Functionality of Djulis (Chenopodium formosanum) By-Products and In Vivo Anti-Diabetes Effect in Type 2 Diabetes Mellitus Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Dietary Fibre
2.3. Determination of Physical and Chemical Properties of Fibres
2.3.1. Bulk Density
2.3.2. Water-Holding Capacity
2.3.3. Oil-Holding Capacity
2.3.4. Swelling Properties
2.4. In Vitro Study of the Effect of Djulis Hull Fibre on Glucose Diffusion Rate
2.4.1. Effect of Djulis Hull Fibre on Glucose Diffusion Rate in Glucose–Fibre System
2.4.2. Effect of Fibre on Glucose Diffusion Rate in Starch- α-Amylase–Fibre System
2.4.3. Effect of Fibre on α-Amylase Activity
2.5. In Vivo Study of the Effect of Djulis Hull Powder on Postprandial Blood Glucose Content in Patients with T2DM
Ethical Approval and Informed Consent
2.6. Statistical Analysis
3. Results and Discussion
3.1. Analysis of Physical and Chemical Properties of Djulis Hull
3.1.1. Composition Analysis
3.1.2. Physicochemical Properties of Fibre
3.2. In Vitro Determination of the Effect of Fibre on Glucose Diffusion Rate
3.2.1. Effect of Fibre on Glucose Diffusion Rate
3.2.2. Effect of Fibre on α-Amylase Activity
3.3. Effect of Djulis Hull on Postprandial Blood Glucose Concentration in Patients with T2DM
3.3.1. Basic Information of Patients with T2DM
3.3.2. Comparison of Blood Glucose and Insulin Fasting and Postprandial Contents
3.3.3. Related Factors Affecting Postprandial Blood Glucose and Insulin Contents
3.3.4. Effect of Djulis Hull on Postprandial Blood Glucose Response Curve
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saeedi, P.; Salpea, P.; Karuranga, S.; Petersohn, I.; Malanda, B.; Gregg, E.W.; Unwin, N.; Wild, S.H.; Williams, R. Mortality attributable to diabetes in 20–79 years old adults, 2019 estimates: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res. Clin. Pract. 2020, 162, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Chilton, R.J.; Dungan, K.M.; Shubrook, J.H.; Umpierrez, G.E. Cardiovascular risk and the implications for clinical practice of cardiovascular outcome trials in type 2 diabetes. Prim. Care Diabetes 2019, 14, 193–212. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.; Chu, J.Y. Epidemiology of cerebrovascular disease among Chinese Canadian adults with type 2 diabetes. Can. J. Diabetes 2018, 42, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Cai, Y.; Graffy, J.; Holman, D.; Zhao, Z.; Simmons, D. Derivation and external validation of risk algorithms for cerebrovascular (re)hospitalisation in patients with type 2 diabetes: Two cohorts study. Diabetes Res. Clin. Pract. 2018, 144, 74–81. [Google Scholar] [CrossRef]
- Razaz, J.M.; Rahmani, J.; Varkaneh, H.K.; Thompson, J.; Clark, C.; Abdulazeem, H.M. The health effects of medical nutrition therapy by dietitians in patients with diabetes: A systematic review and meta-analysis: Nutrition therapy and diabetes. Prim. Care Diabetes 2019, 13, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Bingham, S.A.; Day, N.E.; Luben, R.; Ferrari, P.; Slimani, N.; Norat, T.; Clavel-Chapelon, F.; Kesse, E.; Nieters, A.; Boeing, H.; et al. Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): An observational study. Lancet 2003, 361, 1496–1501. [Google Scholar] [CrossRef]
