, M.A.R. Regulation of immune cell function by short-chain fatty acids. Clin. Transl. Immunol. 2016, 5, e73. [Google Scholar] [CrossRef]
- Harrison, L.; Balan, K.; Babu, U. Dietary fatty acids and immune response to food-borne bacterial infections. Nutrients 2013, 5, 1801–1822. [Google Scholar] [CrossRef]
- Jalili, S.; Pour, F.; Zoriastein, N. Comparison fatty acid composition of orange-spotted grouper (Epinephelus coioides); four finger threadfins (Eleutheronema thetradactylium) in Khuzestan Coastal Waters (Persian Gulf). Am. J. Agric. Environ. Sci. 2013, 13, 826–830. [Google Scholar] [CrossRef]
- Ling, X.; Dong, W.; Zhang, Y.; Qian, X.; Zhang, W.; He, W.; Zhao, X.; Liu, J. Comparative transcriptomics and histopathological analysis of crucian carp infection by atypical Aeromonas salmonicida. Fish. Shellfish Immunol. 2019, 94, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Cai, X.; Fu, Q.; Yang, N.; Song, L.; Su, B.; Tan, F.; Liu, B.; Li, C. Dynamics of MiRNA Transcriptome in turbot (Scophthalmus maximus L.) intestine following Vibrio anguillarum infection. Mar. Biotechnol. 2019, 21, 550–564. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Rexroad, C.; Thorgaard, G.; Yao, J.; Salem, M. Characterization of the rainbow trout spleen transcriptome and identification of immune-related genes. Front. Genet. 2014, 5, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Z.; Wu, P.; Zhang, Q.; Wei, Y.; Wang, Z.; Qiu, M.; Shao, R.; Li, Y.; Gao, Q. Transcriptome analysis of soiny mullet (Liza haematocheila) spleen in response to Streptococcus dysgalactiae. Fish. Shellfish Immunol. 2016, 49, 194–204. [Google Scholar] [CrossRef]
- Hu, Y.; Li, A.; Xu, Y.; Jiang, B.; Lu, G.; Luo, X. Transcriptomic variation of locally-infected skin of Epinephelus coioides reveals the mucosal immune mechanism against Cryptocaryon irritans. Fish. Shellfish Immunol. 2017, 66, 398–410. [Google Scholar] [CrossRef]
- Chen, W.; Yi, L.; Feng, S.; Liu, X.; Asim, M.; Zhou, Y.; Lan, J.; Jiang, S.; Tu, J.; Lin, L. Transcriptomic profiles of striped snakehead fish cells (SSN-1) infected with red-spotted grouper nervous necrosis virus (RGNNV) with an emphasis on apoptosis pathway. Fish. Shellfish Immunol. 2017, 60, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Dettleff, P.; Moen, T.; Santi, N.; Martinez, V. Transcriptomic analysis of spleen infected with infectious salmon anemia virus reveals distinct pattern of viral replication on resistant and susceptible Atlantic salmon (Salmo salar). Fish. Shellfish Immunol. 2017, 61, 187–193. [Google Scholar] [CrossRef]
- Lee, X.; Yi, Y.; Weng, S.; Zeng, J.; Zhang, H.; He, J.; Dong, C. Transcriptomic analysis of koi (Cyprinus carpio) spleen tissue upon cyprinid herpesvirus 3 (CyHV3) infection using next generation sequencing. Fish. Shellfish Immunol. 2016, 49, 213–224. [Google Scholar] [CrossRef]
- Kumar, G.; Hummel, K.; Razzazi-Fazeli, E.; El-Matbouli, M. Modulation of posterior intestinal mucosal proteome in rainbow trout (Oncorhynchus mykiss) after Yersinia ruckeri infection. Vet. Res. 2019, 50, 54. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Dan, C.; Ren, F.; Su, Z.; Zhang, Y.; Mei, J. Proteomic profiling of yellow catfish (Pelteobagrus fulvidraco) skin mucus identifies differentially-expressed proteins in response to Edwardsiella ictaluri infection. Fish. Shellfish Immunol. 2020, 100, 98–108. [Google Scholar] [CrossRef]
