Preparation, Optimization and In-Vitro Evaluation of Curcumin-Loaded Niosome@calcium Alginate Nanocarrier as a New Approach for Breast Cancer Treatment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Optimization of Niosom Formulation
2.3. Preparation of Curcumin-Loaded Niosome (NioC)
2.4. Preparation of NioC-Incorporated Alginate (AL-NioC)
2.5. Polydispersity Index, Dimension, and Morphology
2.6. Fourier-Transform Infrared Spectroscopy (FTIR)
2.7. Entrapment Efficiency
2.8. Drug Release Study
2.9. Stability Studies
2.10. In Vitro Cell Cytotoxicity
2.11. Analysis of Apoptosis (Flow Cytometry)
2.12. Cell Cycle
2.13. Real-Time PCR Analysis
3. Results
3.1. Optimization and Characterization of NioCs
3.2. Investigation of NioCs&AL-NioC
Morphological Survey of the Optimized AL-NioC
3.3. Analysis of Fourier Transform Infrared (FTIR)
3.4. In Vitro Release of Drugs
3.5. Physical Stability Study of AL-NioC
3.6. MTT
3.7. Gene Expression
3.8. Apoptosis Analysis
3.9. Cell Cycle Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Availability of Data and Materials
Ethics Approval and Consent to Participate
Conflicts of Interest
References
- Bosetti, C.; Traini, E.; Alam, T.; Allen, C.A.; Carreras, G.; Compton, K.; Fitzmaurice, C.; Force, L.M.; Gallus, S.; Gorini, G.; et al. National burden of cancer in Italy, 1990–2017: A systematic analysis for the global burden of disease study 2017. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Andersson, T.M.-L.; Rutherford, M.J.; Myklebust, T.Å.; Møller, B.; Soerjomataram, I.; Arnold, M.; Bray, F.; Parkin, D.M.; Sasieni, P.; Bucher, O.; et al. Exploring the impact of cancer registry completeness on international cancer survival differences: A simulation study. Br. J. Cancer 2020, 1–7. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeSantis, C.E.; Miller, K.D.; Dale, W.; Mohile, S.G.; Cohen, H.J.; Leach, C.R.; Sauer, A.G.; Jemal, A.; Siegel, R.L. Cancer statistics for adults aged 85 years and older, 2019. CA Cancer J. Clin. 2019, 69, 452–467. [Google Scholar] [CrossRef] [Green Version]
- Carrick, S.; Parker, S.; Thornton, C.; Ghersi, D.; Simes, J.; Wilcken, N. Single agent versus combination chemotherapy for metastatic breast cancer. Cochrane Database Syst. Rev. 2009, 2009, CD003372. [Google Scholar] [CrossRef] [PubMed]
- Ghafelehbashi, R.; Yaraki, M.T.; Saremi, L.H.; Lajevardi, A.; Haratian, M.; Astinchap, B.; Rashidi, A.M.; Moradian, R.A. pH-responsive citric-acid/α-cyclodextrin-functionalized Fe3O4 nanoparticles as a nanocarrier for quercetin: An experimental and DFT study. Mater. Sci. Eng. C. 2020, 109, 110597. [Google Scholar] [CrossRef] [PubMed]
- Yaraki, M.T.; Pan, Y.; Hu, F.; Yu, Y.; Liu, B.; Tan, Y.N. Nanosilver-enhanced AIE photosensitizer for simultaneous bioimaging and photodynamic therapy. Mater. Chem. Front. 2020, 4, 3074–3085. [Google Scholar] [CrossRef]
- Yaraki, M.T.; Tan, Y.N. Recent Advances in Metallic Nanobiosensors Development: Colorimetric, Dynamic Light Scattering and Fluorescence Detection. Sens. Int. 2020, 100049. [Google Scholar] [CrossRef]
- Yaraki, M.T.; Tan, Y.N. Metal Nanoparticles-Enhanced Biosensors: Synthesis, Design and Applications in Fluorescence Enhancement and Surface-enhanced Raman Scattering. Chem. Asian J. 2020, 15, 3180–3208. [Google Scholar] [CrossRef]
