Modeling of Old Scars: Histopathological, Biochemical and Thermal Analysis of the Scar Tissue Maturation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Surgical Procedures
2.2. Histology
2.3. Immunohistochemistry (IHC)
2.4. Morphometry
2.5. Chemical Analysis
2.6. Thermal Analysis
2.7. Statistical Analysis
3. Results
3.1. Morphometric Analysis, Histology, and Immunohistochemistry
3.2. Chemical Analysis
3.3. Thermal Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolfram, D.; Tzankov, A.; Pülzl, P.; Piza-Katzer, H. Hypertrophic scars and keloids–a review of their pathophysiology, risk factors, and therapeutic management. Dermatol. Surg. 2009, 35, 171–181. [Google Scholar] [CrossRef]
- Limandjaja, G.C.; Niessen, F.B.; Scheper, R.J.; Gibbs, S. Hypertrophic scars and keloids: Overview of the evidence and practical guide for differentiating between these abnormal scars. Exp. Dermatol. 2021, 30, 146–161. [Google Scholar] [CrossRef]
- Bayat, A.; McGrouther, D.; Ferguson, M.W.J. Skin scarring. BMJ 2003, 326, 88–92. [Google Scholar] [CrossRef]
- Zhang, T.; Shen, Z.; Zheng, J.; Jiang, R. Effect of UVA1 on hypertrophic scarring in the rabbit ear model. Biosci. Rep. 2020, 40, 40. [Google Scholar] [CrossRef] [Green Version]
- Shekhter, A.B.; Guller, A. The morphologic characteristics of scar tissues and the new clinicomorphologic classification of human skin scars. Arkh. Patol. 2008, 70, 6–13. [Google Scholar] [PubMed]
- Kischer, C.W.; Shetlar, M.R. Collagen and mucopolysaccharides in the hypertrophic scar. Connect. Tissue Res. 1974, 2, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Saulis, A.S.; Liu, W.R.; Roy, N.K.; Chao, J.D.; Ledbetter, S.; Mustoe, T.A. The temporal effects of anti-TGF-β1, 2, and 3 monoclonal antibody on wound healing and hypertrophic scar formation. J. Am. Coll. Surg. 2005, 201, 391–397. [Google Scholar] [CrossRef]
- Ogawa, R.; Chin, M.S. Animal models of keloids and hypertrophic scars. J. Burn. Care Res. 2008, 29, 1016–1017. [Google Scholar] [CrossRef] [PubMed]
- Del Toro, D.; Dedhia, R.; Tollefson, T.T. Advances in scar management. Curr. Opin. Otolaryngol. Head Neck Surg. 2016, 24, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Qing, C.; Wang, Z.Y.; Song, F.; Wang, X.Q. Dynamic biological changes in fibroblasts during hypertrophic scar formation and regression. Int. Wound J. 2014, 13, 257–262. [Google Scholar] [CrossRef]
- Kant, S.; van den Kerckhove, E.; Colla, C.; van der Hulst, R.; Piatkowski de Grzymala, A. Duration of scar maturation. Adv. Ski. Wound Care 2019, 32, 26–34. [Google Scholar] [CrossRef]
- Mustoe, T.A.; Cooter, R.D.; Gold, M.H.; Hobbs, F.D.R.; Ramelet, A.-A.; Shakespeare, P.G.; Stella, M.; Téot, L.; Wood, F.M.; Ziegler, U.E.; et al. International clinical recommendations on scar management. Plast. Reconstr. Surg. 2002, 110, 560–571. [Google Scholar] [CrossRef]
- Kelf, T.A.; Gosnell, M.; Sandnes, B.; Guller, A.E.; Shekhter, A.B.; Zvyagin, A.V. Scar tissue classification using nonlinear optical microscopy and discriminant analysis. J. Biophotonics 2011, 5, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Saulis, A.S.; Chao, J.D.; Telser, A.; Mogford, J.E.; Mustoe, T.A. Silicone occlusive treatment of hypertrophic scar in the rabbit model. Aesthetic Surg. J. 2002, 22, 147–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, I.; Mogford, J.E.; Witschi, C.; Nafissi, M.; Mustoe, T.A. Inhibition of prolyl 4-hydroxylase reduces scar hypertrophy in a rabbit model of cutaneous scarring. Wound Repair Regen. 2003, 11, 368–372. [Google Scholar] [CrossRef]