- Fu, S.; Ding, M.; Liang, Q.; Yang, Y.; Chen, M.; Wei, X.; Wang, A.; Liao, S.; Ye, J. The key differentially expressed genes and proteins related to immune response in the spleen of pufferfish (Takifugu obscurus) infected by Aeromonas Hydrophila. Fish. Shellfish Immunol. 2019, 91, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.M.; Brinchmann, M.F. Skin mucus proteins of lumpsucker (Cyclopterus lumpus). Biochem. Biophys. Rep. 2017, 9, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Jurado, J.; Fuentes-Almagro, C.A.; Guardiola, F.A.; Cuesta, A.; Esteban, M.Á.; Prieto-Álamo, M.-J. Proteomic profile of the skin mucus of farmed gilthead seabream (Sparus aurata). J. Proteom. 2015, 120, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Gong, Q.; Lai, S.; Cheng, Z.; Chen, Z.; Zheng, J.; Peng, B. Phenylalanine enhances innate immune response to clear ceftazidime-resistant Vibrio alginolyticus in Danio rerio. Fish. Shellfish Immunol. 2019, 84, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yang, M.; Wang, S.; Li, H.; Peng, X. Liver functional metabolomics discloses an action of l-leucine against Streptococcus iniae infection in tilapias. Fish. Shellfish Immunol. 2015, 45, 414–421. [Google Scholar] [CrossRef]
- Zhao, X.; Han, Y.; Ren, S.; Ma, Y.; Li, H.; Peng, X. l-proline increases survival of tilapias infected by Streptococcus agalactiae in higher water temperature. Fish. Shellfish Immunol. 2015, 44, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Peng, B.; Song, M.; Wu, C.; Yang, M.; Zhang, J.-Y.; Li, H. Live Edwardsiella tarda vaccine enhances innate immunity by metabolic modulation in zebrafish. Fish. Shellfish Immunol. 2015, 47, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.F.; Li, X.; Hua, X.T.; Cheng, J.X. Metabolomics profiling for the identification of potential biomarkers in blood serum of Takifugu rubripes challenged with Cryptocaryon Irritans. Aquac. Res. 2021, 52, 4512–4525. [Google Scholar] [CrossRef]
- Kodama, H.; Otani, K.; Iwasaki, T.; Takenaka, S.; Horitani, Y.; Togase, H. Metabolomic investigation of pathogenesis of myxosporean emaciation disease of tiger puffer fish Takifugu rubripes. J. Fish. Dis. 2014, 37, 619–627. [Google Scholar] [CrossRef]
- Fu, X.; Guo, X.; Wu, S.; Lin, Q.; Liu, L.; Liang, H.; Niu, Y.; Li, N. Non-targeted UHPLC-Q-TOF/MS-based metabolomics reveals a metabolic shift from glucose to glutamine in CPB cells during ISKNV infection cycle. Metabolites 2019, 9, 174. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhang, Y.; Zheng, J.; Wang, L.; Qin, Q.; Huang, X. Metabolic profiles of fish nodavirus infection in vitro: RGNNV induced and exploited cellular fatty acid synthesis for virus infection. Cell. Microbiol. 2020, 22. [Google Scholar] [CrossRef]
- Tang, M.; Xu, X.; Li, S.; Wu, T.; Yan, Y.; Gu, W.; Wang, W.; Jiang, Y.; Meng, Q. The metabolic responses of crucian carp blood to Cyprinid herpesvirus 2 infection. Aquaculture 2019, 498, 72–82. [Google Scholar] [CrossRef]
- Quezada, H.; Guzmán-Ortiz, A.L.; Díaz-Sánchez, H.; Valle-Rios, R.; Aguirre-Hernández, J. Omics-based biomarkers: Current status and potential use in the clinic. Boletín Médico Del Hosp. Infant. México Engl. Ed. 2017, 74, 219–226. [Google Scholar] [CrossRef]
- Trzeciak, A.; Pietropaoli, A.P.; Kim, M. Biomarkers and associated immune mechanisms for early detection and therapeutic management of sepsis. Immune Netw. 2020, 20. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Sha, J.; Liu, S.; Bao, L.; Zhang, J.; Wang, R.; Yao, J.; Li, C.; Feng, J.; Sun, F.; et al. A genome-wide association study in catfish reveals the presence of functional hubs of related genes within QTLs for columnaris disease resistance. BMC Genom. 2015, 16. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.F.; Xia, Y.; Hua, X.T.; Fan, K.; Li, X.; Zhang, Z.; Liu, Y. Quantitative proteomic analysis in serum of Takifugu rubripes infected with Cryptocaryon irritans. Fish. Shellfish Immunol. 2020, 104, 213–221. [Google Scholar] [CrossRef]