- Yaraki, M.T.; Hu, F.; Rezaei, S.D.; Liu, B.; Tan, Y.N. Metal-enhancement study of dual functional photosensitizers with aggregation-induced emission and singlet oxygen generation. Nanoscale Adv. 2020, 2, 2859–2869. [Google Scholar] [CrossRef]
- Rabiee, N.; Yaraki, M.T.; Garakani, S.M.; Ahmadi, S.; Lajevardi, A.; Bagherzadeh, M.; Rabiee, M.; Tayebi, L.; Tahriri, M.; Hamblin, M.R. Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials 2020, 232, 119707. [Google Scholar] [CrossRef]
- Lajevardi, A.; Sadr, M.H.; Yaraki, M.T.; Badiei, A.; Armaghan, M. A pH-responsive and magnetic Fe3O4@silica@MIL-100(Fe)/β-CD nanocomposite as a drug nanocarrier: Loading and release study of cephalexin. New J. Chem. 2018, 42, 9690–9701. [Google Scholar] [CrossRef]
- Tahriri, M.; Del Monico, M.; Moghanian, A.; Yaraki, M.T.; Torres, R.; Yadegari, A.; Tayebi, L. Graphene and its derivatives: Opportunities and challenges in dentistry. Mater. Sci. Eng. C 2019, 102, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Muñoz, A.; Ruiz, E.P.; Ribelles, N.; Márquez, A.; Alba, E. Maintenance treatment in metastatic breast cancer. Expert Rev. Anticancer. Ther. 2008, 8, 1907–1912. [Google Scholar] [CrossRef]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef]
- Saboktakin, M.R.; Tabatabaie, R.M.; Maharramov, A.; Ramazanov, M.A. Synthesis and in vitro evaluation of thiolated chitosan-dextran sulfate nanoparticles for the delivery of letrozole. J. Pharm. Educ. Res. 2010, 1, 62. [Google Scholar]
- Mondal, N.; Pal, T.K.; Ghosal, S.K. Development, physical characterization, micromeritics and in vitro release kinetics of letrozole loaded biodegradable nanoparticles. Die Pharm. 2008, 63, 361–365. [Google Scholar]
- Mahale, N.; Thakkar, P.; Mali, R.; Walunj, D.; Chaudhari, S. Niosomes: Novel sustained release nonionic stable vesicular systems—An overview. Adv. Colloid Interface Sci. 2012, 183, 46–54. [Google Scholar] [CrossRef]
- Kumar, S.; Randhawa, J.K. High melting lipid based approach for drug delivery: Solid lipid nanoparticles. Mater. Sci. Eng. C 2013, 33, 1842–1852. [Google Scholar] [CrossRef] [PubMed]
- Junyaprasert, V.B.; Singhsa, P.; Jintapattanakit, A. Influence of chemical penetration enhancers on skin permeability of ellagic acid-loaded niosomes. Asian J. Pharm. Sci. 2013, 8, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Singhal, T.; Mujeeb, M.; Ahad, A.; Aqil, M.; Rahman, S.O.; Najmi, A.K.; Siddiqui, W.A. Preparation, optimization and biological evaluation of gymnemic acid loaded niosomes against streptozotocin-nicotinamide induced diabetic-nephropathy in Wistar rats. J. Drug Deliv. Sci. Technol. 2019, 54, 101328. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Tripathi, P.; Gupta, R.; Pandey, S. Niosomes: A review on niosomal research in the last decade. J. Drug Deliv. Sci. Technol. 2020, 56, 101581. [Google Scholar] [CrossRef]
- Gupta, A.; Khan, S.; Manzoor, M.; Yadav, A.; Sharma, G.; Anand, R.; Gupta, S. Anticancer Curcumin: Natural Analogues and Structure-Activity Relationship. Stud. Nat. Prod. Chem. 2017, 355–401. [Google Scholar]
