Cell Therapy for Neurological Disorders: The Perspective of Promising Cells
Abstract
:Simple Summary
Abstract
1. Introduction
2. Cell Source: Autologous or Allogeneic?
3. Different Cell Types and the Current Progress
3.1. Embryonic Stem Cells (hESCs)
3.2. Induced Pluripotent Stem Cells (iPSCs)
3.3. Neural Stem/Progenitor Cells (NSPCs)
3.4. Neurons, Oligodendrocytes, and Astrocytes
3.5. Mesenchymal Stromal/Stem Cells (MSCs)
3.6. Dental Pulp Stem Cells (DPSCs) and Stem Cells from Human Exfoliated Deciduous Teeth (SHED)
3.7. Muse Cells
3.8. Olfactory Ensheathing Cells (OECs)
3.9. Hematopoietic Stem Cells (HSCs)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Muthuraman, M.; Koirala, N.; Ciolac, D.; Pintea, B.; Glaser, M.; Groppa, S.; Tamas, G.; Groppa, S. Deep brain stimulation and l-dopa therapy: Concepts of action and clinical applications in parkinson’s disease. Front. Neurol. 2018, 9, 711. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, S.; Kishi, T.; Iwata, N. Combination therapy with cholinesterase inhibitors and memantine for alzheimer’s disease: A systematic review and meta-analysis. Int. J. Neuropsychopharmacol. 2014, 18, P859–P860. [Google Scholar] [CrossRef]
- Besusso, D.; Schellino, R.; Boido, M.; Belloli, S.; Parolisi, R.; Conforti, P.; Faedo, A.; Cernigoj, M.; Campus, I.; Laporta, A.; et al. Stem cell-derived human striatal progenitors innervate striatal targets and alleviate sensorimotor deficit in a rat model of huntington disease. Stem Cell Rep. 2020, 14, 876–891. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.R.; Marote, A.; Mendes-Pinheiro, B.; Teixeira, F.G.; Salgado, A.J. Cell secretome based approaches in parkinson’s disease regenerative medicine. Expert Opin. Biol. Ther. 2018, 18, 1235–1245. [Google Scholar] [CrossRef]
- Bellak, T.; Fekecs, Z.; Torok, D.; Tancos, Z.; Nemes, C.; Tezsla, Z.; Gal, L.; Polgari, S.; Kobolak, J.; Dinnyes, A.; et al. Grafted human induced pluripotent stem cells improve the outcome of spinal cord injury: Modulation of the lesion microenvironment. Sci. Rep. 2020, 10, 22414. [Google Scholar] [CrossRef]
- Mason, C.; Dunnill, P. Assessing the value of autologous and allogeneic cells for regenerative medicine. Regen. Med. 2009, 4, 835–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shroff, G. A review on stem cell therapy for multiple sclerosis: Special focus on human embryonic stem cells. Stem Cells Cloning 2018, 11, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Gioia, R.; Biella, F.; Citterio, G.; Rizzo, F.; Abati, E.; Nizzardo, M.; Bresolin, N.; Comi, G.P.; Corti, S. Neural stem cell transplantation for neurodegenerative diseases. Int. J. Mol. Sci. 2020, 21, 3103. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Benda, C.; Dunzinger, S.; Huang, Y.; Ho, J.C.; Yang, J.; Wang, Y.; Zhang, Y.; Zhuang, Q.; Li, Y.; et al. Generation of human induced pluripotent stem cells from urine samples. Nat. Protoc. 2012, 7, 2080–2089. [Google Scholar] [CrossRef] [PubMed]
- Capetian, P.; Azmitia, L.; Pauly, M.G.; Krajka, V.; Stengel, F.; Bernhardi, E.M.; Klett, M.; Meier, B.; Seibler, P.; Stanslowsky, N.; et al. Plasmid-based generation of induced neural stem cells from adult human fibroblasts. Front. Cell Neurosci. 2016, 10, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augustyniak, J.; Zychowicz, M.; Podobinska, M.; Barta, T.; Buzanska, L. Reprogramming of somatic cells: Possible methods to derive safe, clinical-grade human induced pluripotent stem cells. Acta Neurobiol. Exp. 2014, 74, 373–382. [Google Scholar]
- Ebrahimi, A.; Keske, E.; Mehdipor, A.; Ebrahimi-Kalan, A.; Ghorbani, M. Somatic cell reprogramming as a tool for neurodegenerative diseases. Biomed. Pharmacother. 2019, 112, 108663. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Sun, J. A revolution in reprogramming: Small molecules. Curr. Mol. Med. 2019, 19, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.Z.; Zhang, Y.; Wu, F.; Min, W.P.; Minev, B.; Zhang, M.; Luo, X.L.; Ramos, F.; Ichim, T.E.; Riordan, N.H.; et al. Safety evaluation of allogeneic umbilical cord blood mononuclear cell therapy for degenerative conditions. J. Transl. Med. 2010, 8, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.S.; Lin, G.; Lue, T.F. Allogeneic and xenogeneic transplantation of adipose-derived stem cells in immunocompetent recipients without immunosuppressants. Stem Cells Dev. 2012, 21, 2770–2778. [Google Scholar] [CrossRef] [Green Version]
- Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic stem cell lines derived from human blastocysts. Science 1998, 282, 1145–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, J.W.; Liu, X.Z.; Qu, Y.; Liu, S.; Mickey, S.K.; Turetsky, D.; Gottlieb, D.I.; Choi, D.W. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. 1999, 5, 1410–1412. [Google Scholar] [CrossRef]
- Srivastava, A.S.; Shenouda, S.; Mishra, R.; Carrier, E. Transplanted embryonic stem cells successfully survive, proliferate, and migrate to damaged regions of the mouse brain. Stem Cells 2006, 24, 1689–1694. [Google Scholar] [CrossRef]
- Liu, X.; Li, W.; Fu, X.; Xu, Y. The immunogenicity and immune tolerance of pluripotent stem cell derivatives. Front. Immunol. 2017, 8, 645. [Google Scholar] [CrossRef] [Green Version]
- Hentze, H.; Soong, P.L.; Wang, S.T.; Phillips, B.W.; Putti, T.C.; Dunn, N.R. Teratoma formation by human embryonic stem cells: Evaluation of essential parameters for future safety studies. Stem Cell Res. 2009, 2, 198–210. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.S.; Tang, C.; Rao, M.S.; Weissman, I.L.; Wu, J.C. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat. Med. 2013, 19, 998–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acquarone, M.; de Melo, T.M.; Meireles, F.; Brito-Moreira, J.; Oliveira, G.; Ferreira, S.T.; Castro, N.G.; Tovar-Moll, F.; Houzel, J.C.; Rehen, S.K. Mitomycin-treated undifferentiated embryonic stem cells as a safe and effective therapeutic strategy in a mouse model of parkinson’s disease. Front. Cell Neurosci. 2015, 9, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, R.; Yoshikawa, M.; Kimura, H.; Ouji, Y.; Nakase, H.; Nishimura, F.; Nonaka, J.; Toriumi, H.; Yamada, S.; Nishiofuku, M.; et al. Cotransplantation of mouse embryonic stem cells and bone marrow stromal cells following spinal cord injury suppresses tumor development. Cell Transpl. 2009, 18, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Erceg, S.; Ronaghi, M.; Oria, M.; Rosello, M.G.; Arago, M.A.; Lopez, M.G.; Radojevic, I.; Moreno-Manzano, V.; Rodriguez-Jimenez, F.J.; Bhattacharya, S.S.; et al. Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection. Stem Cells 2010, 28, 1541–1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, X.; Liu, Y.; Xiao, X.; He, J.; Zhang, H.; Li, Y. In vitro induction of human embryonic stem cells into the midbrain dopaminergic neurons and transplantation in cynomolgus monkey. Cell Reprogram. 2019, 21, 285–295. [Google Scholar] [CrossRef]
- de Castro, M.V.; da Silva, M.V.R.; Chiarotto, G.B.; Santana, M.H.A.; Luzo, A.C.M.; Kyrylenko, S.; de Oliveira, A.L.R. Spinal reflex recovery after dorsal rhizotomy and repair with platelet-rich plasma (prp) gel combined with bioengineered human embryonic stem cells (hescs). Stem Cells Int. 2020, 2020, 8834360. [Google Scholar] [CrossRef] [PubMed]
- Shroff, G. Evaluation of patients with multiple sclerosis using reverse nutech functional score and expanded disability status scale after human embryonic stem cell therapy. Clin. Transl. Med. 2016, 5, 43, Erratum in 2017, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Shroff, G.; Thakur, D.; Dhingra, V.; Baroli, D.S.; Khatri, D.; Gautam, R.D. Expression of concern to: Role of physiotherapy in the mobilization of patients with spinal cord injury undergoing human embryonic stem cells transplantation. Clin. Transl. Med. 2017, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Shroff, G. Single-photon emission tomography imaging in patients with lyme disease treated with human embryonic stem cells. Neuroradiol. J. 2018, 31, 157–167. [Google Scholar] [CrossRef]
- Shroff, G. Transplantation of human embryonic stem cells in patients with multiple sclerosis and lyme disease. Am. J. Case Rep. 2016, 17, 944–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shroff, G.; Gupta, R. Human embryonic stem cells in the treatment of patients with spinal cord injury. Ann. Neurosci. 2015, 22, 208–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shroff, G. Human embryonic stem cell therapy in chronic spinal cord injury: A retrospective study. Clin. Transl. Sci. 2016, 9, 168–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shroff, G. Comparison of nutech functional score with european stroke scale for patients with cerebrovascular accident treated with human embryonic stem cells: Nfs for cva patients treated with hescs. J. Vasc. Interv. Neurol. 2017, 9, 35–43. [Google Scholar] [PubMed]