- Reid, R.R.; Mogford, J.E.; Butt, R.; de Giorgio-Miller, A.; Mustoe, T.A. Inhibition of procollagen C-proteinase reduces scar hypertrophy in a rabbit model of cutaneous scarring. Wound Repair Regen. 2006, 14, 138–141. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Z.; Li, X.; Ma, L.; Tang, Y.-L. Anti-inflammatory cytokine TSG-6 inhibits hypertrophic scar formation in a rabbit ear model. Eur. J. Pharmacol. 2015, 751, 42–49. [Google Scholar] [CrossRef]
- Commander, S.J.; Chamata, E.; Cox, J.; Dickey, R.M.; Lee, E.I. Update on postsurgical scar management. Semin. Plast. Surg. 2016, 30, 122–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloeters, O.; Tandara, A.; Mustoe, T.A. Hypertrophic scar model in the rabbit ear: A reproducible model for studying scar tissue behavior with new observations on silicone gel sheeting for scar reduction. Wound Repair Regen. 2007, 15, S40–S45. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.E.; Wu, L.; Zhao, L.L.; Bolton, L.; Roth, S.I.; Ladin, D.A.; Mustoe, T.A. Acute and chronic animal models for excessive dermal scarring: Quantitative studies. Plast. Reconstr. Surg. 1997, 100, 674–681. [Google Scholar] [CrossRef]
- Perry, D.M.; McGrouther, D.A.; Bayat, A. Current tools for noninvasive objective assessment of skin scars. Plast. Reconstr. Surg. 2010, 126, 912–923. [Google Scholar] [CrossRef]
- Van den Broek, L.J.; Limandjaja, G.C.; Niessen, F.B.; Gibbs, S. Human hypertrophic and keloid scar models: Principles, limitations and future challenges from a tissue engineering perspective. Exp. Dermatol. 2014, 23, 382–386. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.L.; Gragnani, A.; Ferreira, L.M. Is there an ideal animal model to study hypertrophic scarring? J. Burn. Care Res. 2008, 29, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Seo, B.F.; Lee, J.Y.; Jung, S.N. Models of abnormal scarring. Biomed Res. Int. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Wang, J.; Wang, Z.; Xia, Y.; Zhou, M.; Zhong, A.; Sun, J. Experimental models for cutaneous hypertrophic scar research. Wound Repair Regen. 2020, 28, 126–144. [Google Scholar] [CrossRef]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farndale, R.W.; Buttle, D.J.; Barrett, A.J. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1986, 883, 173–177. [Google Scholar] [CrossRef]
- Le Lous, M.; Flandin, F.; Herbage, D.; Allain, J.C. Influence of collagen denaturation on the chemorheological properties of skin, assessed by differential scanning calorimetry and hydrothermal isometric tension measurement. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1982, 717, 295–300. [Google Scholar] [CrossRef]
- Kronick, P.; Maleeff, B.; Carroll, R. The locations of collagens with different thermal stabilities in fibrils of bovine reticular dermis. Connect. Tissue Res. 1988, 18, 123–134. [Google Scholar] [CrossRef]
- Saulis, A.S.; Mogford, J.H.; Mustoe, T.A. Effect of Mederma on hypertrophic scarring in the rabbit ear model. Plast. Reconstr. Surg. 2002, 110, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Reid, R.R.; Roy, N.; Mogford, J.E.; Zimmerman, H.; Lee, C.; Mustoe, T.A. Reduction of hypertrophic scar via retroviral delivery of a dominant negative TGF-β receptor II. J. Plast. Reconstr. Aesthetic Surg. 2007, 60, 64–72. [Google Scholar] [CrossRef]
- Tandara, A.A.; Mustoe, T.A. The role of the epidermis in the control of scarring: Evidence for mechanism of action for silicone gel. J. Plast. Reconstr. Aesthetic Surg. 2008, 61, 1219–1225. [Google Scholar] [CrossRef] [PubMed]
