Magnetic Resonance Assessment of Ejection Fraction Versus Echocardiography for Cardioverter-Defibrillator Implantation Eligibility
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
- related to echocardiography (comorbidities altering the quality of echocardiography):
- obesity;
- emphysema;
- specific to CMR:
- claustrophobia;
- metallic prosthetic implants;
- known allergy to the contrast agents;
- related to patient conditions:
- uncontrolled arrhythmias;
- pregnancy or lactation;
- high-grade valve diseases or shunts;
- a cardiac resynchronization or a cardiac revascularization procedure that happened between 2DE and CMR examinations.
2.2. Echocardiography
2.3. Cardiovascular Magnetic Resonance—Acquisition and Analysis
2.4. Statistical Analysis
3. Results
3.1. Baseline Patient Characteristics
3.2. Agreement between CMR and Echocardiography Measurements
3.3. The Specific Value of EF Agreement between CMR and Cardiac Echography and Its Implication in ICD Eligibility
4. Discussion
4.1. Quantitative Measurements Agreement
4.2. Qualitative EF Measurements’ Agreement and ICD Eligibility Implications
4.3. Comparison with Other Studies
4.4. Discussion about Future of Diagnostic Method Roles in ICD Eligibility
4.5. Generalisability
4.6. Limitations
4.7. Study Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Popa, L.; Petresc, B.; Cătană, C.; Moldovanu, C.; Feier, D.; Lebovici, A.; Schiau, C.; Rancea, R.; Molnar, A.; Buruian, M. Association between cardiovascular risk factors and coronary artery disease assessed using CAD-RADS classification: A cross-sectional study in Romanian population. BMJ Open 2020, 10, e031799. [Google Scholar] [CrossRef] [Green Version]
- Schiau, C.; Schiau, Ș.; Dudea, S.; Manole, S. Cardiovascular magnetic resonance: Contribution to the exploration of cardiomyopathies. Med. Pharm. Rep. 2019, 92, 326–336. [Google Scholar] [CrossRef]
- Maron, B.; Towbin, J.; Thiene, G.; Antzelevitch, C.; Corrado, D.; Arnett, D.; Moss, A.; Seidman, C.; Young, J. Contemporary Definitions and Classification of the Cardiomyopathies: An American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 2006, 113, 1807–1816. [Google Scholar]
- Ip, J.; Kantipudi, S.; Khasnis, A.; Virk, I.; Khan, S. Prophylactic Defibrillator Implantation in Patients with Nonischemic Dilated Cardiomyopathy. Cardiac-Resynchronization Therapy With or Without an Implantable Defibrillator in Advanced Chronic Heart Failure. Congest. Heart Fail. 2004, 10, 257–258. [Google Scholar] [CrossRef]
- Bardy, G.H.; Lee, K.; Mark, D.; Poole, J.; Packer, D.; Boineau, R.; Domanski, M.; Troutman, C.; Anderson, J.; Johnson, G.; et al. Amiodarone or an Implantable Cardioverter–Defibrillator for Congestive Heart Failure. N. Engl. J. Med. 2005, 352, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Al-Khatib, S.; Stevenson, W.; Ackerman, M.; Bryant, W.; Callans, D.; Curtis, A.; Deal, B.; Dickfeld, T.; Field, M.; Fonarow, G.; et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Executive summary. Heart Rhythm 2018, 15, e190–e252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wellens, H.; Schwartz, P.; Lindemans, F.; Buxton, A.; Goldberger, J.; Hohnloser, S.; Huikuri, H.; Kaab, S.; La Rovere, M.; Malik, M.; et al. Risk stratification for sudden cardiac death: Current status and challenges for the future. Eur. Heart J. 2014, 35, 1642–1651. [Google Scholar] [CrossRef] [Green Version]