- Brownlee, I. The impact of dietary fibre intake on the physiology and health of the stomach and upper gastrointestinal tract. Bioact. Carbohydr. Diet. Fibre 2014, 4, 155–169. [Google Scholar] [CrossRef] [Green Version]
- Provost, V.; Lamantia, V.; Bissonnette, S.; Cyr, Y.; Faraj, M. Increased fiber intake predicts the decrease in 2nd phase glucose-induced hyperinsulinemia following a hypocaloric diet in obese subjects. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 504–512. [Google Scholar] [CrossRef]
- Xu, H.; Ding, Y.; Xin, X.; Wang, W.; Zhang, D. Dietary fiber intake is associated with a reduced risk of ovarian cancer: A dose-response meta-analysis. Nutr. Res. 2018, 57, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ha, V.; Viguiliouk, E.; Kendall, C.W.C.; Balachandran, B.; Jenkins, D.J.A.; Kavsak, P.A.; Sievenpiper, J.L. Effect of a low glycemic index diet versus a high-cereal fibre diet on markers of subclinical cardiac injury in healthy individuals with type 2 diabetes mellitus: An exploratory analysis of a randomized dietary trial. Clin. Biochem. 2017, 50, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- McRae, M.P. Dietary fiber intake and type 2 diabetes mellitus: An umbrella review of meta-analyses. J. Chiropr. Med. 2018, 17, 44–53. [Google Scholar] [CrossRef]
- Lu, W.C.; Chan, Y.J.; Tseng, F.Y.; Chiang, P.Y.; Li, P.H. Production and physicochemical properties of starch isolated from djulis (Chenopodium formosanum). Foods 2019, 8, 551. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.C.; Sridhar, K.; Tsai, P.J.; Chou, C.S. Effect of traditional thermal and high-pressure processing (HPP) methods on the color stability and antioxidant capacities of Djulis (Chenopodium formosanum Koidz.). LWT 2019, 109, 342–349. [Google Scholar] [CrossRef]
- Tsai, P.J.; Sheu, C.H.; Wu, P.H.; Sun, Y.F. Thermal and pH stability of betacyanin pigment of djulis (Chenopodium formosanum) in Taiwan and their relation to antioxidant activity. J. Agric. Food Chem. 2010, 58, 1020–1025. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.C.; Chen, S.Y.; Chyau, C.C.; Fu, Z.H.; Liu, C.C.; Duh, P.D. Protective effect of djulis (Chenopodium formosanum) and its bioactive compounds against carbon tetrachloride-induced liver injury, in vivo. J. Funct. Foods 2016, 26, 585–597. [Google Scholar] [CrossRef]
- Chyau, C.C.; Chu, C.C.; Chen, S.Y.; Duh, P.D. Djulis (Chenopodiun formosaneum) and its bioactive compounds protect against oxidative stress in human HepG2 cells. J. Funct. Foods 2015, 18, 159–170. [Google Scholar] [CrossRef]