- Tollefson, T.T.; Kamangar, F.; Aminpour, S.; Lee, A.; Durbin-Johnson, B.; Tinling, S. Comparison of effectiveness of silicone gel sheeting with microporous paper tape in the prevention of hypertrophic scarring in a rabbit model. Arch. Facial Plast. Surg. 2012, 14, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, Y.; Jiang, Y.P.; Zhang, L.K.; Peng, C.; He, K.; Rahman, K.; Qin, L.P. Curative effects of oleanolic acid on formed hypertrophic scars in the rabbit ear model. Evid.-Based Complement. Altern. Med. 2012, 2012, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, E.E.; Niknam-Bienia, S.; Xie, P.; Jia, S.X.; Hong, S.J.; Mustoe, T.A.; Galiano, R.D. Thermal injury model in the rabbit ear with quantifiable burn progression and hypertrophic scar. Wound Repair Regen. 2017, 25, 327–337. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, M.; Wang, Y.; Bi, H.; Xue, C. Gene expression profile analysis on different stages of hypertrophic scarring in a rabbit ear model. Exp. Ther. Med. 2020, 20, 1505–1513. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Wang, Z.Y.; Jia, S.X.; Jin, S.W.; Lu, S.L.; Liao, Z.J. Establishment of an animal model with hypertrophic scar. Zhonghua Shao Shang Za Zhi 2004, 20, 281–283. [Google Scholar] [PubMed]
- Hayakawa, T.; Hino, N.; Fuyamada, H.; Nagatsu, T.; Aoyama, H. Lysyl oxidase activity in human normal skins and postburn scars. Clin Chim Acta 1976, 71, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Verhaegen, P.D.; van Zuijlen, P.P.; Pennings, N.M.; van Marle, J.; Niessen, F.B.; van der Horst, C.M.; Middelkoop, E. Differences in collagen architecture between keloid, hypertrophic scar, normotrophic scar, and normal skin: An objective histopathological analysis. Wound Repair Regen. 2009, 17, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Blumenkrantz, N.; Asboe-Hansen, G. Hydroxyproline to hydroxylysine molar ratio indicates collagen type. Acta Derm Venereol 1978, 58, 111–115. [Google Scholar]
- Hayakawa, T.; Hino, M.; Fuyamada, H.; Nagatsu, T.; Aoyama, H. Prolyl hydroxylase activity in human normal skins and post-burn scars. Clin. Chim. Acta 1977, 75, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Ignat’eva, N.Y.; Danilov, N.A.; Averkiev, S.V.; Obrezkova, M.V.; Lunin, V.V.; Sobol’, E.N. Determination of hydroxyproline in tissues and the evaluation of the collagen content of the tissues. J. Anal. Chem. 2007, 62, 51–57. [Google Scholar] [CrossRef]
- Savage, K.; Swann, D.A. A comparison of glycosaminoglycan synthesis by human fibroblasts from normal skin, normal scar, and hypertrophic scar. J. Investig. Dermatol. 1985, 84, 521–526. [Google Scholar] [CrossRef] [Green Version]
- Sasarman, F.; Maftei, C.; Campeau, P.M.; Brunel-Guitton, C.; Mitchell, G.A.; Allard, P. Biosynthesis of glycosaminoglycans: Associated disorders and biochemical tests. J. Inherit. Metab. Dis. 2016, 39, 173–188. [Google Scholar] [CrossRef] [PubMed]
- Reeds, P.J.; Wahle, K.W.; Haggarty, P. Energy costs of protein and fatty acid synthesis. Proc. Nutr. Soc. 1982, 41, 155–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghiselli, G. Drug-mediated regulation of glycosaminoglycan biosynthesis. Med. Res. Rev. 2017, 37, 1051–1094. [Google Scholar] [CrossRef] [PubMed]
- Sobol, E.; Shekhter, A.; Guller, A.; Baum, O.; Baskov, A. Laser-induced regeneration of cartilage. J. Biomed. Opt. 2011, 16, 080902. [Google Scholar] [CrossRef] [Green Version]
- Volpi, N. Therapeutic applications of glycosaminoglycans. Curr. Med. Chem. 2006, 13, 1799–1810. [Google Scholar] [CrossRef]
- Liu, Y.; Hao, L.-J.; Pang, J.-H. Effects of chondroitinase on hypertrophic scar in rabbit ears. Chin. J. Aesthet. Plast. Surg. 2006, 17, 336–339. [Google Scholar]