- Shroff, G.; Gupta, A.; Barthakur, J.K. Therapeutic potential of human embryonic stem cell transplantation in patients with cerebral palsy. J. Transl. Med. 2014, 12, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [Green Version]
- Warren, L.; Manos, P.D.; Ahfeldt, T.; Loh, Y.H.; Li, H.; Lau, F.; Ebina, W.; Mandal, P.K.; Smith, Z.D.; Meissner, A.; et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mrna. Cell Stem Cell 2010, 7, 618–630. [Google Scholar] [CrossRef] [Green Version]
- Okita, K.; Matsumura, Y.; Sato, Y.; Okada, A.; Morizane, A.; Okamoto, S.; Hong, H.; Nakagawa, M.; Tanabe, K.; Tezuka, K.; et al. A more efficient method to generate integration-free human ips cells. Nat. Methods 2011, 8, 409–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Chau, K.F.; Vodyanik, M.A.; Jiang, J.; Jiang, Y. Efficient feeder-free episomal reprogramming with small molecules. PLoS ONE 2011, 6, e17557. [Google Scholar] [CrossRef]
- Cherkashova, E.A.; Leonov, G.E.; Namestnikova, D.D.; Solov’eva, A.A.; Gubskii, I.L.; Bukharova, T.B.; Gubskii, L.V.; Goldstein, D.V.; Yarygin, K.N. Methods of generation of induced pluripotent stem cells and their application for the therapy of central nervous system diseases. Bull. Exp. Biol. Med. 2020, 168, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Gong, G.M.; Sun, S.L.; Qi, J.; Zhang, H.L.; Wang, Y.L.; Wang, N.; Wang, Q.M.; Ji, Y.; Gao, Y.; et al. Functional recovery after transplantation of induced pluripotent stem cells in a rat hemorrhagic stroke model. Neurosci. Lett. 2013, 554, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.J.; Lee, N.; Park, I.H.; Choi, C.; Jeon, I.; Kwon, J.; Oh, S.H.; Shin, D.A.; Do, J.T.; Lee, D.R.; et al. Therapeutic potential of human induced pluripotent stem cells in experimental stroke. Cell Transpl. 2013, 22, 1427–1440. [Google Scholar] [CrossRef]
- Palma-Tortosa, S.; Tornero, D.; Gronning Hansen, M.; Monni, E.; Hajy, M.; Kartsivadze, S.; Aktay, S.; Tsupykov, O.; Parmar, M.; Deisseroth, K.; et al. Activity in grafted human ips cell-derived cortical neurons integrated in stroke-injured rat brain regulates motor behavior. Proc. Natl. Acad. Sci. USA 2020, 117, 9094–9100. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.H.; Lin, K.C.; Wallace, C.G.; Li, Y.C.; Shao, P.L.; Chiang, J.Y.; Sung, P.H.; Yip, H.K. Human induced pluripotent stem cell-derived mesenchymal stem cell therapy effectively reduced brain infarct volume and preserved neurological function in rat after acute intracranial hemorrhage. Am. J. Transl. Res. 2019, 11, 6232–6248. [Google Scholar] [PubMed]
- Takahashi, J. Ips cell-based therapy for parkinson’s disease: A kyoto trial. Regen. Ther. 2020, 13, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, O.; Sugai, K.; Yamaguchi, R.; Tashiro, S.; Nagoshi, N.; Kohyama, J.; Iida, T.; Ohkubo, T.; Itakura, G.; Isoda, M.; et al. Concise review: Laying the groundwork for a first-in-human study of an induced pluripotent stem cell-based intervention for spinal cord injury. Stem Cells 2019, 37, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Okubo, T.; Iwanami, A.; Kohyama, J.; Itakura, G.; Kawabata, S.; Nishiyama, Y.; Sugai, K.; Ozaki, M.; Iida, T.; Matsubayashi, K.; et al. Pretreatment with a gamma-secretase inhibitor prevents tumor-like overgrowth in human ipsc-derived transplants for spinal cord injury. Stem Cell Rep. 2016, 7, 649–663. [Google Scholar] [CrossRef] [Green Version]
- Ming, G.L.; Song, H. Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 2005, 28, 223–250. [Google Scholar] [CrossRef]
- Kuhn, H.G.; Dickinson-Anson, H.; Gage, F.H. Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. J. Neurosci. 1996, 16, 2027–2033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexanian, A.R. An efficient method for generation of neural-like cells from adult human bone marrow-derived mesenchymal stem cells. Regen. Med. 2010, 5, 891–900. [Google Scholar] [CrossRef]
- Kim, H.W.; Lee, H.S.; Kang, J.M.; Bae, S.H.; Kim, C.; Lee, S.H.; Schwarz, J.; Kim, G.J.; Kim, J.S.; Cha, D.H.; et al. Dual effects of human placenta-derived neural cells on neuroprotection and the inhibition of neuroinflammation in a rodent model of parkinson’s disease. Cell Transpl. 2018, 27, 814–830. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Zhao, Y.; Xiao, Z.; Chen, B.; Ma, D.; Shen, H.; Gu, R.; Dai, J. Comparison of regenerative effects of transplanting three-dimensional longitudinal scaffold loaded-human mesenchymal stem cells and human neural stem cells on spinal cord completely transected rats. ACS Biomater. Sci. Eng. 2020, 6, 1671–1680. [Google Scholar] [CrossRef]
- Lin, G.Q.; He, X.F.; Liang, F.Y.; Guo, Y.; Sunnassee, G.; Chen, J.; Cao, X.M.; Chen, Y.Y.; Pan, G.J.; Pei, Z.; et al. Transplanted human neural precursor cells integrate into the host neural circuit and ameliorate neurological deficits in a mouse model of traumatic brain injury. Neurosci. Lett. 2018, 674, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.H.; Ji, W.L.; Chen, H.; Sun, Y.Y.; Zhao, X.Y.; Wang, F.; Shi, Y.; Hu, Y.N.; Liu, B.X.; Wu, J.W.; et al. Intranasal transplantation of human neural stem cells ameliorates alzheimer’s disease-like pathology in a mouse model. Front. Aging Neurosci. 2021, 13, 10151. [Google Scholar] [CrossRef]
- Lee, I.S.; Jung, K.; Kim, I.S.; Lee, H.; Kim, M.; Yun, S.; Hwang, K.; Shin, J.E.; Park, K.I. Human neural stem cells alleviate alzheimer-like pathology in a mouse model. Mol. Neurodegener. 2015, 10, 38. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.M.; Kang, S.; Yu, P.P.; Shi, L.L.; Zhou, L.B. Transplantation of human urine-derived neural progenitor cells after spinal cord injury in rats. Neurosci. Lett. 2020, 735, 135201. [Google Scholar] [CrossRef]
- Mendes-Pinheiro, B.; Teixeira, F.G.; Anjo, S.I.; Manadas, B.; Behie, L.A.; Salgado, A.J. Secretome of undifferentiated neural progenitor cells induces histological and motor improvements in a rat model of parkinson’s disease. Stem Cell Transl. Med. 2018, 7, 829–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.S.; Jeon, I.; Noh, J.E.; Lee, H.; Hong, K.S.; Lee, N.; Pei, Z.; Song, J. Intracerebral transplantation of bdnf-overexpressing human neural stem cells (hb1.F3.Bdnf) promotes migration, differentiation and functional recovery in a rodent model of huntington’s disease. Exp. Neurobiol. 2020, 29, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, G.M.; Avalos, P.; Ma, A.A.; Alkaslasi, M.; Cho, N.; Wyss, L.; Vit, J.P.; Godoy, M.; Suezaki, P.; Shelest, O.; et al. Transplantation of neural progenitor cells expressing glial cell line-derived neurotrophic factor into the motor cortex as a strategy to treat amyotrophic lateral sclerosis. Stem Cells 2018, 36, 1122–1131. [Google Scholar] [CrossRef] [Green Version]
- McGinley, L.M.; Kashlan, O.N.; Bruno, E.S.; Chen, K.S.; Hayes, J.M.; Kashlan, S.R.; Raykin, J.; Johe, K.; Murphy, G.G.; Feldman, E.L. Human neural stem cell transplantation improves cognition in a murine model of alzheimer’s disease. Sci. Rep. 2018, 8, 14776. [Google Scholar] [CrossRef]
- Okubo, T.; Nagoshi, N.; Kohyama, J.; Tsuji, O.; Shinozaki, M.; Shibata, S.; Kase, Y.; Matsumoto, M.; Nakamura, M.; Okano, H. Treatment with a gamma-secretase inhibitor promotes functional recovery in human ipsc- derived transplants for chronic spinal cord injury. Stem Cell Rep. 2018, 11, 1416–1432. [Google Scholar] [CrossRef] [Green Version]
- Ould-Brahim, F.; Sarma, S.N.; Syal, C.; Lu, K.J.; Seegobin, M.; Carter, A.; Jeffers, M.S.; Dor, C.; Stanford, W.L.; Corbett, D.; et al. Metformin preconditioning of human induced pluripotent stem cell-derived neural stem cells promotes their engraftment and improves post-stroke regeneration and recovery. Stem Cells Dev. 2018, 27, 1085–1096. [Google Scholar] [CrossRef]
- Kim, M.; Jung, K.; Ko, Y.; Kim, I.S.; Hwang, K.; Jang, J.H.; Shin, J.E.; Park, K.I. Tnf-alpha pretreatment improves the survival and function of transplanted human neural progenitor cells following hypoxic-ischemic brain injury. Cells 2020, 9, 1195. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, F.; Chen, H.; Liu, D.; Qu, T.; Li, X.; Xu, D.; Liu, F.; Yin, Z.; Chen, Y. Co-transplantation of human umbilical cord mesenchymal stem cells and human neural stem cells improves the outcome in rats with spinal cord injury. Cell Transpl. 2019, 28, 893–906. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.L.; Ma, D.Z.; Shen, H.; Zhao, Y.N.; Xu, B.; Fan, Y.H.; Sun, Z.; Chen, B.; Xue, W.W.; Shi, Y.; et al. Aligned collagen scaffold combination with human spinal cord-derived neural stem cells to improve spinal cord injury repair. Biomater. Sci. 2020, 8, 5145–5156. [Google Scholar] [CrossRef]