- Alibeiki, F.; Jafari, N.; Karimi, M.; Dogaheh, H.P. Potent anti-cancer effects of less polar Curcumin analogues on gastric adenocarcinoma and esophageal squamous cell carcinoma cells. Sci. Rep. 2017, 7, 2559. [Google Scholar] [CrossRef] [Green Version]
- Nagahama, K.; Utsumi, T.; Kumano, T.; Maekawa, S.; Oyama, N.; Kawakami, J. Discovery of a new function of curcumin which enhances its anticancer therapeutic potency. Sci. Rep. 2016, 6, 30962. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol. 2016, 174, 1325–1348. [Google Scholar] [CrossRef] [Green Version]
- Anand, P.; Sundaram, C.; Jhurani, S.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin and cancer: An “old-age” disease with an “age-old” solution. Cancer Lett. 2008, 267, 133–164. [Google Scholar] [CrossRef]
- Demirbolat, G.M.; Aktas, E.; Pelin Coskun, P.; Erdogan, O.; Cevik, O. New Approach to Formulate Methotrexate-Loaded Niosomes: In Vitro Characterization and Cellular Effectiveness. J. Pharm. Innov. 2021, 16, 1–16. [Google Scholar] [CrossRef]
- Jamaludin, R.; Daud, N.M.; Sulong, R.S.R.; Yaakob, H.; Abdul Aziz, A.; Khamis, S.; MD Salleh, L. Andrographis paniculate- loaded niosome for wound healing application: Characterization and in vivo analyses. J. Drug Deliv. Sci. Technol. 2021, 63, 102427. [Google Scholar] [CrossRef]
- Naderinezhad, S.; Amoabediny, G.; Haghiralsadat, F. Co-delivery of hydrophilic and hydrophobic anticancer drugs using biocompatible pH-sensitive lipid-based nano-carriers for multidrug-resistant cancers. RSC Adv. 2017, 7, 30008–30019. [Google Scholar] [CrossRef] [Green Version]
- Fidan-Yardimci, M.; Akay, S.; Sharifi, F.; Sevimli-Gur, C.; Ongen, G.; Yesil-Celiktas, O. A novel niosome formulation for encapsulation of anthocyanins and modelling intestinal transport. Food Chem. 2019, 293, 57–65. [Google Scholar] [CrossRef]
- Di Marzio, L.; Esposito, S.; Rinaldi, F.; Marianecci, C.; Carafa, M. Polysorbate 20 vesicles as oral delivery system: In vitro characterization. Colloids Surf. B Biointerfaces 2013, 104, 200–206. [Google Scholar] [CrossRef]
- Pengnam, S.; Patrojanasophon, P.; Rojanarata, T.; Ngawhirunpat, T.; Yingyongnarongkul, B.-E.; Radchatawedchakoon, W.; Opanasopit, P. A novel plier-like gemini cationic niosome for nucleic acid delivery. J. Drug Deliv. Sci. Technol. 2019, 52, 325–333. [Google Scholar] [CrossRef]
- Ghafelehbashi, R.; Akbarzadeh, I.; Yaraki, M.T.; Lajevardi, A.; Fatemizadeh, M.; Saremi, L.H. Preparation, physicochemical properties, in vitro evaluation and release behavior of cephalexin-loaded niosomes. Int. J. Pharm. 2019, 569, 118580. [Google Scholar] [CrossRef]
- Khan, D.H.; Bashir, S.; Figueiredo, P.; Santos, H.A.; Khan, M.I.; Peltonen, L. Process optimization of ecological probe sonication technique for production of rifampicin loaded niosomes. J. Drug Deliv. Sci. Technol. 2019, 50, 27–33. [Google Scholar] [CrossRef]
- Heidari, F.; Akbarzadeh, I.; Nourouzian, D.; Mirzaie, A.; Bakhshandeh, H. Optimization and characterization of tannic acid loaded niosomes for enhanced antibacterial and anti-biofilm activities. Adv. Powder Technol. 2020, 31, 4768–4781. [Google Scholar] [CrossRef]