- Peng, B.; Ma, Y.; Zhang, J.; Li, H. Metabolome strategy against Edwardsiella tarda infection through glucose-enhanced metabolic modulation in tilapias. Fish. Shellfish Immunol. 2015, 45, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Barr, A.J. The biochemical basis of disease. Essays Biochem. 2018, 62, 619–642. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.S.; Carvalho, M.; Bastos, M.L.; Guedes de Pinho, P. Metabolomics analysis for biomarker discovery: Advances and challenges. Curr. Med. Chem. 2013, 20, 257–271. [Google Scholar] [CrossRef]
- Aretz, I.; Meierhofer, D. Advantages and pitfalls of mass spectrometry based metabolome profiling in systems biology. Int. J. Mol. Sci. 2016, 17, 632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiktorowicz, J.E.; Soman, K.V. Discovery of Candidate Biomarkers. In Modern Proteomics–Sample Preparation, Analysis and Practical Applications; Mirzaei, H., Carrasco, M., Eds.; Springer: Cham, Switzerland, 2016; Volume 919, pp. 443–463. [Google Scholar]
Omics Approach | Fish/Infection | Organ/Tissue Samples | Technique | Potential Biomarkers | Study |
---|---|---|---|---|---|
Genomics | Channel catfish (Ictalurus punctatus) Columnaris disease (Flavobacterium columnare) | Blood | Affymetrix Axiom genotyping array technology | Genes:
| [170] |
Proteomics | Japanese puffer (Takifugu rubripes) (Cryptocaryon irritans) | Blood serum | Orbitrap coupled to UPLC/MS analysis | Proteins:
| [171] |
Metabolomics | Juvenille tilapias Edwardsiellosis (Edwardsiella tarda) | Liver | GC-MS analysis | Metabolite:
| [172] |
Metabolomics | Atlantic salmon Furunculosis (Aeromonas salmonisida) | Kidney | H-NMR analysis | Metabolite:
| [40] |
Metabolomics | Tilapias (Streptococcus iniae) | Liver | GC-MS analysis | Metabolite:
| [133] |
Metabolomics | Brown-marble grouper (Epinephelus fuscogutttus) Vibriosis (Vibrio vulnificus) | Muscle tissue | GC-MS analysis | Metabolite:
| [136] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natnan, M.E.; Mayalvanan, Y.; Jazamuddin, F.M.; Aizat, W.M.; Low, C.-F.; Goh, H.-H.; Azizan, K.A.; Bunawan, H.; Baharum, S.N. Omics Strategies in Current Advancements of Infectious Fish Disease Management. Biology 2021, 10, 1086. https://doi.org/10.3390/biology10111086
Natnan ME, Mayalvanan Y, Jazamuddin FM, Aizat WM, Low C-F, Goh H-H, Azizan KA, Bunawan H, Baharum SN. Omics Strategies in Current Advancements of Infectious Fish Disease Management. Biology. 2021; 10(11):1086. https://doi.org/10.3390/biology10111086
Chicago/Turabian StyleNatnan, Maya Erna, Yosmetha Mayalvanan, Fahmeeda Mohd Jazamuddin, Wan Mohd Aizat, Chen-Fei Low, Hoe-Han Goh, Kamalrul Azlan Azizan, Hamidun Bunawan, and Syarul Nataqain Baharum. 2021. "Omics Strategies in Current Advancements of Infectious Fish Disease Management" Biology 10, no. 11: 1086. https://doi.org/10.3390/biology10111086
APA StyleNatnan, M. E., Mayalvanan, Y., Jazamuddin, F. M., Aizat, W. M., Low, C. -F., Goh, H. -H., Azizan, K. A., Bunawan, H., & Baharum, S. N. (2021). Omics Strategies in Current Advancements of Infectious Fish Disease Management. Biology, 10(11), 1086. https://doi.org/10.3390/biology10111086