- Hong, Y.H.; Huang, Y.L.; Liu, Y.C.; Tsai, P.J. Djulis (Chenopodium formosanum Koidz.) water extract and its bioactive components ameliorate dermal damage in UVB-irradiated skin models. Biomed. Res. Int. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.W.; Chen, H.J.; Xie, G.R.; Shih, C.K. Djulis (Chenopodium Formosanum) prevents colon carcinogenesis via regulating antioxidative and apoptotic pathways in rats. Nutrients 2019, 11, 2168. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.Y.; Chu, C.C.; Chyau, C.C.; Yang, J.W.; Duh, P.D. Djulis (Chenopodium formosanum) and its bioactive compounds affect vasodilation, angiotensin converting enzyme activity, and hypertension. Food Biosci. 2019, 32, 469–480. [Google Scholar] [CrossRef]
- Chuang, K.J.; Chen, Z.J.; Cheng, C.L.; Hong, G.B. Investigation of the antioxidant capacity, insecticidal ability and oxidation stability of Chenopodium formosanum seed extract. Int. J. Mol. Sci. 2018, 19, 2726. [Google Scholar] [CrossRef] [Green Version]
- Hsu, B.Y.; Lin, S.W.; Inbaraj, B.S.; Chen, B.H. Simultaneous determination of phenolic acids and flavonoids in Chenopodium formosanum Koidz. (djulis) by HPLC-DAD-ESI—MS/MS. J. Pharm. Biomed. Anal. 2017, 132, 109–116. [Google Scholar] [CrossRef]
- Aryaeian, N.; Sedehi, S.K.; Arablou, T. Polyphenols and their effects on diabetes management: A review. Med. J. Islam. Repub. Iran 2017, 31, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Grassi, D.; Desideri, G.; Ferri, C. Flavonoids: Antioxidants against atherosclerosis. Nutrients 2010, 2, 889–902. [Google Scholar] [CrossRef] [Green Version]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef] [PubMed]
- Li, P.H.; Chan, Y.J.; Lu, W.C.; Huang, D.W.; Chang, T.C.; Chang, W.H.; Nie, X.B.; Jiang, C.X.; Zhang, X.L. Bioresource utilization of djulis (Chenopodium formosanum) biomass as natural antioxidants. Sustainability 2020, 12, 5926. [Google Scholar] [CrossRef]
- Massiot, P.; Renard, C.M.G.C. Composition, physico-chemical properties and enzymatic degradation of fibres prepared from different tissues of apple. LWT 1997, 30, 800–806. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Liu, F.; Pan, S. Effect of grinding methods on structural, physicochemical, and functional properties of insoluble dietary fiber from orange peel. Int. J. Polym. Sci. 2016, 2016, 1–7. [Google Scholar] [CrossRef]
- Chau, C.F.; Cheung, P.C.K.; Wong, Y.S. Functional properties of protein concentrates from three Chinese indigenous legume seeds. J. Agric. Food Chem. 1997, 45, 2500–2503. [Google Scholar] [CrossRef]
- Ralet, M.C.; Della Valle, G.; Thibault, J.F. Raw and extruded fibre from pea hulls. Part I: Composition and physico-chemical properties. Carbohydr. Polym. 1993, 20, 17–23. [Google Scholar] [CrossRef]
- Ou, S.; Kwok, K.; Li, Y.; Fu, L. In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. J. Agric. Food Chem. 2001, 49, 1026–1029. [Google Scholar] [CrossRef] [PubMed]
- Ballester-Sánchez, J.; Fernández-Espinar, M.T.; Haros, C.M. Isolation of red quinoa fibre by wet and dry milling and application as a potential functional bakery ingredient. Food Hydrocoll. 2020, 101, 105513. [Google Scholar] [CrossRef]
- Lamothe, L.M.; Srichuwong, S.; Reuhs, B.L.; Hamaker, B.R. Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food Chem. 2015, 167, 490–496. [Google Scholar] [CrossRef]