- Lang, R.; Badano, L.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.; Foster, E.; Goldstein, S.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–271. [Google Scholar] [CrossRef]
- Wu, K.; Calkins, H. Powerlessness of a Number Why Left Ventricular Ejection Fraction Matters Less for Sudden Cardiac Death Risk Assessment. Circ. Cardiovasc. Imaging 2016, 9, e005519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontone, G.; Guaricci, A.; Andreini, D.; Solbiati, A.; Guglielmo, M.; Mushtaq, S.; Baggiano, A.; Beltrama, V.; Fusini, L.; Rota, C.; et al. Prognostic Benefit of Cardiac Magnetic Resonance Over Transthoracic Echocardiography for the Assessment of Ischemic and Nonischemic Dilated Cardiomyopathy Patients Referred for the Evaluation of Primary Prevention Implantable Cardioverter–Defibrillator Therapy. Circ. Cardiovasc. Imaging 2016, 9, e004956. [Google Scholar] [CrossRef] [Green Version]
- Wood, P.; Choy, J.; Nanda, N.; Becher, H. Left Ventricular Ejection Fraction and Volumes: It Depends on the Imaging Method. Echocardiography 2013, 31, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Walsh, T.; Hundley, W. Assessment of Ventricular Function with Cardiovascular Magnetic Resonance. Cardiol. Clin. 2007, 25, 15–33. [Google Scholar] [CrossRef] [PubMed]
- Rehr, R.; Malloy, C.; Filipchuk, N.; Peshock, R. Left ventricular volumes measured by MR imaging. Radiology 1985, 156, 717–719. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Harrell, F.E.; Davis, C.E. A new distribution-free quantile estimator. Biometrika 1982, 69, 635–640. [Google Scholar] [CrossRef]
- Gerke, O. Nonparametric Limits of Agreement in Method Comparison Studies: A Simulation Study on Extreme Quantile Estimation. Int. J. Environ. Res. Public Health 2020, 17, 8330. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID>=2342186 (accessed on 23 October 2021).
- Whiteman, S.; Alimi, Y.; Carrasco, M.; Gielecki, J.; Zurada, A.; Loukas, M. Anatomy of the cardiac chambers: A review of the left ventricle. Transl. Res. Anat. 2021, 23, 100095. [Google Scholar]
- Pinto, Y.; Elliott, P.; Arbustini, E.; Adler, Y.; Anastasakis, A.; Böhm, M.; Duboc, D.; Gimeno, J.; de Groote, P.; Imazio, M.; et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: A position statement of the ESC working group on myocardial and pericardial diseases. Eur. Heart J. 2016, 37, 1850–1858. [Google Scholar] [CrossRef] [Green Version]
- Kuniewicz, M.; Baszko, A.; Ali, D.; Karkowski, G.; Loukas, M.; Walocha, J.A.; Hołda, M.K. Left Ventricular Summit—Concept, Anatomical Structure and Clinical Significance. Diagnostics 2021, 11, 1423. [Google Scholar] [CrossRef]
- Kumagai, K. Idiopathic ventricular arrhythmias arising from the left ventricular outflow tract: Tips and tricks. J. Arrhythmia 2014, 30, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Viera, A.J.; Garrett, J.M. Understanding interobserver agreement: The kappa statistic. Fam. Med. 2005, 37, 360–363. [Google Scholar]