- Akbarzadeh, I.; Yaraki, M.T.; Ahmadi, S.; Chiani, M.; Nourouzian, D. Folic acid-functionalized niosomal nanoparticles for selective dual-drug delivery into breast cancer cells: An in-vitro investigation. Adv. Powder Technol. 2020, 31, 4064–4071. [Google Scholar] [CrossRef]
- Abruzzo, A. Chitosan Based Hydrogels for Transmucosal Drug Delivery. Ph.D. Thesis, Alma Mater Studiorum Università di Bologna, Bologna, Italy, 2013. [Google Scholar]
- Patel, M.A.; AbouGhaly, M.H.; Schryer-Praga, J.V.; Chadwick, K. The effect of ionotropic gelation residence time on alginate cross-linking and properties. Carbohydr. Polym. 2017, 155, 362–371. [Google Scholar] [CrossRef]
- Agarwal, T.; Narayana, S.G.H.; Pal, K.; Pramanik, K.; Giri, S.; Banerjee, I. Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. Int. J. Biol. Macromol. 2015, 75, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Bansal, D.; Gulbake, A.; Tiwari, J.; Jain, S.K. Development of liposomes entrapped in alginate beads for the treatment of colorectal cancer. Int. J. Biol. Macromol. 2016, 82, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Dawei, C.; Liping, X.; Rongqing, Z. Oral colon-specific drug delivery for bee venom peptide: Development of a coated calcium alginate gel beads-entrapped liposome. J. Control. Release 2003, 93, 293–300. [Google Scholar] [CrossRef]
- Buse, J.B.; DeFronzo, R.A.; Rosenstock, J.; Kim, T.; Burns, C.; Skare, S.; Baron, A.; Fineman, M. The Primary Glucose-Lowering Effect of Metformin Resides in the Gut, Not the Circulation. Results from Short-term Pharmacokinetic and 12-Week Dose-Ranging Studies. Diabetes Care 2015, 39, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 2003, 24, 4337–4351. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [Green Version]
- Esfahani, T.H.; Azadi, A.; Joodi, N.; Cohan, R.A.; Akbarzadeh, I.; Bakhshandeh, H. Optimized preparation of lysozyme loaded dextran-chitosan nanoparticles using D-optimal design. Health Biotechnol. Biopharma 2019, 2, 56–78. [Google Scholar]
- Mirzaie, A.; Peirovi, N.; Akbarzadeh, I.; Moghtaderi, M.; Heidari, F.; Yeganeh, F.E.; Noorbazargan, H.; Mirzazadeh, S.; Bakhtiari, R. Preparation and optimization of ciprofloxacin encapsulated niosomes: A new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus. Bioorganic Chem. 2020, 103, 104231. [Google Scholar] [CrossRef]
- Luo, Y.; Lode, A.; Akkineni, A.R.; Gelinsky, M. Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting. RSC Adv. 2015, 5, 43480–43488. [Google Scholar] [CrossRef]
- Chen, Y.X.; Cain, B.; Soman, P. Gelatin methacrylate-alginate hydrogel with tunable viscoelastic properties. AIMS Mater. Sci. 2017, 4, 363–369. [Google Scholar] [CrossRef]
- Gugleva, V.; Titeva, S.; Rangelov, S.; Momekova, D. Design and in vitro evaluation of doxycycline hyclate niosomes as a potential ocular delivery system. Int. J. Pharm. 2019, 567, 118431. [Google Scholar] [CrossRef] [PubMed]
- Nasseri, B. Effect of cholesterol and temperature on the elastic properties of niosomal membranes. Int. J. Pharm. 2005, 300, 95–101. [Google Scholar] [CrossRef]
- González-Rodríguez, M.; Holgado, M.; Sánchez-Lafuente, C.; Rabasco, A.; Fini, A. Alginate/chitosan particulate systems for sodium diclofenac release. Int. J. Pharm. 2002, 232, 225–234. [Google Scholar] [CrossRef]