- Ishiko, T.; Naitoh, M.; Kubota, H.; Yamawaki, S.; Ikeda, M.; Yoshikawa, K.; Fujita, H.; Yamaguchi, H.; Kurahashi, Y.; Suzuki, S. Chondroitinase injection improves keloid pathology by reorganizing the extracellular matrix with regenerated elastic fibers. J. Dermatol. 2013, 40, 380–383. [Google Scholar] [CrossRef] [Green Version]
- Roth, M.; Papakonstantinou, E.; Karakiulakis, G. Chapter 9-Biological Function of Glycosaminoglycans. In Carbohydrate Chemistry, Biology and Medical Applications; Garg, H.G., Cowman, M.K., Hales, C.A., Eds.; Elsevier: Oxfordshire, UK, 2008; pp. 209–226. [Google Scholar]
- Horigome, T.; Takumi, S.; Shirai, K.; Kido, T.; Hagiwara-Chatani, N.; Nakashima, A.; Adachi, N.; Yano, H.; Hirai, Y. Sulfated glycosaminoglycans and non-classically secreted proteins, basic FGF and epimorphin, coordinately regulate TGF-β-induced cell behaviors of human scar dermal fibroblasts. J. Dermatol. Sci. 2017, 86, 132–141. [Google Scholar] [CrossRef] [Green Version]
- Shetlar, M.R.; Shetlar, C.L.; Chien, S.F.; Linares, H.A.; Dobrkovsky, M.; Larson, D.L. The hypertrophic scar. Hexosamine containing components of burn scars. Exp. Biol. Med. 1972, 139, 544–547. [Google Scholar] [CrossRef] [PubMed]
- Shetlar, M.; Shetlar, C.; Linares, H. The hypertrophic scar: Location of glycosaminoglycans within scars. Burns 1977, 4, 14–19. [Google Scholar] [CrossRef]
- Alexander, S.A.; Donoff, R.B. The histochemistry of glycosaminoglycans within hypertrophic scars. J. Surg. Res. 1980, 28, 171–181. [Google Scholar] [CrossRef]
- Shetlar, M.R.; Shetlar, C.L.; Kischer, C.W. Glycosaminoglycans in granulation-tissue and hypertrophic scars. Burns 1981, 8, 27–31. [Google Scholar] [CrossRef]
- Donoff, R.B.; Swann, D.A.; Schweidt, S.H. Glycosaminoglycans of normal and hypertrophic human scar. Exp. Mol. Pathol. 1984, 40, 13–20. [Google Scholar] [CrossRef]
- Dunn, M.G.; Silver, F.H.; Swann, D.A. Mechanical analysis of hypertrophic scar tissue: Structural basis for apparent increased rigidity. J. Invest. Dermatol. 1985, 84, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Swann, D.A.; Garg, H.G.; Jung, W.; Hermann, H.; A Swann, H.G.G.D. Studies on human scar tissue proteoglycans. J. Investig. Dermatol. 1985, 84, 527–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honda, T.; Matsunaga, E.; Katagiri, K.; Shinkai, H. The proteoglycans in hypertrophic scar. J. Dermatol. 1986, 13, 326–333. [Google Scholar] [CrossRef]
- Shetlar, M.R.; Shetlar, C.L.; Kischer, C.W.; Pindur, J. Implants of keloid and hypertrophic scars into the athymic nude mouse: Changes in the glycosaminoglycans of the implants. Connect. Tissue Res. 1991, 26, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Scott, P.G.; Dodd, C.M.; Tredget, E.E.; Ghahary, A.; Rahemtulla, F. Immunohistochemical localization of the proteoglycans decorin, biglycan and versican and transforming growth factor-beta in human post-burn hypertrophic and mature scars. Histopathology 2007, 26, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Scott, P.G.; Dodd, C.M.; Tredget, E.E.; Ghahary, A.; Rahemtulla, F. Chemical characterization and quantification of proteoglycans in human post-burn hypertrophic and mature scars. Clin. Sci. 1996, 90, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Koźma, E.M.; Ołczyk, K.; Glowacki, A.; Bobiński, R. An accumulation of proteoglycans in scarred fascia. Mol. Cell. Biochem. 2000, 203, 103–112. [Google Scholar] [CrossRef]
- Varkey, M.; Ding, J.; Tredget, E.E. Differential collagen-glycosaminoglycan matrix remodeling by superficial and deep dermal fibroblasts: Potential therapeutic targets for hypertrophic scar. Biomaterials 2011, 32, 7581–7591. [Google Scholar] [CrossRef]