- Abdolahi, S.; Aligholi, H.; Khodakaram-Tafti, A.; Ghadiri, M.K.; Stummer, W.; Gorji, A. Improvement of rat spinal cord injury following lentiviral vector-transduced neural stem/progenitor cells derived from human epileptic brain tissue transplantation with a self-assembling peptide scaffold. Mol. Neurobiol. 2021, 58, 2481–2493. [Google Scholar] [CrossRef]
- Kajikawa, K.; Imaizumi, K.; Shinozaki, M.; Shibata, S.; Shindo, T.; Kitagawa, T.; Shibata, R.; Kamata, Y.; Kojima, K.; Nagoshi, N.; et al. Cell therapy for spinal cord injury by using human ipsc-derived region-specific neural progenitor cells. Mol. Brain 2020, 13, 120. [Google Scholar] [CrossRef] [PubMed]
- Feldman, E.L.; Boulis, N.M.; Hur, J.; Johe, K.; Rutkove, S.B.; Federici, T.; Polak, M.; Bordeau, J.; Sakowski, S.A.; Glass, J.D. Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: Phase 1 trial outcomes. Ann. Neurol. 2014, 75, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Curtis, E.; Martin, J.R.; Gabel, B.; Sidhu, N.; Rzesiewicz, T.K.; Mandeville, R.; Van Gorp, S.; Leerink, M.; Tadokoro, T.; Marsala, S.; et al. A first-in-human, phase i study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell 2018, 22, 941–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.Z.; Li, Y.; Reuss, J.L.; Liu, N.; Wu, C.Y.; Li, J.P.; Xu, S.S.; Wang, F.; Hazel, T.G.; Cunningham, M.; et al. Stable intracerebral transplantation of neural stem cells for the treatment of paralysis due to ischemic stroke. Stem Cell Transl. Med. 2019, 8, 999–1007. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.J.; Wang, Y.L.; Xu, Z.Y.; Fang, F.; Xu, R.M.; Wang, Y.; Hu, X.L.; Fan, L.X.; Liu, H.Q. Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy. J. Transl. Med. 2013, 11, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, V.K.; Vyshkina, T.; Sadiq, S.A. Clinical safety of intrathecal administration of mesenchymal stromal cell-derived neural progenitors in multiple sclerosis. Cytotherapy 2016, 18, 1476–1482. [Google Scholar] [CrossRef]
- Wang, Z.G.; Luo, Y.; Chen, L.A.; Liang, W. Safety of neural stem cell transplantation in patients with severe traumatic brain injury. Exp. Ther. Med. 2017, 13, 3613–3618. [Google Scholar] [CrossRef] [Green Version]
- Harris, V.K.; Stark, J.; Vyshkina, T.; Blackshear, L.; Joo, G.; Stefanova, V.; Sara, G.; Sadiq, S.A. Phase i trial of intrathecal mesenchymal stem cell-derived neural progenitors in progressive multiple sclerosis. Ebiomedicine 2018, 29, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Erharter, A.; Rizzi, S.; Mertens, J.; Edenhofer, F. Take the shortcut—direct conversion of somatic cells into induced neural stem cells and their biomedical applications. FEBS Lett. 2019, 593, 3353–3369. [Google Scholar] [CrossRef]
- Liu, D.H.; Manaph, N.P.A.; Al-Hawwas, M.; Zhou, X.F.; Liao, H. Small molecules for neural stem cell induction. Stem Cells Dev. 2018, 27, 297–312. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhao, W.; Liu, W.; Zhou, Y.; Jia, J.; Yang, L. Transplantation of placenta-derived mesenchymal stem cell-induced neural stem cells to treat spinal cord injury. Neural Regen. Res. 2014, 9, 2197–2204. [Google Scholar]
- Bago, J.R.; Alfonso-Pecchio, A.; Okolie, O.; Dumitru, R.; Rinkenbaugh, A.; Baldwin, A.S.; Miller, C.R.; Magness, S.T.; Hingtgen, S.D. Therapeutically engineered induced neural stem cells are tumour-homing and inhibit progression of glioblastoma. Nat. Commun. 2016, 7, 10593. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, T.; Liu, W.; Matsumura, Y.; Miyagi, R.; Zhai, Y.; Kusaki, M.; Hishikawa, N.; Ohta, Y.; Kim, S.M.; Kwak, T.H.; et al. Novel therapeutic transplantation of induced neural stem cells for stroke. Cell Transpl. 2017, 26, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Vonderwalde, I.; Azimi, A.; Rolvink, G.; Ahlfors, J.E.; Shoichet, M.S.; Morshead, C.M. Transplantation of directly reprogrammed human neural precursor cells following stroke promotes synaptogenesis and functional recovery. Transl. Stroke Res. 2020, 11, 93–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzini, L.; Gelati, M.; Profico, D.C.; Soraru, G.; Ferrari, D.; Copetti, M.; Muzi, G.; Ricciolini, C.; Carletti, S.; Giorgi, C.; et al. Results from phase i clinical trial with intraspinal injection of neural stem cells in amyotrophic lateral sclerosis: A long-term outcome. Stem Cell Transl. Med. 2019, 8, 887–897. [Google Scholar] [CrossRef] [Green Version]
- Glass, J.D.; Hertzberg, V.S.; Boulis, N.M.; Riley, J.; Federici, T.; Polak, M.; Bordeau, J.; Fournier, C.; Johe, K.; Hazel, T.; et al. Transplantation of spinal cord-derived neural stem cells for als: Analysis of phase 1 and 2 trials. Neurology 2016, 87, 392–400. [Google Scholar] [CrossRef] [Green Version]
- Madrazo, I.; Kopyov, O.; Avila-Rodriguez, M.A.; Ostrosky, F.; Carrasco, H.; Kopyov, A.; Avendano-Estrada, A.; Jimenez, F.; Magallon, E.; Zamorano, C.; et al. Transplantation of human neural progenitor cells (npc) into putamina of parkinsonian patients: A case series study, safety and efficacy four years after surgery. Cell Transpl. 2019, 28, 269–285. [Google Scholar] [CrossRef]
- Levi, A.D.; Anderson, K.D.; Okonkwo, D.O.; Park, P.; Bryce, T.N.; Kurpad, S.N.; Aarabi, B.; Hsieh, J.; Gant, K. Clinical outcomes from a multi-center study of human neural stem cell transplantation in chronic cervical spinal cord injury. J. Neurotraum. 2019, 36, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Levi, A.D.; Okonkwo, D.O.; Park, P.; Jenkins, A.L.; Kurpad, S.N.; Parr, A.M.; Ganju, A.; Aarabi, B.; Kim, D.; Casha, S.; et al. Emerging safety of intramedullary transplantation of human neural stem cells in chronic cervical and thoracic spinal cord injury. Neurosurgery 2018, 82, 562–575. [Google Scholar] [CrossRef]
- Shin, J.C.; Kim, K.N.; Yoo, J.; Kim, I.S.; Yun, S.; Lee, H.; Jung, K.; Hwang, K.; Kim, M.; Lee, I.S.; et al. Clinical trial of human fetal brain-derived neural stem/progenitor cell transplantation in patients with traumatic cervical spinal cord injury. Neural. Plast. 2015, 2015, 630932. [Google Scholar] [CrossRef] [Green Version]
- Abeysinghe, H.C.S.; Bokhari, L.; Quigley, A.; Choolani, M.; Chan, J.; Dusting, G.J.; Crook, J.M.; Kobayashi, N.R.; Roulston, C.L. Pre-differentiation of human neural stem cells into gabaergic neurons prior to transplant results in greater repopulation of the damaged brain and accelerates functional recovery after transient ischemic stroke. Stem Cell Res. Ther. 2015, 6, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonsson, M.E.; Ono, Y.; Bjorklund, A.; Thompson, L.H. Identification of transplantable dopamine neuron precursors at different stages of midbrain neurogenesis. Exp. Neurol. 2009, 219, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Watmuff, B.; Pouton, C.W.; Haynes, J.M. In vitro maturation of dopaminergic neurons derived from mouse embryonic stem cells: Implications for transplantation. PLoS ONE 2012, 7, e31999. [Google Scholar] [CrossRef] [Green Version]
- Payne, S.L.; Anandakumaran, P.N.; Varga, B.V.; Morshead, C.M.; Nagy, A.; Shoichet, M.S. In vitro maturation of human ipsc-derived neuroepithelial cells influences transplant survival in the stroke-injured rat brain. Tissue Eng. Part A 2018, 24, 351–360. [Google Scholar] [CrossRef]
- Fortin, J.M.; Azari, H.; Zheng, T.; Darioosh, R.P.; Schmoll, M.E.; Vedam-Mai, V.; Deleyrolle, L.P.; Reynolds, B.A. Transplantation of defined populations of differentiated human neural stem cell progeny. Sci. Rep. 2016, 6, 23579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, L.; Liao, M.C.; Chen, A.K.; Wei, S.; Xie, S.; Reuveny, S.; Zhou, Z.D.; Hunziker, W.; Tan, E.K.; Oh, S.K.W.; et al. Immature midbrain dopaminergic neurons derived from floor-plate method improve cell transplantation therapy efficacy for parkinson’s disease. Stem Cells Transl. Med. 2017, 6, 1803–1814. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, H.Y.; Lee, B.E.; Gerovska, D.; Park, S.Y.; Zaehres, H.; Arauzo-Bravo, M.J.; Kim, J.I.; Ha, Y.; Scholer, H.R.; et al. Sequentially induced motor neurons from human fibroblasts facilitate locomotor recovery in a rodent spinal cord injury model. Elife 2020, 9, e52069. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.H.; Rychkov, G.; Al-Hawwas, M.; ul Manaph, N.P.A.; Zhou, F.N.; Bobrovskaya, L.; Liao, H.; Zhou, X.F. Conversion of human urine-derived cells into neuron-like cells by small molecules. Mol. Biol. Rep. 2020, 47, 2713–2722. [Google Scholar] [CrossRef]
- Salikhova, D.; Bukharova, T.; Cherkashova, E.; Namestnikova, D.; Leonov, G.; Nikitina, M.; Gubskiy, I.; Akopyan, G.; Elchaninov, A.; Midiber, K.; et al. Therapeutic effects of hipsc-derived glial and neuronal progenitor cells-conditioned medium in experimental ischemic stroke in rats. Int. J. Mol. Sci. 2021, 22, 4694. [Google Scholar] [CrossRef]