- Champ, M.; Langkilde, A.M.; Brouns, F.; Kettlitz, B.; Collet, Y.L.B. Advances in dietary fibre characterisation. 1. Definition of dietary fibre, physiological relevance, health benefits and analytical aspects. Nutr. Res. Rev. 2003, 16, 71–82. [Google Scholar] [CrossRef]
- Elleuch, M.; Bedigian, D.; Besbes, S.; Blecker, C.; Attia, H. Dietary fibre characteristics and antioxidant activity of sesame seed coats (Testae). Int. J. Food Prop. 2012, 15, 25–37. [Google Scholar] [CrossRef]
- Ahmed, F.; Sairam, S.; Urooj, A. In vitro hypoglycemic effects of selected dietary fiber sources. J. Food Sci. Technol. 2011, 48, 285–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaksson, G.; Lundquist, I.; Ihse, I. Effect of dietary fiber on pancreatic enzyme activity in vitro. Gastroenterology 1982, 82 Pt 1, 918–924. [Google Scholar] [CrossRef]
- Chau, C.F.; Huang, Y.L.; Lee, M.H. In vitro hypoglycemic effects of different insoluble fiber-rich fractions prepared from the peel of Citrus sinensis L. cv. Liucheng. J. Agric. Food Chem. 2003, 51, 6623–6626. [Google Scholar] [CrossRef] [PubMed]
- Smith, U.; Kahn, B.B. Adipose tissue regulates insulin sensitivity: Role of adipogenesis, de novo lipogenesis and novel lipids. J. Intern. Med. 2016, 280, 465–475. [Google Scholar] [CrossRef] [Green Version]
AISs | WISs | Dietary Fiber | ||
---|---|---|---|---|
IDF | SDF | TDF | ||
84.27 ± 0.67 | 81.17 ± 0.33 | 71.54 ± 0.27 | 3.72 ± 0.45 | 75.21 ± 0.17 |
Figure | Bulk Density (g/mL) | Water-Holding Capacity (mL/g) | Swelling Property (mL/g) | Oil-Holding Capacity (g/g) |
---|---|---|---|---|
Cellulose | 0.29 c ± 0.05 | 3.01 c ± 0.19 | 7.01 b ± 0.22 | 2.77 c ± 0.09 |
IDF | 0.33 bc ± 0.11 | 5.27 a ± 0.13 | 7.78 a ± 0.24 | 3.16 b ± 0.17 |
AISs | 0.54 a ± 0.14 | 4.02 b ± 0.17 | 5.72 d ± 0.31 | 3.60 a ± 0.05 |
WISs | 0.37 b ± 0.09 | 4.52 b ± 0.24 | 6.69 c ± 0.17 | 3.49 ab ± 0.11 |
Fibers | Glucose in Dialysate (µM) | ||||
---|---|---|---|---|---|
20 min | 30 min | 60 min | 120 min | 180 min | |
Control | 126 a ± 1.86 | 203 a ± 3.72 | 463 a ± 2.48 | 736 a ± 1.24 | 866 a ± 3.10 |
Cellulose | 114 b ± 0.62 | 181 b ± 1.24 | 440 b ± 1.86 | 689 b ± 2.48 | 815 b ± 1.86 |
IDF | 110 c ± 1.24 | 172 c ± 0.62 | 411 c ± 1.24 | 684 b ± 1.86 | 805 c ± 4.96 |
AISs | 100 d ± 0.62 | 167 d ± 3.10 | 399 d ± 0.62 | 657 d ± 4.96 | 794 d ± 2.48 |
WISs | 108 c ± 1.86 | 168 d ± 1.86 | 394 d ± 4.34 | 675 c ± 0.62 | 801 c ± 0.62 |
Fibers | Glucose Produced (µM/h) |
---|---|
Control | 7.85 a ± 0.24 |
Cellulose | 5.96 c ± 0.14 |
IDF | 6.01 b ± 0.66 |
AISs | 2.07 d ± 0.04 |
WISs | 2.47 d ± 0.22 |
Basic | Djulis Hull 10 g (n = 6) | Djulis Hull 5 g (n = 4) | p-Value | ||
---|---|---|---|---|---|
Information | Mean ± SD | Range | Mean ± SD | Range | |
DM history (year) | 5.9 ± 5.1 | 0.3–15.0 | 3.3 ± 1.7 | 1.0–4.0 | 0.604 |
Age (years) | 51.2 ± 14.9 | 32–71 | 64.3 ± 11.1 | 50–73 | 0.174 |
Height (cm) | 156.5 ± 7.5 | 147.0–67.0 | 167.0 ± 7.9 | 159.0–176.0 | 0.087 |
Body weight (kg) | 65.3 ± 11.1 | 52.8–81.7 | 76.7 ± 14.8 | 56.1–90.7 | 0.201 |
BMI (kg/m2) | 26.5 ± 2.5 | 22.6–30.4 | 27.3 ± 3.4 | 22.2–29.3 | 0.522 |
Muscle weight (kg) | 41.0 ± 7.9 | 34.0–53.2 | 50.9 ± 9.7 | 39.0–62.6 | 0.088 |