- Yang, S.-J.; Chang, S.-M.; Tsai, K.-C.; Chen, W.-S.; Lin, F.-H.; Shieh, M.-J. Effect of chitosan-alginate nanoparticles and ultrasound on the efficiency of gene transfection of human cancer cells. J. Gene Med. 2009, 12, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.C.-W.; Liao, Y.-T.; Liu, C.-H.; Yu, J. Liver cancer cells: Targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres. Int. J. Nanomed. 2014, 9, 2767–2778. [Google Scholar] [CrossRef] [Green Version]
- Westphal, D.; Dewson, G.; Czabotar, P.E.; Kluck, R.M. Molecular biology of Bax and Bak activation and action. Biochim. Biophys. Acta (BBA) Bioenerg. 2011, 1813, 521–531. [Google Scholar] [CrossRef] [Green Version]
- Bnyan, R.; Khan, I.; Ehtezazi, T.; Saleem, I.; Gordon, S.; Neill, F.O.; Roberts, M. Surfactant Effects on Lipid-Based Vesicles Properties. J. Pharm. Sci. 2018, 107, 1237–1246. [Google Scholar] [CrossRef]
- Chmiel, T.; Mieszkowska, A.; Kempińska-Kupczyk, D.; Kot-Wasik, A.; Namieśnik, J.; Mazerska, Z. The impact of lipophilicity on environmental processes, drug delivery and bioavailability of food components. Microchem. J. 2019, 146, 393–406. [Google Scholar] [CrossRef]
- Kamboj, S.; Saini, V.; Bala, S. Formulation and Characterization of Drug Loaded Nonionic Surfactant Vesicles (Niosomes) for Oral Bioavailability Enhancement. Sci. World J. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchegbu, I.F.; Vyas, S.P. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int. J. Pharm. 1998, 172, 33–70. [Google Scholar] [CrossRef]
- Mokhtar, M.; Sammour, O.A.; Hammad, M.A.; Megrab, N.A. Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes. Int. J. Pharm. 2008, 361, 104–111. [Google Scholar] [CrossRef]
- Akbarzadeh, I.; Poor, A.S.; Yaghmaei, S.; Norouzian, D.; Noorbazargan, H.; Saffar, S.; Cohan, R.A.; Bakhshandeh, H. Niosomal delivery of simvastatin to MDA-MB-231 cancer cells. Drug Dev. Ind. Pharm. 2020, 2020, 1–50. [Google Scholar] [CrossRef]
- Pardakhty, A.; Varshosaz, J.; Rouholamini, A. In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Int. J. Pharm. 2007, 328, 130–141. [Google Scholar] [CrossRef]
- Varshosaz, J.; Pardakhty, A.; Hajhashemi, V.I.; Najafabadi, A.R. Development and physical characterization of sorbitan monoester niosomes for insulin oral delivery. Drug Deliv. 2003, 10, 251–262. [Google Scholar] [CrossRef]
- Lee, S.-C.; Lee, K.-E.; Kim, J.-J.; Lim, S.-H. The Effect of Cholesterol in the Liposome Bilayer on the Stabilization of Incorporated Retinol. J. Liposome Res. 2005, 15, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Moazeni, E.; Gilani, K.; Sotoudegan, F.; Pardakhty, A.; Najafabadi, A.R.; Ghalandari, R.; Fazeli, M.R.; Jamalifar, H. Formulation and in vitro evaluation of ciprofloxacin containing niosomes for pulmonary delivery. J. Microencapsul. 2010, 27, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Moghassemi, S.; Hadjizadeh, A.; Omidfar, K. Formulation and Characterization of Bovine Serum Albumin-Loaded Niosome. AAPS PharmSciTech 2017, 18, 27–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurrapu, A.; Jukanti, R.; Bobbala, S.R.; Kanuganti, S.; Jeevana, J.B. Improved oral delivery of valsartan from maltodextrin based proniosome powders. Adv. Powder Technol. 2012, 23, 583–590. [Google Scholar] [CrossRef]