- Thiruvalluvan, A.; Czepiel, M.; Kap, Y.A.; Mantingh-Otter, I.; Vainchtein, I.; Kuipers, J.; Bijlard, M.; Baron, W.; Giepmans, B.; Bruck, W.; et al. Survival and functionality of human induced pluripotent stem cell-derived oligodendrocytes in a nonhuman primate model for multiple sclerosis. Stem Cells Transl. Med. 2016, 5, 1550–1561. [Google Scholar] [CrossRef] [Green Version]
- Fuhrmann, T.; Tam, R.Y.; Ballarin, B.; Coles, B.; Elliott Donaghue, I.; van der Kooy, D.; Nagy, A.; Tator, C.H.; Morshead, C.M.; Shoichet, M.S. Injectable hydrogel promotes early survival of induced pluripotent stem cell-derived oligodendrocytes and attenuates longterm teratoma formation in a spinal cord injury model. Biomaterials 2016, 83, 23–36. [Google Scholar] [CrossRef]
- Kawabata, S.; Takano, M.; Numasawa-Kuroiwa, Y.; Itakura, G.; Kobayashi, Y.; Nishiyama, Y.; Sugai, K.; Nishimura, S.; Iwai, H.; Isoda, M.; et al. Grafted human ips cell-derived oligodendrocyte precursor cells contribute to robust remyelination of demyelinated axons after spinal cord injury. Stem Cell Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Keirstead, H.S.; Blakemore, W.F. Identification of post-mitotic oligodendrocytes incapable of remyelination within the demyelinated adult spinal cord. J. Neuropathol. Exp. Neurol. 1997, 56, 1191–1201. [Google Scholar] [CrossRef] [Green Version]
- Targett, M.P.; Sussman, J.; Scolding, N.; O’Leary, M.T.; Compston, D.A.; Blakemore, W.F. Failure to achieve remyelination of demyelinated rat axons following transplantation of glial cells obtained from the adult human brain. Neuropathol. Appl. Neurobiol. 1996, 22, 199–206. [Google Scholar] [CrossRef]
- Albert, K.; Niskanen, J.; Kalvala, S.; Lehtonen, S. Utilising induced pluripotent stem cells in neurodegenerative disease research: Focus on glia. Int. J. Mol. Sci. 2021, 22, 4334. [Google Scholar] [CrossRef] [PubMed]
- Ricci, G.; Volpi, L.; Pasquali, L.; Petrozzi, L.; Siciliano, G. Astrocyte-neuron interactions in neurological disorders. J. Biol. Phys. 2009, 35, 317–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silver, J.; Miller, J.H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 2004, 5, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Javed, E.; Scura, D.; Hala, T.J.; Seetharam, S.; Falnikar, A.; Richard, J.P.; Chorath, A.; Maragakis, N.J.; Wright, M.C.; et al. Human ips cell-derived astrocyte transplants preserve respiratory function after spinal cord injury. Exp. Neurol. 2015, 271, 479–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, S.J.; Shih, C.H.; Noble, M.; Mayer-Proschel, M.; Davies, J.E.; Proschel, C. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury. PLoS ONE 2011, 6, e17328. [Google Scholar] [CrossRef] [Green Version]
- Nakao, N.; Shintani-Mizushima, A.; Kakishita, K.; Itakura, T. The ability of grafted human sympathetic neurons to synthesize and store dopamine: A potential mechanism for the clinical effect of sympathetic neuron autografts in patients with parkinson’s disease. Exp. Neurol. 2004, 188, 65–73. [Google Scholar] [CrossRef]
- Freed, C.R.; Greene, P.E.; Breeze, R.E.; Tsai, W.Y.; DuMouchel, W.; Kao, R.; Dillon, S.; Winfield, H.; Culver, S.; Trojanowski, J.Q.; et al. Transplantation of embryonic dopamine neurons for severe parkinson’s disease. N. Engl. J. Med. 2001, 344, 710–719. [Google Scholar] [CrossRef]
- Kondziolka, D.; Wechsler, L.; Goldstein, S.; Meltzer, C.; Thulborn, K.R.; Gebel, J.; Jannetta, P.; DeCesare, S.; Elder, E.M.; McGrogan, M.; et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology 2000, 55, 565–569. [Google Scholar] [CrossRef]
- Torrente, Y.; Polli, E. Mesenchymal stem cell transplantation for neurodegenerative diseases. Cell Transpl. 2008, 17, 1103–1113. [Google Scholar] [CrossRef] [Green Version]
- Asgari Taei, A.; Dargahi, L.; Nasoohi, S.; Hassanzadeh, G.; Kadivar, M.; Farahmandfar, M. The conditioned medium of human embryonic stem cell-derived mesenchymal stem cells alleviates neurological deficits and improves synaptic recovery in experimental stroke. J. Cell Physiol. 2021, 236, 1967–1979. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, C.; Xu, Y.; Li, C.; Cao, Y.; Li, P. Exosomes derived from human placenta-derived mesenchymal stem cells improve neurologic function by promoting angiogenesis after spinal cord injury. Neurosci. Lett. 2020, 739, 135399. [Google Scholar] [CrossRef]
- Yang, C.H.; Wang, G.J.; Ma, F.F.; Yu, B.Q.; Chen, F.C.; Yang, J.; Feng, J.J.; Wang, Q. Repeated injections of human umbilical cord blood-derived mesenchymal stem cells significantly promotes functional recovery in rabbits with spinal cord injury of two noncontinuous segments. Stem Cell Res. Ther. 2018, 9, 136. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, L.M.; Chen, W.W.; Ma, Z.; Han, X.; Liu, C.M.; Cheng, X.; Shi, W.; Guo, J.J.; Qin, J.B.; et al. Neural differentiation of human wharton’s jelly-derived mesenchymal stem cells improves the recovery of neurological function after transplantation in ischemic stroke rats. Neural Regen. Res. 2017, 12, 1103–1110. [Google Scholar] [CrossRef]
- Lo Furno, D.; Mannino, G.; Giuffrida, R. Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. J. Cell Physiol. 2018, 233, 3982–3999. [Google Scholar] [CrossRef]
- Ruzicka, J.; Kulijewicz-Nawrot, M.; Rodrigez-Arellano, J.J.; Jendelova, P.; Sykova, E. Mesenchymal stem cells preserve working memory in the 3xtg-ad mouse model of alzheimer’s disease. Int. J. Mol. Sci. 2016, 17, 152. [Google Scholar] [CrossRef]
- Zhou, H.L.; Zhang, H.R.; Yan, Z.J.; Xu, R.X. Transplantation of human amniotic mesenchymal stem cells promotes neurological recovery in an intracerebral hemorrhage rat model. Biochem. Bioph. Res. Commun. 2016, 475, 202–208. [Google Scholar] [CrossRef]
- Huang, P.; Freeman, W.D.; Edenfield, B.H.; Brott, T.G.; Meschia, J.F.; Zubair, A.C. Safety and efficacy of intraventricular delivery of bone marrow-derived mesenchymal stem cells in hemorrhagic stroke model. Sci. Rep. 2019, 9, 5674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, P.J.; Yeh, C.C.; Huang, W.J.; Min, M.Y.; Huang, T.H.; Ko, T.L.; Huang, P.Y.; Chen, T.H.; Hsu, S.P.C.; Soong, B.W.; et al. Xenografting of human umbilical mesenchymal stem cells from wharton’s jelly ameliorates mouse spinocerebellar ataxia type 1. Transl. Neurodegener. 2019, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chang, K.A.; Kim, J.; Park, H.G.; Ra, J.C.; Kim, H.S.; Suh, Y.H. The preventive and therapeutic effects of intravenous human adipose-derived stem cells in alzheimer’s disease mice. PLoS ONE 2012, 7, e45757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.F.; Zhang, D.J.; Geng, T.C.; Chen, L.; Huang, H.Y.; Yin, H.L.; Zhang, Y.Z.; Lou, J.Y.; Cao, B.Z.; Wang, Y.L. The potential of human umbilical cord-derived mesenchymal stem cells as a novel cellular therapy for multiple sclerosis. Cell Transpl. 2014, 23, S113–S122. [Google Scholar] [CrossRef]
- Mangin, G.; Cogo, A.; Moisan, A.; Bonnin, P.; Maier, B.; Kubis, N.; Consortium, R. Intravenous administration of human adipose derived-mesenchymal stem cells is not efficient in diabetic or hypertensive mice subjected to focal cerebral ischemia. Front. Neurosci. 2019, 13, 718. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, A.; Maleki-Jamshid, A.; Milan, P.B.; Ebrahimzadeh, K.; Faghihi, F.; Joghataei, M.T. Intrahippocampal transplantation of undifferentiated human chorionic-derived mesenchymal stem cells does not improve learning and memory in the rat model of sporadic alzheimer disease. Curr. Stem Cell Res. Ther. 2019, 14, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Mayilsamy, K.; Tang, X.L.; Han, J.Y.; Foran, E.; Willing, A.E.; Mohapatra, S.S.; Mohapatra, S. Pioglitazone treatment prior to transplantation improves the efficacy of human mesenchymal stem cells after traumatic brain injury in rats. Sci. Rep. 2019, 9, 13646. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.J.; Zhang, Q.; Li, M.; Gao, P.; Huang, K.; Beejadhursing, R.; Jiang, W.; Lei, T.; Zhu, M.X.; Shu, K. Gdnf promotes survival and therapeutic efficacy of human adipose-derived mesenchymal stem cells in a mouse model of parkinson’s disease. Cell Transpl. 2020, 29, 963689720908512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, M.G.; Wu, L.X.; Song, Z.Y.; Yang, B. Enhancement of neural stem cell proliferation in rats with spinal cord injury by a combination of repetitive transcranial magnetic stimulation (rtms) and human umbilical cord blood mesenchymal stem cells (hucb-mscs). Med. Sci. Monit. 2020, 26, e924445. [Google Scholar] [CrossRef]
- Deng, W.S.; Yang, K.; Liang, B.; Liu, Y.F.; Chen, X.Y.; Zhang, S. Collagen/heparin sulfate scaffold combined with mesenchymal stem cells treatment for canines with spinal cord injury: A pilot feasibility study. J Orthop. Surg. 2021, 29, 23094990211012293. [Google Scholar] [CrossRef]