Fat weight (kg) | 21.8 ± 3.4 | 16.7–25.4 | 22.9 ± 5.7 | 14.8–28.1 | 0.670 |
Body fat (%) | 33.6 ± 2.9 | 31.1–38.1 | 29.7 ± 3.6 | 26.3–33.9 | 0.136 |
Waist/hip ratio | 0.9 ± 0.0 | 0.9–1.0 | 1.0 ± 0.1 | 0.9–1.0 | 0.516 |
A1C (%) | 6.9 ± 1.0 | 5.9–8.5 | 6.1 ± 0.5 | 5.7–6.8 | 0.165 |
Fasting glucose (mg/dL) | 133.5 ± 40.0 | 205.0–80.0 | 129.5 ± 15.6 | 149.0–116.0 | 0.831 |
Insulin (mg/dL) | 6.8 ± 6.3 | 18.4–0.1 | 9.4 ± 4.4 | 14.8–5.1 | 0.522 |
Djulis Hull 10 g (n = 6) | Djulis Hull 5 g (n = 4) | Overall | ||||
---|---|---|---|---|---|---|
Mean ± SD | p-Value | Mean ± SD | p-Value | Mean ± SD | p-Value | |
No consumption of djulis | ||||||
0 min | 133.5 ± 40.7 | 129.5 ± 15.5 | 131.9 ± 31.7 | |||
30 min | 245.5 ± 34.4 | <0.001 ** | 213.8 ± 26.1 | <0.001 ** | 232.8 ± 34.0 | <0.001 ** |
60 min | 297.7 ± 55.9 | <0.001 ** | 262.5 ± 27.1 | <0.001 ** | 283.6 ± 48.1 | <0.001 ** |
90 min | 297.3 ± 74.3 | <0.001 ** | 276.3 ± 28.7 | <0.001 ** | 288.9 ± 58.8 | <0.001 ** |
120 min | 250.7 ± 86.7 | <0.001 ** | 244.0 ± 47.0 | <0.001 ** | 248.0 ± 70.1 | <0.001 ** |
180 min | 155.2 ± 81.0 | 0.335 | 125.5 ± 49.1 | 0.787 | 143.3 ± 68.4 | 0.455 |
Consumption of Djulis | ||||||
0 min | 140.3 ± 46.1 | 124.5 ± 22.5 | 134.0 ± 37.7 | |||
30 min | 167.0 ± 46.7 | 0.001 * | 178.3 ± 43.5 | <0.001 ** | 171.5 ± 43.3 | <0.001 ** |
60 min | 206.6 ± 56.8 | <0.001 ** | 236.8 ± 60.4 | <0.001 ** | 218.6 ± 57.0 | <0.001 ** |
90 min | 238.8 ± 79.8 | <0.001 ** | 251.5 ± 55.8 | <0.001 ** | 243.9 ± 68.0 | <0.001 ** |
120 min | 243.0 ± 92.6 | 0.001 * | 226.8 ± 72.0 | <0.001 ** | 236.5 ± 81.0 | <0.001 ** |
180 min | 183.7 ± 108.0 | 0.123 | 171.8 ± 76.4 | 0.098 | 178.9 ± 92.0 | 0.027 * |
Djulis Hull 10 g (n = 6) | Djulis Hull 5 g (n = 4) | Overall | ||||
---|---|---|---|---|---|---|
Mean ± SD | p-Value | Mean ± SD | p-Value | Mean ± SD | p-Value | |
Not consumption of djulis | ||||||
0 min | 6.8 ± 6.3 | 9.4 ± 4.4 | 7.8 ± 5.5 | |||
30 min | 15.7 ± 10.3 | 0.003 * | 26.0 ± 28.2 | 0.113 | 19.8 ± 18.8 | 0.019 * |
60 min | 33.7 ± 16.6 | 0.012 * | 58.1 ± 56.2 | 0.032 * | 43.5 ± 36.9 | <0.001 ** |
90 min | 48.1 ± 28.8 | <0.001 ** | 108.7 ± 130.1 | 0.069 | 72.3 ± 84.2 | 0.008 |
120 min | 26.0 ± 16.7 | <0.001 ** | 121.7 ± 165.8 | 0.019 * | 64.3 ± 108.4 | 0.076 |
180 min | 23.4 ± 20.2 | 0.044 * | 28.0 ± 29.2 | 0.086 | 25.2 ± 22.7 | 0.002 * |
Consumption of Djulis | ||||||
0 min | 28.2 ± 52.4 | 11.0 ± 4.8 | 21.3 ± 40.3 | |||
30 min | 29.2 ± 56.2 | 0.431 | 16.2 ± 16.9 | 0.441 | 24.3 ± 43.6 | 0.319 |
60 min | 39.6 ± 54.0 | 0.100 | 41.5 ± 24.9 | 0.001 * | 40.3 ± 42.7 | 0.030 * |
90 min | 47.3 ± 52.8 | 0.063 | 21.5 ± 35.4 | 0.443 | 37.0 ± 46.3 | 0.061 |
120 min | 55.5 ± 57.2 | 0.025 * | 25.1 ± 22.5 | 0.101 | 43.3 ± 47.3 | 0.008 * |
180 min | 26.2 ± 45.6 | 0.529 | 33.1 ± 24.8 | 0.038 * | 29.0 ± 37.0 | 0.200 |
Blood Glucose (mg/dL) | Insulin (mg/dL) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Parameter | Estimate | SE | 95% C.I. | p-Value | Estimate | SE | 95% C.I. | p-Value | |
Sex | Male | −6.6 | 22.2 | −50.1; 37.0 | 0.768 | 15.0 | 14.9 | −14.2; 44.3 | 0.314 |
Female | 0.0 | 0.0 | |||||||