- Sidgwick, G.P.; Bayat, A. Extracellular matrix molecules implicated in hypertrophic and keloid scarring. J. Eur. Acad. Dermatol. Venereol. 2012, 26, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Lingzhi, Z.; Meirong, L.; Xiaobing, F. Biological approaches for hypertrophic scars. Int. Wound J. 2019, 17, 405–418. [Google Scholar] [CrossRef]
- Schilter, H.; Findlay, A.D.; Perryman, L.; Yow, T.T.; Moses, J.; Zahoor, A.; Turner, C.I.; Deodhar, M.; Foot, J.S.; Zhou, W.; et al. The lysyl oxidase like 2/3 enzymatic inhibitor, PXS-5153A, reduces crosslinks and ameliorates fibrosis. J. Cellular. Mol. Med. 2019, 23, 1759–1770. [Google Scholar] [CrossRef] [Green Version]
- Tjin, G.; White, E.S.; Faiz, A.; Sicard, D.; Tschumperlin, D.J.; Mahar, A.; Kable, E.P.W.; Burgess, J.K. Lysyl oxidases regulate fibrillar collagen remodelling in idiopathic pulmonary fibrosis. Dis. Model. Mech. 2017, 10, 1301–1312. [Google Scholar] [CrossRef] [Green Version]
- Bingham, G.C.; Lee, F.; Naba, A.; Barker, T.H. Spatial-omics: Novel approaches to probe cell heterogeneity and extracellular matrix biology. Matrix Biol. 2020, 91–92, 152–166. [Google Scholar] [CrossRef]
- Naba, A.; Clauser, K.R.; Ding, H.; Whittaker, C.A.; Carr, S.A.; Hynes, R.O. The extracellular matrix: Tools and insights for the “omics” era. Matrix Biol. 2016, 49, 10–24. [Google Scholar] [CrossRef]
Inflammation Index | Criteria |
---|---|
0 | Similar to intact dermis |
1 | A few focal inflammatory cell infiltrates |
2 | Multiple focal inflammatory cell infiltrates or/and microcirculatory disorders in single blood vessels |
3 | Diffuse inflammatory cell infiltration or/and microcirculatory disorders in the majority of blood vessels |
Samples | Mean ± St. Deviation | ||
---|---|---|---|
Tp1, °C | Tp2, °C | The Low-Temperature Peak Ratio, % | |
Intact Skin | 58.9 ± 1.1 | 65.6 ± 0.9 | 14.2 ± 5.5 |
Scars, POD 30 | 61.6 ± 1.4 | 49.9 ± 16.4 * | |
Scars, POD 60 | 59.4 ± 0.6 | 66.2 ± 0.5 | 35.4 ± 11.8 * |
Scars, POD 90 | 58.8 ± 0.3 | 66.1 ± 0.5 | 14.9 ± 3.3 |
Scars, POD 120 | 58.9 ± 0.5 | 66.1 ± 0.3 | 15.5 ± 6.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fayzullin, A.; Ignatieva, N.; Zakharkina, O.; Tokarev, M.; Mudryak, D.; Khristidis, Y.; Balyasin, M.; Kurkov, A.; Churbanov, S.; Dyuzheva, T.; et al. Modeling of Old Scars: Histopathological, Biochemical and Thermal Analysis of the Scar Tissue Maturation. Biology 2021, 10, 136. https://doi.org/10.3390/biology10020136
Fayzullin A, Ignatieva N, Zakharkina O, Tokarev M, Mudryak D, Khristidis Y, Balyasin M, Kurkov A, Churbanov S, Dyuzheva T, et al. Modeling of Old Scars: Histopathological, Biochemical and Thermal Analysis of the Scar Tissue Maturation. Biology. 2021; 10(2):136. https://doi.org/10.3390/biology10020136
Chicago/Turabian StyleFayzullin, Alexey, Natalia Ignatieva, Olga Zakharkina, Mark Tokarev, Daniil Mudryak, Yana Khristidis, Maxim Balyasin, Alexandr Kurkov, Semyon Churbanov, Tatyana Dyuzheva, and et al. 2021. "Modeling of Old Scars: Histopathological, Biochemical and Thermal Analysis of the Scar Tissue Maturation" Biology 10, no. 2: 136. https://doi.org/10.3390/biology10020136
APA StyleFayzullin, A., Ignatieva, N., Zakharkina, O., Tokarev, M., Mudryak, D., Khristidis, Y., Balyasin, M., Kurkov, A., Churbanov, S., Dyuzheva, T., Timashev, P., Guller, A., & Shekhter, A. (2021). Modeling of Old Scars: Histopathological, Biochemical and Thermal Analysis of the Scar Tissue Maturation. Biology, 10(2), 136. https://doi.org/10.3390/biology10020136