- Oshita, J.; Okazaki, T.; Mitsuhara, T.; Imura, T.; Nakagawa, K.; Otsuka, T.; Kurose, T.; Tamura, T.; Abiko, M.; Takeda, M.; et al. Early transplantation of human cranial bone-derived mesenchymal stem cells enhances functional recovery in ischemic stroke model rats. Neurol. Med. Chir. 2020, 60, 83–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, S.; Horie, N.; Satoh, K.; Ishikawa, T.; Mori, T.; Maeda, H.; Fukuda, Y.; Ishizaka, S.; Hiu, T.; Morofuji, Y.; et al. Age of donor of human mesenchymal stem cells affects structural and functional recovery after cell therapy following ischaemic stroke. J. Cerebr. Blood Flow Met. 2018, 38, 1199–1212. [Google Scholar] [CrossRef] [PubMed]
- Ko, P.W.; Park, S.; Kang, K.; Lim, Y.H.; Kim, S.R.; Suk, K.; Kim, K.S.; Lee, H.W. Human allogeneic bone marrow-derived mesenchymal stem cell therapy for cerebellar ataxia: A case report. Medicina 2021, 57, 334. [Google Scholar] [CrossRef]
- Siwek, T.; Jezierska-Wozniak, K.; Maksymowicz, S.; Barczewska, M.; Sowa, M.; Badowska, W.; Maksymowicz, W. Repeat administration of bone marrow-derived mesenchymal stem cells for treatment of amyotrophic lateral sclerosis. Med. Sci. Monit. 2020, 26, e927484. [Google Scholar] [CrossRef]
- Yang, Y.; Pang, M.; Du, C.; Liu, Z.Y.; Chen, Z.H.; Wang, N.X.; Zhang, L.M.; Chen, Y.Y.; Mo, J.; Dong, J.W.; et al. Repeated subarachnoid administrations of allogeneic human umbilical cord mesenchymal stem cells for spinal cord injury: A phase 1/2 pilot study. Cytotherapy 2021, 23, 57–64. [Google Scholar] [CrossRef]
- Deng, W.S.; Ma, K.; Liang, B.; Liu, X.Y.; Xu, H.Y.; Zhang, J.; Shi, H.Y.; Sun, H.T.; Chen, X.Y.; Zhang, S. Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. Neural Regen. Res. 2020, 15, 1686–1700. [Google Scholar]
- Phedy, P.; Djaja, Y.P.; Gatam, L.; Kusnadi, Y.; Wirawan, R.P.; Tobing, I.M.S.; Subakir, N.; Mappulilu, A.; Prawira, M.A.; Yauwenas, R.; et al. Motoric recovery after transplantation of bone marrow derived mesenchymal stem cells in chronic spinal cord injury: A case report. Am. J. Case Rep. 2019, 20, 1299–1304. [Google Scholar] [CrossRef]
- Xiao, Z.F.; Tang, F.W.; Zhao, Y.N.; Han, G.; Yin, N.; Li, X.; Chen, B.; Han, S.F.; Jiang, X.F.; Yun, C.; et al. Significant improvement of acute complete spinal cord injury patients diagnosed by a combined criteria implanted with neuroregen scaffolds and mesenchymal stem cells. Cell Transpl. 2018, 27, 907–915. [Google Scholar] [CrossRef] [Green Version]
- Hur, J.W.; Cho, T.H.; Park, D.H.; Lee, J.B.; Park, J.Y.; Chung, Y.G. Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: A human trial. J. Spinal Cord. Med. 2016, 39, 655–664. [Google Scholar] [CrossRef]
- Gu, J.W.; Huang, L.; Zhang, C.; Wang, Y.; Zhang, R.B.; Tu, Z.L.; Wang, H.D.; Zhou, X.H.; Xiao, Z.S.; Liu, Z.G.; et al. Therapeutic evidence of umbilical cord-derived mesenchymal stem cell transplantation for cerebral palsy: A randomized, controlled trial. Stem Cell Res. Ther. 2020, 11, 43. [Google Scholar] [CrossRef] [PubMed]
- Okur, S.C.; Erdogan, S.; Demir, C.S.; Gunel, G.; Karaoz, E. The effect of umbilical cord-derived mesenchymal stem cell transplantation in a patient with cerebral palsy: A case report. Int. J. Stem Cells 2018, 11, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Huang, L.; Gu, J.; Zhou, X. Therapy for cerebral palsy by human umbilical cord blood mesenchymal stem cells transplantation combined with basic rehabilitation treatment: A case report. Glob. Pediatr. Health 2015, 2, 2333794X15574091. [Google Scholar] [CrossRef] [Green Version]
- Kabatas, S.; Civelek, E.; Sezen, G.B.; Kaplan, N.; Savrunlu, E.C.; Cetin, E.; Diren, F.; KaraOz, E. Functional recovery after wharton’s jelly-derived mesenchymal stem cell administration in a patient with traumatic brain injury: A pilot study. Turk. Neurosurg. 2020, 30, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, G.K.; Kondziolka, D.; Wechsler, L.R.; Lunsford, L.D.; Kim, A.S.; Johnson, J.N.; Bates, D.; Poggio, G.; Case, C.; McGrogan, M.; et al. Two-year safety and clinical outcomes in chronic ischemic stroke patients after implantation of modified bone marrow-derived mesenchymal stem cells (sb623): A phase 1/2a study. J. Neurosurg. 2019, 131, 1462–1472. [Google Scholar] [CrossRef] [PubMed]
- Tsang, K.S.; Ng, C.P.S.; Zhu, X.L.; Wong, G.K.C.; Lu, G.; Ahuja, A.T.; Wong, K.S.L.; Ng, H.K.; Poon, W.S. Phase i/ii randomized controlled trial of autologous bone marrow-derived mesenchymal stem cell therapy for chronic stroke. World J. Stem Cells 2017, 9, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Honmou, O.; Houkin, K.; Matsunaga, T.; Niitsu, Y.; Ishiai, S.; Onodera, R.; Waxman, S.G.; Kocsis, J.D. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 2011, 134, 1790–1807. [Google Scholar] [CrossRef] [Green Version]
- Kabatas, S.; Civelek, E.; Inci, C.; Yalcinkaya, E.Y.; Gunel, G.; Kir, G.; Albayrak, E.; Ozturk, E.; Adas, G.; Karaoz, E. Wharton’s jelly-derived mesenchymal stem cell transplantation in a patient with hypoxic-ischemic encephalopathy: A pilot study. Cell Transpl. 2018, 27, 1425–1433. [Google Scholar] [CrossRef]
- Xie, B.C.; Gu, P.; Wang, W.T.; Dong, C.; Zhang, L.N.; Zhang, J.; Liu, H.M.; Qiu, F.C.; Han, R.; Zhang, Z.Q.; et al. Therapeutic effects of human umbilical cord mesenchymal stem cells transplantation on hypoxic ischemic encephalopathy. Am. J. Transl. Res. 2016, 8, 3241–3250. [Google Scholar]
- Riordan, N.H.; Morales, I.; Fernandez, G.; Allen, N.; Fearnot, N.E.; Leckrone, M.E.; Markovich, D.J.; Mansfield, D.; Avila, D.; Patel, A.N.; et al. Clinical feasibility of umbilical cord tissue-derived mesenchymal stem cells in the treatment of multiple sclerosis. J. Transl. Med. 2018, 16, 57. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.A.; Imrey, P.B.; Planchon, S.M.; Bermel, R.A.; Fisher, E.; Fox, R.J.; Bar-Or, A.; Sharp, S.L.; Skaramagas, T.T.; Jagodnik, P.; et al. Pilot trial of intravenous autologous culture-expanded mesenchymal stem cell transplantation in multiple sclerosis. Mult. Scler. J. 2018, 24, 501–511. [Google Scholar] [CrossRef] [Green Version]
- Milczarek, O.; Jarocha, D.; Starowicz-Filip, A.; Kwiatkowski, S.; Badyra, B.; Majka, M. Multiple autologous bone marrow-derived cd271(+) mesenchymal stem cell transplantation overcomes drug-resistant epilepsy in children. Stem Cell Transl. Med. 2018, 7, 20–33. [Google Scholar] [CrossRef] [Green Version]
- Venkataramana, N.K.; Kumar, S.K.V.; Balaraju, S.; Radhakrishnan, R.C.; Bansal, A.; Dixit, A.; Rao, D.K.; Das, M.; Jan, M.; Gupta, P.K.; et al. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in parkinson’s disease. Transl. Res. 2010, 155, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Sun, Z.; Chu, C.; Boltze, J.; Li, S. Dental pulp stem cells: An attractive alternative for cell therapy in ischemic stroke. Front. Neurol. 2019, 10, 824. [Google Scholar] [CrossRef]
- Gioventu, S.; Andriolo, G.; Bonino, F.; Frasca, S.; Lazzari, L.; Montelatici, E.; Santoro, F.; Rebulla, P. A novel method for banking dental pulp stem cells. Transfus. Apher. Sci. 2012, 47, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Makino, Y.; Yamaza, H.; Akiyama, K.; Hoshino, Y.; Song, G.T.; Kukita, T.; Nonaka, K.; Shi, S.T.; Yamaza, T. Cryopreserved dental pulp tissues of exfoliated deciduous teeth is a feasible stem cell resource for regenerative medicine. PLoS ONE 2012, 7, e51777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueda, T.; Inden, M.; Ito, T.; Kurita, H.; Hozumi, I. Characteristics and therapeutic potential of dental pulp stem cells on neurodegenerative diseases. Front. Neurosci. 2020, 14, 407. [Google Scholar] [CrossRef] [PubMed]
- Mead, B.; Logan, A.; Berry, M.; Leadbeater, W.; Scheven, B.A. Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: Comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS ONE 2014, 9, e109305. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zuzzio, K.; Walker, C.L. Systemic dental pulp stem cell secretome therapy in a mouse model of amyotrophic lateral sclerosis. Brain Sci. 2019, 9, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miura, M.; Gronthos, S.; Zhao, M.; Lu, B.; Fisher, L.W.; Robey, P.G.; Shi, S. Shed: Stem cells from human exfoliated deciduous teeth. Proc. Natl. Acad. Sci. USA 2003, 100, 5807–5812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govindasamy, V.; Abdullah, A.N.; Ronald, V.S.; Musa, S.; Ab Aziz, Z.A.; Zain, R.B.; Totey, S.; Bhonde, R.R.; Abu Kasim, N.H. Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth. J. Endod. 2010, 36, 1504–1515. [Google Scholar] [CrossRef] [Green Version]