Age | −0.27 | 0.5 | −1.3; 0.7 | 0.584 | 0.4 | 0.48 | −0.9; 1.0 | 0.928 | |
Diabetes history (years) | 0.97 | 1.0 | −0.9; 2.9 | 0.31 | 0.07 | 1.06 | −2.0; 2.1 | 0.947 | |
Djulis hull, g | 10 | −4.2 | 15.6 | −34.7; 26.3 | 0.788 | 9.2 | 19.0 | −28.0; 46.4 | 0.627 |
5 | 19.6 | 9.6 | 0.7; 38.5 | 0.042 * | −6.2 | 12.8 | −31.4; 18.9 | 0.628 | |
After meal, min | 180 | 21.2 | 14.9 | −7.9; 50.4 | 0.153 | 9.9 | 2.6 | 4.8; 15.0 | <0.001 ** |
120 | 103.4 | 14.0 | 75.9; 131.0 | <0.001 ** | 37.3 | 16.2 | 5.6; 69.1 | 0.021 * | |
90 | 128.7 | 9.9 | 109.4; 148.0 | <0.001 ** | 38.8 | 14.6 | 10.1; 67.4 | 0.008 * | |
60 | 114.6 | 7.3 | 100.2; 129.0 | <0.001 ** | 26.5 | 6.6 | 13.5; 39.5 | <0.001 ** | |
30 | 67.2 | 5.4 | 56.7; 77.7 | <0.001 ** | 7.1 | 2.5 | 2.3; 11.9 | 0.004 * | |
0 | 0.0 | 0.0 | |||||||
A1C (%) | 51.4 | 6.1 | 39.5; 63.3 | <0.001 ** | −16.1 | 7.8 | −31.4; 0.9 | 0.038 * | |
Body fat (%) | −1.6 | 2.1 | −5.8; 2.6 | 0.454 | 4.8 | 1.1 | 2.7; 7.03 | <0.001 ** | |
BMI, kg/m2 | −3.3 | 2.6 | −8.5; 1.8 | 0.208 | 4.1 | 2.8 | −1.4; 9.5 | 0.142 |
Djulis Hull 10 g (n = 6) | Djulis Hull 5 g (n = 4) | ||||
---|---|---|---|---|---|
Mean ± SD | p-Value | Mean ± SD | p-Value | ||
0 min | No consumption | 133.5 ± 40.7 | 0.116 | 129.5 ± 15.5 | 0.273 |
Consumption | 140.3 ± 46.1 | 124.5 ± 22.5 | |||
30 min | No consumption | 245.5 ± 34.4 | 0.028 * | 213.8 ± 26.1 | 0.068 |
Consumption | 167.0 ± 46.7 | 178.3 ± 43.5 | |||
60 min | No consumption | 297.7 ± 55.9 | 0.027 * | 262.5 ± 27.1 | 0.465 |
Consumption | 206.5 ± 56.8 | 236.8 ± 60.4 | |||
90 min | No consumption | 297.3 ± 74.3 | 0.116 | 276.3 ± 28.7 | 0.461 |
Consumption | 238.8 ± 79.8 | 251.5 ± 55.8 | |||
120 min | No consumption | 250.7 ± 86.7 | 0.753 | 244.0 ± 47.0 | 0.715 |
Consumption | 243.0 ± 92.6 | 226.8 ± 72.0 | |||
180 min | No consumption | 155.2 ± 81.0 | 0.345 | 125.5 ± 49.1 | 0.068 |
Consumption | 183.7 ± 108.0 | 171.8 ± 76.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.-H.; Chan, Y.-J.; Hou, Y.-W.; Lu, W.-C.; Chen, W.-H.; Tseng, J.-Y.; Mulio, A.T. Functionality of Djulis (Chenopodium formosanum) By-Products and In Vivo Anti-Diabetes Effect in Type 2 Diabetes Mellitus Patients. Biology 2021, 10, 160. https://doi.org/10.3390/biology10020160
Li P-H, Chan Y-J, Hou Y-W, Lu W-C, Chen W-H, Tseng J-Y, Mulio AT. Functionality of Djulis (Chenopodium formosanum) By-Products and In Vivo Anti-Diabetes Effect in Type 2 Diabetes Mellitus Patients. Biology. 2021; 10(2):160. https://doi.org/10.3390/biology10020160
Chicago/Turabian StyleLi, Po-Hsien, Yung-Jia Chan, Ya-Wen Hou, Wen-Chien Lu, Wen-Hui Chen, Jie-Yun Tseng, and Amanda Tresiliana Mulio. 2021. "Functionality of Djulis (Chenopodium formosanum) By-Products and In Vivo Anti-Diabetes Effect in Type 2 Diabetes Mellitus Patients" Biology 10, no. 2: 160. https://doi.org/10.3390/biology10020160
APA StyleLi, P. -H., Chan, Y. -J., Hou, Y. -W., Lu, W. -C., Chen, W. -H., Tseng, J. -Y., & Mulio, A. T. (2021). Functionality of Djulis (Chenopodium formosanum) By-Products and In Vivo Anti-Diabetes Effect in Type 2 Diabetes Mellitus Patients. Biology, 10(2), 160. https://doi.org/10.3390/biology10020160