- Sadeghi, S.; Bakhshandeh, H.; Cohan, R.A.; Peirovi, A.; Ehsani, P.; Norouzian, D. Synergistic Anti-Staphylococcal Activity Of Niosomal Recombinant Lysostaphin-LL-37. Int. J. Nanomed. 2019, 14, 9777–9792. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, S.; Ehsani, P.; Cohan, R.A.; Sardari, S.; Akbarzadeh, I.; Bakhshandeh, H.; Norouzian, D. Design and Physicochemical Characterization of Lysozyme Loaded Niosomal Formulations as a New Controlled Delivery System. Pharm. Chem. J. 2020, 53, 921–930. [Google Scholar] [CrossRef]
- Alemi, A.; Reza, J.Z.; Haghiralsadat, F.; Jaliani, H.Z.; Karamallah, M.H.; Hosseini, S.A.; Karamallah, S.H. Paclitaxel and curcumin coadministration in novel cationic PEGylated niosomal formulations exhibit enhanced synergistic antitumor efficacy. J. Nanobiotechnol. 2018, 16, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Khazaeli, P.; Pardakhty, A.; Shoorabi, H. Caffeine-Loaded Niosomes: Characterization and in Vitro Release Studies. Drug Deliv. 2007, 14, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Kishore, R.S.; Pappenberger, A.; Dauphin, I.B.; Ross, A.; Buergi, B.; Staempfli, A.; Mahler, H.-C. Degradation of Polysorbates 20 and 80: Studies on Thermal Autoxidation and Hydrolysis. J. Pharm. Sci. 2011, 100, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. Drug Res. 2010, 67, 217–223. [Google Scholar]
- Bruschi, M.L. Strategies to Modify the Drug Release from Pharmaceutical Systems; Woodhead Publishing: Cambridge, UK, 2015. [Google Scholar]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- Balasubramaniam, A.; Kumar, V.A.; Pillai, K.S. Formulation and In Vivo Evaluation of Niosome-Encapsulated Daunorubicin Hydrochloride. Drug Dev. Ind. Pharm. 2002, 28, 1181–1193. [Google Scholar] [CrossRef]
- Lawrence, M.; Chauhan, S.; Lawrence, S.M.; Barlow, D.J. The formation, characterization and stability of non-ionic surfactant vesicles. STP Pharma Sci. 1996, 6, 49–60. [Google Scholar]
- Seras-Cansell, M.; Ollivon, M.; Lesieur, S. Generation of non-ionic monoalkyl amphiphile-cholesterol vesicles: Evidence of membrane impermeability to octyl glucoside. STP Pharma Sci. 1996, 6, 12–20. [Google Scholar]
- Pardakhty, A.; Moazeni, E.; Varshosaz, J.; Hajhashemi, V.; Najafabadi, A.R. Pharmacokinetic study of niosome-loaded insulin in diabetic rats. DARU J. Pharm. Sci. 2011, 19, 404–411. [Google Scholar]
- Naseri, M.H.; Mahdavi, M.; Davoodi, J.; Tackallou, S.H.; Goudarzvand, M.; Neishabouri, S.H. Up regulation of Bax and down regulation of Bcl2 during 3-NC mediated apoptosis in human cancer cells. Cancer Cell Int. 2015, 15, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Jiang, S.; Zhou, L.; Yu, F.; Ding, H.; Li, P.; Zhou, M.; Wang, K. Potential Mechanisms of Action of Curcumin for Cancer Prevention: Focus on Cellular Signaling Pathways and miRNAs. Int. J. Biol. Sci. 2019, 15, 1200–1214. [Google Scholar] [CrossRef] [Green Version]