- Inoue, T.; Sugiyama, M.; Hattori, H.; Wakita, H.; Wakabayashi, T.; Ueda, M. Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng. Part A 2013, 19, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.R.; Lai, P.L.; Chien, Y.; Lee, P.H.; Lai, Y.H.; Ma, H.I.; Shiau, C.Y.; Wang, K.C. Improvement of impaired motor functions by human dental exfoliated deciduous teeth stem cell-derived factors in a rat model of parkinson’s disease. Int. J. Mol. Sci. 2020, 21, 3807. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, Y.Y.; Ren, J.L.; Xu, F.; Chen, F.M.; Li, A. Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia m1/m2 polarization in rats. Stem Cell Res. Ther. 2017, 8, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alraies, A.; Waddington, R.J.; Sloan, A.J.; Moseley, R. Evaluation of dental pulp stem cell heterogeneity and behaviour in 3d type i collagen gels. Biomed. Res. Int. 2020, 2020, 3034727. [Google Scholar] [CrossRef] [PubMed]
- Kunimatsu, R.; Nakajima, K.; Awada, T.; Tsuka, Y.; Abe, T.; Ando, K.; Hiraki, T.; Kimura, A.; Tanimoto, K. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow-derived mesenchymal stem cells. Biochem. Biophys. Res. Commun. 2018, 501, 193–198. [Google Scholar] [CrossRef]
- Kuroda, Y.; Kitada, M.; Wakao, S.; Nishikawa, K.; Tanimura, Y.; Makinoshima, H.; Goda, M.; Akashi, H.; Inutsuka, A.; Niwa, A.; et al. Unique multipotent cells in adult human mesenchymal cell populations. Proc. Natl. Acad. Sci. USA 2010, 107, 8639–8643. [Google Scholar] [CrossRef] [Green Version]
- Leng, Z.; Sun, D.; Huang, Z.; Tadmori, I.; Chiang, N.; Kethidi, N.; Sabra, A.; Kushida, Y.; Fu, Y.S.; Dezawa, M.; et al. Quantitative analysis of ssea3+ cells from human umbilical cord after magnetic sorting. Cell Transpl. 2019, 28, 907–923. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, Y.; Wakao, S.; Kitada, M.; Murakami, T.; Nojima, M.; Dezawa, M. Isolation, culture and evaluation of multilineage-differentiating stress-enduring (muse) cells. Nat. Protoc. 2013, 8, 1391–1415. [Google Scholar] [CrossRef]
- Wakao, S.; Kitada, M.; Kuroda, Y.; Shigemoto, T.; Matsuse, D.; Akashi, H.; Tanimura, Y.; Tsuchiyama, K.; Kikuchi, T.; Goda, M.; et al. Multilineage-differentiating stress-enduring (muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc. Natl. Acad. Sci. USA 2011, 108, 9875–9880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, J.A.; Nguyen, H.N.; Reijo Pera, R.A. Enhanced generation of induced pluripotent stem cells from a subpopulation of human fibroblasts. PLoS ONE 2009, 4, e7118. [Google Scholar] [CrossRef]
- Dezawa, M. Muse cells provide the pluripotency of mesenchymal stem cells: Direct contribution of muse cells to tissue regeneration. Cell Transpl. 2016, 25, 849–861. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Sato, Y.; Kushida, Y.; Tsuji, M.; Wakao, S.; Ueda, K.; Imai, K.; Iitani, Y.; Shimizu, S.; Hida, H.; et al. Intravenously delivered multilineage-differentiating stress enduring cells dampen excessive glutamate metabolism and microglial activation in experimental perinatal hypoxic ischemic encephalopathy. J. Cereb. Blood Flow Metab. 2020, 41, 1707–1720. [Google Scholar] [CrossRef]
- Ozuru, R.; Wakao, S.; Tsuji, T.; Ohara, N.; Matsuba, T.; Amuran, M.Y.; Isobe, J.; Iino, M.; Nishida, N.; Matsumoto, S.; et al. Rescue from stx2-producing e. Coli-associated encephalopathy by intravenous injection of muse cells in nod-scid mice. Mol. Ther. 2020, 28, 100–118. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, T.; Kushida, Y.; Wakao, S.; Tadokoro, K.; Nomura, E.; Omote, Y.; Takemoto, M.; Hishikawa, N.; Ohta, Y.; Dezawa, M.; et al. Therapeutic benefit of muse cells in a mouse model of amyotrophic lateral sclerosis. Sci. Rep. 2020, 10, 17102. [Google Scholar] [CrossRef]
- Kajitani, T.; Endo, T.; Iwabuchi, N.; Inoue, T.; Takahashi, Y.; Abe, T.; Niizuma, K.; Tominaga, T. Association of intravenous administration of human muse cells with deficit amelioration in a rat model of spinal cord injury. J. Neurosurg. Spine 2021, 34, 648–655. [Google Scholar] [CrossRef]
- Watzlawick, R.; Rind, J.; Sena, E.S.; Brommer, B.; Zhang, T.; Kopp, M.A.; Dirnagl, U.; Macleod, M.R.; Howells, D.W.; Schwab, J.M. Olfactory ensheathing cell transplantation in experimental spinal cord injury: Effect size and reporting bias of 62 experimental treatments: A systematic review and meta-analysis. PLoS Biol. 2016, 14, e1002468. [Google Scholar] [CrossRef]
- Ursavas, S.; Darici, H.; Karaoz, E. Olfactory ensheathing cells: Unique glial cells promising for treatments of spinal cord injury. J. Neurosci. Res. 2021, 99, 1579–1597. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, D.; Xi, H.; Wang, Q.; Liu, Y.; Zhang, F.; Wang, H.; Ren, Y.; Xiao, J.; Wang, Y.; et al. Olfactory ensheathing cell neurorestorotherapy for amyotrophic lateral sclerosis patients: Benefits from multiple transplantations. Cell Transpl. 2012, 21 (Suppl. 1), S65–S77. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Huang, H.; Xi, H.; Xie, Z.; Liu, R.; Jiang, Z.; Zhang, F.; Liu, Y.; Chen, D.; Wang, Q.; et al. Intracranial transplant of olfactory ensheathing cells in children and adolescents with cerebral palsy: A randomized controlled clinical trial. Cell Transpl. 2010, 19, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Gilmour, A.D.; Reshamwala, R.; Wright, A.A.; Ekberg, J.A.K.; St John, J.A. Optimizing olfactory ensheathing cell transplantation for spinal cord injury repair. J. Neurotrauma 2020, 37, 817–829. [Google Scholar] [CrossRef]
- Tabakow, P.; Jarmundowicz, W.; Czapiga, B.; Fortuna, W.; Miedzybrodzki, R.; Czyz, M.; Huber, J.; Szarek, D.; Okurowski, S.; Szewczyk, P.; et al. Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transpl. 2013, 22, 1591–1612. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Huang, H.; Xi, H.; Zhang, F.; Liu, Y.; Chen, D.; Xiao, J. A prospective randomized double-blind clinical trial using a combination of olfactory ensheathing cells and schwann cells for the treatment of chronic complete spinal cord injuries. Cell Transpl. 2014, 23 (Suppl. 1), S35–S44. [Google Scholar] [CrossRef] [Green Version]
- Tabakow, P.; Raisman, G.; Fortuna, W.; Czyz, M.; Huber, J.; Li, D.; Szewczyk, P.; Okurowski, S.; Miedzybrodzki, R.; Czapiga, B.; et al. Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging. Cell Transpl. 2014, 23, 1631–1655. [Google Scholar] [CrossRef] [Green Version]
- Rao, Y.J.; Zhu, W.X.; Du, Z.Q.; Jia, C.X.; Du, T.X.; Zhao, Q.A.; Cao, X.Y.; Wang, Y.J. Effectiveness of olfactory ensheathing cell transplantation for treatment of spinal cord injury. Genet. Mol. Res. 2014, 13, 4124–4129. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.; Zhu, W.; Guo, Y.; Jia, C.; Qi, R.; Qiao, R.; Cao, D.; Zhang, H.; Cui, Z.; Yang, L.; et al. Long-term outcome of olfactory ensheathing cell transplantation in six patients with chronic complete spinal cord injury. Cell Transpl. 2013, 22 (Suppl. 1), S21–S25. [Google Scholar] [CrossRef]
- Rao, Y.; Zhu, W.; Liu, H.; Jia, C.; Zhao, Q.; Wang, Y. Clinical application of olfactory ensheathing cells in the treatment of spinal cord injury. J. Int. Med. Res. 2013, 41, 473–481. [Google Scholar] [CrossRef]
- Wu, J.; Sun, T.; Ye, C.; Yao, J.; Zhu, B.; He, H. Clinical observation of fetal olfactory ensheathing glia transplantation (oegt) in patients with complete chronic spinal cord injury. Cell Transpl. 2012, 21 (Suppl. 1), S33–S37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Xi, H.; Chen, L.; Zhang, F.; Liu, Y. Long-term outcome of olfactory ensheathing cell therapy for patients with complete chronic spinal cord injury. Cell Transpl. 2012, 21 (Suppl. 1), S23–S31. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, L.; Wang, H.; Xiu, B.; Li, B.; Wang, R.; Zhang, J.; Zhang, F.; Gu, Z.; Li, Y.; et al. Influence of patients’ age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin. Med. J. 2003, 116, 1488–1491. [Google Scholar]
- Copelan, E.A. Medical progress: Hematopoietic stem-cell transplantation. N. Engl. J. Med. 2006, 354, 1813–1826. [Google Scholar] [CrossRef]
- Burman, J.; Tolf, A.; Hagglund, H.; Askmark, H. Autologous haematopoietic stem cell transplantation for neurological diseases. J. Neurol. Neurosurg. Psychiatry 2018, 89, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Mariottini, A.; De Matteis, E.; Muraro, P.A. Haematopoietic stem cell transplantation for multiple sclerosis: Current status. BioDrugs 2020, 34, 307–325. [Google Scholar] [CrossRef]
- Price, J. Cell therapy approaches to autism: A review of clinical trial data. Mol. Autism 2020, 11, 37. [Google Scholar] [CrossRef]
- Ahn, S.Y.; Chang, Y.S.; Kim, Y.E.; Sung, S.I.; Sung, D.K.; Park, W.S. Mesenchymal stem cells transplantation attenuates brain injury and enhances bacterial clearance in escherichia coli meningitis in newborn rats. Pediatr. Res. 2018, 84, 778–785. [Google Scholar] [CrossRef] [Green Version]