- Joshi, S.; Connelly, K.; Jimenez-Juan, L.; Hansen, M.; Kirpalani, A.; Dorian, P.; Mangat, I.; Al-Hesayen, A.; Crean, A.; Wright, G.; et al. Potential clinical impact of cardiovascular magnetic resonance assessment of ejection fraction on eligibility for cardioverter defibrillator implantation. J. Cardiovasc. Magn. Reson. 2012, 14, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rijnierse, M.; van der Lingen, A.; Weiland, M.; de Haan, S.; Nijveldt, R.; Beek, A.; van Rossum, A.; Allaart, C. Clinical Impact of Cardiac Magnetic Resonance Imaging Versus Echocardiography-Guided Patient Selection for Primary Prevention Implantable Cardioverter Defibrillator Therapy. Am. J. Cardiol. 2015, 116, 406–412. [Google Scholar] [CrossRef]
- Scott, P.; Rosengarten, J.; Curzen, N.; Morgan, J. Late gadolinium enhancement cardiac magnetic resonance imaging for the prediction of ventricular tachyarrhythmic events: A meta-analysis. Eur. J. Heart Fail. 2013, 15, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Wu, K. Sudden Cardiac Death Substrate Imaged by Magnetic Resonance Imaging: From Investigational Tool to Clinical Applications. Circ. Cardiovasc. Imaging 2017, 10, e005461. [Google Scholar] [CrossRef] [Green Version]
- Rayatzadeh, H.; Patel, S.; Hauser, T.; Ngo, L.; Shaw, J.; Tan, A.; Buxton, A.; Zimetbaum, P.; Josephson, M.; Appelbaum, E.; et al. Volumetric Left Ventricular Ejection Fraction is Superior to 2-Dimensional Echocardiography for Risk Stratification of Patients for Primary Prevention Implantable Cardioverter-Defibrillator Implantation. Am. J. Cardiol. 2013, 111, 1175–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hare, J.; Jenkins, C.; Nakatani, S.; Ogawa, A.; Yu, C.; Marwick, T. Feasibility and clinical decision-making with 3D echocardiography in routine practice. Heart 2007, 94, 440–445. [Google Scholar] [CrossRef] [Green Version]
- Gaibazzi, N.; Bianconcini, M.; Marziliano, N.; Parrini, I.; Conte, M.; Siniscalchi, C.; Faden, G.; Faggiano, P.; Pigazzani, F.; Grassi, F.; et al. Scar Detection by Pulse-Cancellation Echocardiography. JACC Cardiovasc. Imaging 2016, 9, 1239–1251. [Google Scholar] [CrossRef]
- Gaibazzi, N.; Suma, S.; Lorenzoni, V.; Sartorio, D.; Pressman, G.; Siniscalchi, C.; Garibaldi, S. Myocardial Scar by Pulse-Cancellation Echocardiography Is Independently Associated with Appropriate Defibrillator Intervention for Primary Prevention after Myocardial Infarction. J. Am. Soc. Echocardiogr. 2020, 33, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Tomoaia, R.; Molnar, A.; Beyer, R.; Dădârlat-Pop, A.; Frîngu, F.; Gurzau, D.; Simu, G.; Minciună, I.; Caloian, B.; Zdrenghea, D.; et al. The role of multimodal imaging in the diagnosis of an asymptomatic patient with congenital anomaly. Med. Ultrason. 2021, 23, 231. [Google Scholar] [CrossRef] [Green Version]
- Teichholz, L.; Kreulen, T.; Herman, M.; Gorlin, R. Problems in echocardiographic volume determinations: Echocardiographic-angiographic correlations in the presence or absence of asynergy. Am. J. Cardiol. 1976, 37, 7–11. [Google Scholar] [CrossRef]