- Pisani, C.; Ramella, M.; Boldorini, R.; Loi, G.; Billia, M.; Boccafoschi, F.; Volpe, A.; Krengli, M. Apoptotic and predictive factors by Bax, Caspases 3/9, Bcl-2, p53 and Ki-67 in prostate cancer after 12 Gy single-dose. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.E.; Ha, T.K.; Yoon, J.H.; Lee, J.S. Myricetin induces cell death of human colon cancer cells via BAX/BCL2-dependent pathway. Anticancer. Res. 2014, 34, 701–706. [Google Scholar] [PubMed]
- Muller, P.A.J.; Vousden, K.H. p53 mutations in cancer. Nat. Cell Biol. 2013, 15, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, T.; Nakagawara, A. Role of p53 in Cell Death and Human Cancers. Cancers 2011, 3, 994–1013. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Anders, L. Signaling through cyclin D-dependent kinases. Oncogene 2014, 33, 1890–1903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.-W.; Yang, J.-S.; Pai, S.-J.; Wu, P.-P.; Chang, S.-J.; Chueh, F.-S.; Fan, M.-J.; Chiou, S.-M.; Kuo, H.-M.; Yeh, C.-C.; et al. Bufalin induces G0/G1 phase arrest through inhibiting the levels of cyclin D, cyclin E, CDK2 and CDK4, and triggers apoptosis via mitochondrial signaling pathway in T24 human bladder cancer cells. Mutat. Res. Mol. Mech. Mutagen. 2012, 732, 26–33. [Google Scholar] [CrossRef]
- Mazumder, S.; DuPree, E.; Almasan, A. A Dual Role of Cyclin E in Cell Proliferation and Apotosis May Provide a Target for Cancer Therapy. Curr. Cancer Drug Targets 2004, 4, 65–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, S.; Wang, Z.; Qian, Y.; Zhang, L.; Luo, E. The Release Rate of Curcumin from Calcium Alginate Beads Regulated by Food Emulsifiers. J. Agric. Food Chem. 2012, 60, 4388–4395. [Google Scholar] [CrossRef]
- Gombotz, W.R.; Wee, S.F. Protein release from alginate matrices. Adv. Drug Deliv. Rev. 2012, 64, 194–205. [Google Scholar] [CrossRef]
- Polk, A.; Amsden, B.; De Yao, K.; Peng, T.; Goosen, M. Controlled Release of Albumin from Chitosan-Alginate Microcapsules. J. Pharm. Sci. 1994, 83, 178–185. [Google Scholar] [CrossRef]
Level | −1 | 0 | +1 |
---|---|---|---|
A (Drug content, mg) | 5 | 10 | 15 |
B (Surfactant: Cholesterol, molar ratio) | 0.5 | 1 | 2 |
C (Lipid: Drug, molar ratio) | 10 | 20 | 30 |
Run | Levels of Independent Variables | Dependent Variables | ||||
---|---|---|---|---|---|---|
A(mg) | B (Molar Ratio) | C (Molar Ratio) | Average Size (nm) | Entrapment Efficiency (EE) (%) | Release (pH 7.4) (%) | |
1 | 1 | 0 | −1 | 172.2 | 96.57 | 69.25 |
2 | −1 | 1 | 0 | 223.9 | 90.21 | 47.85 |
3 | 0 | 0 | 0 | 191.3 | 95.6 | 61.47 |
4 | 1 | −1 | 0 | 322.1 | 89.85 | 55.90 |
5 | 0 | 1 | −1 | 198.7 | 84.51 | 51.50 |
6 | 0 | 0 | 0 | 187.3 | 96.03 | 64.75 |
7 | −1 | −1 | 0 | 305.6 | 87.36 | 43.29 |
8 | −1 | 0 | −1 | 163.4 | 86.54 | 50.67 |
9 | −1 | 0 | 1 | 208.5 | 94.1 | 61.07 |
10 | 0 | −1 | −1 | 269.1 | 80.29 | 53.22 |
11 | 1 | 0 | 1 | 280.6 | 97.49 | 66.39 |
12 | 0 | 0 | 0 | 186.7 | 95.82 | 62.50 |
13 | 1 | 1 | 0 | 244.6 | 90.85 | 58.33 |
14 | 0 | 1 | 1 | 295.7 | 93.75 | 60.11 |
15 | 0 | −1 | 1 | 358.4 | 92.12 | 60.85 |
Gene | Sequence of Primers |
---|---|
Cyclin D | Forward: 5′-CAGATCATCCGCAAACACGC-3′ Revers: 5′-AAGTTGTTGGGGCTCCTCAG-3′ |
b-actin | Forward: 5′-TCCTCCTGAGCGCAAGTAC-3′ Revers: 5′-CCTGCTTGCTGATCCACATCT-3′ |
Caspase 3 | Forward: 5′-CATACTCCACAGCACCTGGTTA-3′ Revers: 5′-ACTCAAATTCTGTTGCCACCTT-3′ |