Cell Source | Additional Invasive Procedures | Immunogenicity | Ethical Issues | Cell Availability | Cell Type | |
---|---|---|---|---|---|---|
Autologous transplantation | Patients themselves | Yes | No immune rejection | No | Limited by autologous cell culture | Limited, depending on the patient him/herself |
Allogeneic transplantation | Other donors | No | Activated immune response, immunosuppressants required | Yes (when it involves the use of human embryos) | Cryopreserved stocks, suitable for big amount cell preservation | Various, depending on the donors (e.g., ESCs and FSCs) |
Disease | Route of Administration | Cell Source | Cell Amount | Number of Patients | Longest Follow-Up Time (after 1st Transplantation) | Outcome/Conclusion | Ref. |
---|---|---|---|---|---|---|---|
Lyme disease | Intramuscular, intravenous, and other supplemental routes | Human embryo | N/A | 59 | 8 weeks | 43 patients showed significant improvement, 12 patients showed moderate improvement, 4 patients exhibited mild improvement in their brain perfusion; no deterioration was found | [29] |
Lyme disease and multiple sclerosis | Intramuscular, intravenous, and other supplemental routes | Human embryo | N/A | 2 | N/A | Patients showed remarkable neurological functional and histological improvement; no adverse events were reported | [30] |
Spinal cord injury | Intramuscular, intravenous, and other supplemental routes | Human embryo | hundreds of millions of cells in total | 5 | 5 years | All patients showed neurological functional improvement, 3/5 showed improved American Spinal Injury Association score (ASIA); no adverse events were reported | [31] |
Spinal cord injury | Intramuscular, intravenous, and other supplemental routes | Human embryo | hundreds of millions of cells in total | 226 | N/A | 70% of patients improved by at least one ASIA grade after 3 phases of treatment; no adverse events were reported | [32] |
Stroke | Intramuscular, intravenous, and other supplemental routes | Human embryo | hundreds of millions of cells in total | 24 | N/A | A large population of patients saw significant improvement regarding Nutech Functional Score and European Stroke Scale; no adverse events were reported | [33] |
Multiplesclerosis | Intramuscular, intravenous, and other supplemental routes | Human embryo | hundreds of millions of cells in total | 24 | Around 1 year | Patients showed an improvement in parameters associated with MS when evaluated with reverse nutech functional score but not with the expanded disability status scale; no adverse events were reported | [27] |
Cerebral palsy | Intramuscular, intravenous, and other supplemental routes | Human embryo | hundreds of millions of cells in total | 91 | N/A | Most patients showed significant improvement in Gross Motor Function Classification Scores Expanded and Revised (GMFCS-E & R) | [34] |
Disease (Model) | Route of Administration | Cell Source | Cell Amount | Number of Patients | Longest Follow-Up Time (after 1st Transplantation) | Outcome/Conclusion | Ref. |
---|---|---|---|---|---|---|---|
Ischemic stroke | Intracerebral | Human fetal spinal cord, cell line: NSI-566 | 1.2 × 107, 2.4 × 107, or 7.2 × 107 | 9 | 24 months | All patients showed significant behavioral and histological improvements | [69] |
ALS | Intraspinal | Human fetal brain | 2.25–4.6 × 106 | 18 | 51 months | No serious adverse effects. Some patients showed temporary subjective clinical improvement | [80] |
ALS | Intraspinal | Human spinal cord | 2 to 16 million | 15 | 9 months | Intraspinal transplantation of human spinal cord-derived neural stem cells can be safely accomplished at high doses | [81] |
ALS | Intraspinal | Human fetal spinal cord, cell line: NSI-566RSC | 1.5 million | 15 | 30 months | This NSPCs line can be safely transplanted into both lumbar and/or cervical human spinal cord segments | [67] |
moderate PD | Intracerebral | Human fetal brain | 2 million | 7 | 4 years | No adverse effects; enhanced midbrain dopaminergic activity; minor neuropsychological changes; 6/7 showed improved motor function; 5/7 showed better response to medication | [82] |
Chronic cervical SCI | Intraspinal | Cells were prepared and released by StemCells Inc. | 15 to 40 million | 16 | 1 year | Cell transplantation was safe, feasible, and well tolerated.Trends toward improvement in motor function and spasticity were seen | [83] |
completethoracic SCI | Intraspinal | Human fetal spinal cord, cell line: NSI-566 | N/A | 4 | 27 months | No serious adverse events; 3/4 showed early signs of potential efficacy | [68] |
Chronic cervical and thoracic SCI | Intraspinal | Human fetal brain, cell line: HuCNS-SC | 20 to 40 million | 29 | 1 year | Cell transplantation was safe and feasible using a manual injection technique | [84] |
Traumatic cervical SCI | Intraspinal | Human fetal telencephalon | 1 × 108 | 34 | 1 year | No serious adverse effects, 5/19 of treated patients showed functional recovery, 1/15 untreated patients showed functional recovery | [85] |
MS | Intrathecal | Autologous MSCs | 3 × 107 | 20 | Around 1 year | No serious adverse effects, improved median Expanded Disability Status Scale (EDSS), 70% and 50% of the subjects demonstrated improved muscle strength and bladder function, respectively | [73] |
MS | Intrathecal | Autologous bone marrow MSCs | 0.08–17.6 million | 6 | 8.9 years | No serious adverse events; 4/6 showed a measurable clinical improvement | [71] |
non-acute severe TBI | Intravenous or intrathecal | Autologous MSCs | 20 to 40 million | 10 | 6 months | No serious adverse events, 7/10 patients presented different degrees of improvement in neurological function | [72] |
Cerebral palsy | subarachnoid cavity | Autologous bone marrow MSCs | 1–2 × 107 | 60 | 6 months | No serious adverse events. Treated group showed significant motor function recovery but no significant increases in the language quotients | [70] |
Cell Type | Disease (Model) | Route of Administration | Cell Source | Cell Amount | Number of Patients | Longest Follow-Up Time (after 1st Transplantation) | Outcome/Conclusion | Ref. |
---|---|---|---|---|---|---|---|---|
sympathetic neurons | PD | Intracerebral | Autologous sympathetic neurons | N/A | 4 | 36 months, | Clinical evaluations showed that an increase in the duration of levodopa-induced ‘‘on’’ phase, and the percent time spent in ‘‘off’’ phase exhibited a 30–40% reduction as compared to the pre-grafting values | [105] |
Dopamine neuron-contained tissue | PD | Intracerebral | Human embryonic mesencephalic tissue | N/A | 40 | 1 year | human embryonic dopamine neuron transplants survive in patients with severe Parkinson’s disease and result in some clinical benefit in younger but not in older patients | [106] |
neuronal cells | Stroke | Intracerebral | Human teratocarcinoma | N/A | 12 | 18 months | No adverse cell-related serologic or imaging-defined effects. The total European Stroke Scale score improved in six patients (3 to 10 points), with a mean improvement of 2.9 points in all patients | [107] |
Disease (Model) | Route of Administration | Cell Source | Cell Amount | Number of Patients | Longest Follow-Up Time (after 1st Transplantation) | Outcome/Conclusion | Ref. |
---|---|---|---|---|---|---|---|
Cerebellar ataxia | Intrathecal | Bone marrow, (cell line: CS20BR08) | 2 × 106/kg | 1 | 10 months | No adverse events reported. Improved K-SARA (Korean version of the Scale for the Assessment and Rating of Ataxia) scores | [128] |
ALS | Intrathecal | Autologous bone marrow | 30 × 106 | 8 | 14 months | No change in progression rate in patients with an inherently slow course, but some decreased progression rate in patients with an inherently rapid course | [129] |
SCI | Intrathecal | Umbilical cord | 4 × 106/kg | 143 | 12 months | No serious adverse events reported. Significant improvements in neurological dysfunction and recovery of quality of life | [130] |
Acute complete SCI | Intraspinal | Umbilical cord | 40 million | 40 | 12 months | Promoted recovery of neurological function | [131] |
Chronic SCI | Intradural and intravenous | Autologous bone marrow | 6.6–7.6 × 107 | 1 | 5 years | No complication or serious adverse effects, improved motoric function | [132] |
Acute complete SCI | Intraspinal | Umbilical cord | 4 × 107 | 2 | 1 year | No obvious adverse symptoms reported, the supraspinal control of movements below the injury was regained by functional NeuroRegen scaffolds implantation with hMSCs | [133] |
SCI | Intrathecal | Autologous adipose | 9 × 107 | 14 | 8 months | No serious adverse events. Several patients showed mild improvements in neurological function | [134] |
Cerebral palsy | Intravenous | Umbilical cord | 4.5–5.5 × 107 | 39 | 13 months | hMSCs transplantation was safe and effective at improving the gross motor and comprehensive function of children with cerebral palsy when combined with rehabilitation | [135] |