- Krahn, A.; Hoch, J.; Rockx, M.; Leong-Sit, P.; Gula, L.; Yee, R.; Skanes, A.; Klein, G. Cost of Preimplantation Cardiac Imaging in Patients Referred for a Primary-Prevention Implantable Cardioverter-Defibrillator. Am. J. Cardiol. 2008, 102, 588–592. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Number (%) (n = 166) |
---|---|
Age (years), mean (SD) | 46.35 (16.16) |
Males, n (%) | 119/166 (71.69) |
BMI (kg/m2), median (IQR) | 25.72 (23.35–29.36) |
BSA, median (IQR) | 1.95 (1.82–2.08) |
Heart disease, n (%) | |
Dilatative cardiomyopathy | 102/166 (61.45) |
Hypertrophic cardiomyopathy | 21/166 (12.65) |
Myocarditis | 34/166 (20.48) |
Fibrosis | 9/166 (5.42) |
Clinical symptoms | 121/152 (79.61) |
NYHA class | 1: 43/141 (30.5) |
2: 41/141 (29.08) | |
3: 56/141 (39.72) | |
4: 1/141 (0.71) | |
High blood pressure | 43/148 (29.05) |
Smoker, n (%) | 67/156 (42.95) |
Diabetes, n (%) | 32/156 (20.51) |
LVEF CMR, median (IQR) | 40.6 (25.2–56.15) |
LVEF echography, median (IQR) | 42 (29.5–55) |
EDV-LV CMR, median (IQR) | 207.25 (157.48–278.75) |
EDV-LV echography, median (IQR) | 150 (108–201) |
ESV-LV CMR, median (IQR) | 127 (66.62–201.4) |
ESV-LV echography, median (IQR) | 86 (52–132) |
IVS CMR, median (IQR) | 10 (9–11) |
IVS echography, median (IQR) | 11 (9–12) |
Bias * (95% CI) | Limits of Agreement *, lb~ub (95% CI) | Bias BA (95% CI) | Limits of Agreement BA, lb~ub (95% CI) | |
---|---|---|---|---|
EDV LV | 61.7 (95% CI 49.6–76.5) | −51.8 (95% CI −57.2–−36.5)~204.2 (95% CI 166.6–230.1) | 68.3 (58.2–78.4) | −59.4 (−69.5–−49.3)~196 (185.9–206.2) |
ESV LV | 32.3 (95% CI 24.7–39.6) | −44.3 (95% CI −69.2–−20)~176 (95% CI 157.9–195.7) | 47.3 (38.4–56.3) | −65.3 (−74.2–−56.3)~159.9 (151–168.9) |
EF | −0.9 (95% CI−3.2–1.3) | −20.4 (95% CI −23.7–−17.1)~19.6 (95% CI 15.5–24.7) | −0.7 (−2.3–0.9) | −20.5 (−22.2–−18.9)~19.1 (17.5–20.7) |
CMR EF | |||
---|---|---|---|
Echography EF (all subjects) | >=35% n (% of total) | <35% n (% of total) | Total |
>=35% | 84 (55.6) | 12 (7.9) | 96 |
<35% | 4 (2.6) | 51 (33.8) | 55 |
Total | 88 | 63 | 151 * |
Echography EF (CMR EF < 50%) | >=35% | <35% | Total |
>=35% | 20 (23.0) | 12 (13.8) | 32 |
<35% | 4 (4.6) | 51 (58.6) | 55 |
Total | 24 | 63 | 87 * |
Echography EF (all subjects) | >=30% | <30% | Total |
>=30% | 96 (63.6) | 17 (11.3) | 113 |
< 30% | 5 (3.3) | 33 (21.9) | 38 |
Total | 101 | 50 | 151 * |
Echography EF (CMR EF < 35%) | >=30% | <30% | Total |
>=30% | 10 (15.9) | 17 (27.0) | 27 |
<30% | 3 (4.8) | 33 (52.4) | 38 |
Total | 13 | 50 | 151 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schiau, C.; Leucuța, D.-C.; Dudea, S.M.; Manole, S. Magnetic Resonance Assessment of Ejection Fraction Versus Echocardiography for Cardioverter-Defibrillator Implantation Eligibility. Biology 2021, 10, 1108. https://doi.org/10.3390/biology10111108
Schiau C, Leucuța D-C, Dudea SM, Manole S. Magnetic Resonance Assessment of Ejection Fraction Versus Echocardiography for Cardioverter-Defibrillator Implantation Eligibility. Biology. 2021; 10(11):1108. https://doi.org/10.3390/biology10111108
Chicago/Turabian StyleSchiau, Călin, Daniel-Corneliu Leucuța, Sorin Marian Dudea, and Simona Manole. 2021. "Magnetic Resonance Assessment of Ejection Fraction Versus Echocardiography for Cardioverter-Defibrillator Implantation Eligibility" Biology 10, no. 11: 1108. https://doi.org/10.3390/biology10111108