Cerebral palsy | Intrathecal and intravenous | Umbilical cord | 8 × 106/kg | 1 | 18 months | No serious adverse effects reported. hMSCs transplantation improved functional recovery, combined with rehabilitation | [136] |
Cerebral palsy | Intravenous | Umbilical cord | 80 × 107 | 1 | 5 years | hMSCs transplantation with basic rehabilitation improved the motor and comprehensive function. No serious adverse events | [137] |
TBI | Intrathecal, intramuscular, and intravenous | Wharton’s jelly | 18 × l06 /kg | 1 | 12 months | No important negative effects were reported. The patients’ speech, cognitive, memory, and fine motor skills were improved | [138] |
Chronic ischemic stroke | Intracerebral | Bone marrow, cell line: SB623 | 2.5–10 × 106 | 18 | 24 months | All experienced at least 1 treatment-emergent adverse event. 7 experienced 9 serious adverse events, which resolved without sequelae. Improved clinical outcomes | [139] |
Chronic stroke | Intravenous | Autologous bone marrow | 5.3 × 105–2.9 × 106/kg | 9 | 60 weeks | No adverse event reported. Improved neurological functions and clinical outcomes | [140] |
Stroke | Intravenous | Autologous bone marrow | 0.6 to1.6 × 108 | 12 | 12 months | No significant adverse effects were found. Improved neurological function | [141] |
HIE | Intrathecal, intramuscular, and intravenous | Wharton’s jelly | 12 × 106/kg | 1 | 12 months | Improved neurological recovery | [142] |
HIE | Intravenous | Umbilical cord | 1 × 108 | 22 | 180 days | No significant adverse effects were found. Markedly improved recovery of neurological function, cognition ability, emotional reaction, and extrapyramidal function | [143] |
MS | Intravenous | Umbilical cord | 14 × 107 | 20 | 1 year | No serious adverse events reported. Improved functional recovery | [144] |
MS | Intravenous | Autologous bone marrow | 1–2 × 106/kg | 24 | 6 months | No serious adverse effects reported. No substantial evidence of inhibition of disease activity, tissue repair, or recovery of function | [145] |
MS | Intravenous | Umbilical cord | 12 × 106/kg | 23 | 12 months | No significant adverse effects were found. Improved neurological function | [119] |
Drug-resistant epilepsy | Intrathecal | Autologous bone marrow | 7.4–16 × 107 | 4 | 2 years | CD271+ hMSCs, combined with autologous bone marrow nucleated cells transplantation, showed no serious adverse events but considerable neurological and cognitive improvement | [146] |
PD | Intracerebral | Autologous bone marrow | N/A | 7 | 36 months | No significant adverse effects were found. Several patients showed improved neurological function | [147] |
Disease | Route of Administration | Cell Source | Cell Amount | Number of Patients | Longest Follow-Up Time (after 1st Transplantation) | Outcome/Conclusion (Targeting Behavioral and Histological Change) | Ref. |
---|---|---|---|---|---|---|---|
SCI | Intraspinal | Autologous olfactory bulb | 5 × 105 | 1 | 19 months | Improved neurological and histopathological recovery, no adverse effects were seen | [178] |
SCI | Intraspinal | Human fetal olfactory bulbs | 1 × 106 | 7 | 6 months | No serious adverse effects were seen. All treated patients showed functional improvement, 4/5 showed improvement in electrophysiological tests | [177] |
SCI | Intraspinal | Human fetal olfactory bulbs | 2–5 × 106 | 15 | 8 weeks | No serious adverse effects were seen. 12/15 showed obvious spinal function improvement, and 3/15 had slight improvement | [179] |
SCI | Intraspinal | Autologous nasal mucosa | 1.8–21.2 × 106 | 6 | 1 year | no adverse findings related to olfactory mucosa biopsy or transplantation. All treated patients showed improved functional recovery, 2/3 of treated patients showed improved American Spinal Injury Association class | [176] |
SCI | Intraspinal | Human fetal olfactory bulbs | 2 × 106 | 6 | 24 months | No clinical complications were observed. All patients showed improved neurofunctional recovery | [180] |
SCI | Intraspinal | Autologous olfactory mucosa | Not mentioned | 8 | 24 months | No clinical complications were observed. All patients showed improved neurofunctional recovery, 3/8 showed returned substantial sensation and motor activity in various muscles, 2/8 showed restored bladder function | [181] |
SCI | Intraspinal | Human fetal olfactory bulbs | 5 × 105 | 11 | 1.5 years | All patients had no complications or deterioration of neurological conditions. Sensation and spasticity improved moderately. Locomotion recovery was minimal | [182] |
SCI | Intraspinal | olfactory bulbs | 5 × 105 | 108 | 5.3 years | No serious adverse effects were seen. Improve neurological functions. Sufficient rehabilitation most likely played a critical role | [183] |
SCI | Intraspinal | olfactory bulbs | 5 × 105 | 171 | 12 weeks | OECs transplantation can improve the neurological function of spinal cord of SCI patients regardless of their ages | [184] |
ALS | Intracranial and/or intraspinal | Human fetal olfactory bulbs | 1–2 × 106/treatment, 1–5 treatments | 507 | N/A | multiple doses of cellular therapy serve a positive role in the treatment of ALS | [173] |
Cerebral palsy | Intracranial | Human fetal olfactory bulbs | 2 × 106 | 14 | 6 months | OECs transplantation is effective for functional improvement in children and adolescents with cerebral palsy, yet without obvious side effects | [174] |
Cell Type | Stemness | Advantage | Disadvantage | Examples of Targeted Neurological Disorders in Animal Studies | Examples of Targeted Neurological Disorders in Clinical Trials |
---|---|---|---|---|---|
hESCs | Pluripotent | Unlimited proliferation | Ethical issues; risk of immune rejection, risk of tumor formation | SCI | Lyme disease, MS, SCI, stroke, cerebral palsy |
hiPSCs | Pluripotent | No ethical issues; applicable for autologous transplantation; high accessibility | Risk of tumor formation, unpredictable mutagenesis | SCI, stroke | N/A |
hNSPCs | Multipotent | Neural lineage differentiation; low risk of tumor formation; multiple sources | Comparatively low proliferation | SCI, HD, stroke, PD, AD, ataxia, TBI, ALS | Stroke, ALS, PD, SCI, MS, TBI, cerebral palsy |
Neurons | Terminal cells | No risk of tumor formation; no unexpected differentiation | Poor survival after transplantation | SCI, ALS, PD, AD | PD, stroke |
Oligodendrocytes | Terminal cells | No risk of tumor formation; no unexpected differentiation | Poor survival after transplantation | MS, SCI | N/A |
Astrocytes | Terminal cells | No risk of tumor formation; no unexpected differentiation | Effects highly depend on the subtype of the cells; not much studied | SCI | N/A |
hMSCs | Multipotent | Applicable for autologous transplantation; high accessibility; low risk of tumor formation | Limited neural differentiation; effects may be not as suitable as hNSPCs | SCI, PD, stroke, TBI, ALS, ataxia, MS, AD, epilepsy | SCI, PD, stroke, TBI, ALS, ataxia, MS, epilepsy, cerebral palsy, HIE |
DPSCs | Multipotent | Applicable for autologous transplantation; high accessibility; low risk of tumor formation | Limited neural differentiation; high heterogeneity; low number of cells from pulp tissue | SCI, HD, ataxia, stroke, PD | N/A |
SHED | Multipotent | High accessibility; low risk of tumor formation | Limited neural differentiation; high heterogeneity; low number of cells from pulp tissue | SCI, stroke | N/A |
Muse cells | Pluripotent | Applicable for autologous transplantation; high accessibility; non-tumorigenicity | Not much studied | SCI, stroke, HIE, ALS | N/A |
hOECs | Terminal cells | Applicable for autologous transplantation; high accessibility; non-tumorigenicity; no unexpected differentiation | Hard to purify; poor survival after transplantation; limited migration and phagocytosis; | SCI | SCI, ALS, cerebral palsy |
hHSCs | Multipotent | Applicable for autologous transplantation; high accessibility | Some risk of serious adverse effects | N/A | MS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Bobrovskaya, L.; Zhou, X.-F. Cell Therapy for Neurological Disorders: The Perspective of Promising Cells. Biology 2021, 10, 1142. https://doi.org/10.3390/biology10111142
Liu D, Bobrovskaya L, Zhou X-F. Cell Therapy for Neurological Disorders: The Perspective of Promising Cells. Biology. 2021; 10(11):1142. https://doi.org/10.3390/biology10111142
Chicago/Turabian StyleLiu, Donghui, Larisa Bobrovskaya, and Xin-Fu Zhou. 2021. "Cell Therapy for Neurological Disorders: The Perspective of Promising Cells" Biology 10, no. 11: 1142. https://doi.org/10.3390/biology10111142
APA StyleLiu, D., Bobrovskaya, L., & Zhou, X. -F. (2021). Cell Therapy for Neurological Disorders: The Perspective of Promising Cells. Biology, 10(11), 1142. https://doi.org/10.3390/biology10111142