Caspase 9 | Forward: 5′-CATATGATCGAGGACATCCAG-3 Revers: 5′-TTAGTTCGCAGAAACGAAGC-3′ |
Cyclin E | Forward: 5′-CTCCAGGAAGAGGAAGGCAA-3′ Revers: 5′-TTGGGTAAACCCGGTCATCA-3′ |
Bax | Forward: 5′-CGGCAACTTCAACTGGGG-3′ Revers: 5′-TCCAGCCCAACAGCCG-3′ |
Bcl2 | Forward: 5′-GGTGCCGGTTCAGGTACTCA-3′ Revers: 5′-TTGTGGCCTTCTTTGAGTTCG-3′ |
P53 | Forward: 5′-CATCTACAAGCAGTCACAGCACAT-3′ Revers: 5′-CAACCTCAGGCGGCTCATAG-3′ |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value | Evaluation |
---|---|---|---|---|---|---|
Model | 51617.35 | 9 | 5735.26 | 60.90 | 0.0001 | Significant |
A | 1743.45 | 1 | 1743.45 | 18.51 | 0.0077 | |
B | 10,679.91 | 1 | 10,679.91 | 113.41 | 0.0001 | |
C | 14,433.00 | 1 | 14,433.00 | 153.27 | <0.0001 | |
AB | 4.41 | 1 | 4.41 | 0.047 | 0.8372 | |
AC | 1001.72 | 1 | 1001.72 | 10.64 | 0.0224 | |
BC | 14.82 | 1 | 14.82 | 0.16 | 0.7079 | |
A2 | 118.22 | 1 | 118.22 | 1.26 | 0.3134 | |
B2 | 23,606.16 | 1 | 23,606.16 | 250.68 | <0.0001 | |
C2 | 539.10 | 1 | 539.10 | 5.72 | 0.0622 | |
Residual | 470.85 | 5 | 94.17 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value | Evaluation |
---|---|---|---|---|---|---|
Model | 317.09 | 9 | 317.09 | 5.24 | 0.0415 | Significant |
A | 34.24 | 1 | 34.24 | 5.39 | 0.0397 | |
B | 11.76 | 1 | 11.76 | 1.75 | 0.2434 | |
C | 109.15 | 1 | 109.15 | 16.22 | 0.0100 | |
AB | 0.86 | 1 | 0.86 | 0.13 | 0.7359 | |
AC | 11.02 | 1 | 11.02 | 1.64 | 0.2567 | |
BC | 1.68 | 1 | 1.68 | 0.25 | 0.6388 | |
A2 | 0.054 | 1 | 0.054 | 8.012 × 10−3 | 0.9321 | |
B2 | 138.67 | 1 | 138.67 | 20.61 | 0.0062 | |
C2 | 15.08 | 1 | 15.08 | 2.24 | 0.1946 | |
Residual | 33.64 | 5 | 33.64 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value | Evaluation |
---|---|---|---|---|---|---|
Model | 712.69 | 9 | 79.19 | 15.04 | 0.0041 | Significant |
A | 276.01 | 1 | 276.01 | 52.41 | 0.0008 | |
B | 2.57 | 1 | 2.57 | 0.49 | 0.5164 | |
C | 70.69 | 1 | 70.69 | 13.42 | 0.0145 | |
AB | 1.13 | 1 | 1.13 | 0.22 | 0.6621 | |
AC | 43.96 | 1 | 43.96 | 8.35 | 0.0342 | |
BC | 0.24 | 1 | 0.24 | 0.046 | 0.8394 | |
A2 | 34.79 | 1 | 34.79 | 6.61 | 0.0500 | |
B2 | 266.43 | 1 | 266.43 | 50.59 | 0.0009 | |
C2 | 14.89 | 1 | 14.89 | 2.83 | 0.1535 | |
Residual | 26.33 | 5 | 5.27 |
Number | A (Drug Content, mg) | B (Surfactant: Cholesterol, Molar Ratio) | C (Lipid: Drug, Molar Ratio) | Desirability |
---|---|---|---|---|
1 | 15 | 1.1 | 12 | 0.916 |
Parameter | Predicted by RSM | Experimental Data |
---|---|---|
Average size (nm) | 167.1 | 177.53 ± 4.53 |
Entrapment Efficiency (EE) (%) | 94.949 | 96.34 ± 1.67 |
Release (%) | 67.12 | 61.7 ± 1.23 |
Release Model | Zero-Order | Korsmeyer–Peppas | First-Order | Higuchi | |
---|---|---|---|---|---|
R2 | R2 | n * | R2 | R2 | |
Free Curcumin (pH 7.4) | 0.6875 | 0.7213 | 0.6432 | 0.8345 | 0.6473 |
NioC (pH 7.4) | 0.7347 | 0.9541 | 0.4185 | 0.7506 | 0.8927 |
AL-NioC (pH 7.4) | 0.6290 | 0.9682 | 0.4365 | 0.7855 | 0.9526 |
AL-NioC (pH 5) | 0.7451 | 0.9874 | 0.5272 | 0.8261 | 0.9471 |
AL-NioC (pH 3) | 0.7844 | 0.9636 | 0.5621 | 0.8981 | 0.9157 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbarzadeh, I.; Shayan, M.; Bourbour, M.; Moghtaderi, M.; Noorbazargan, H.; Eshrati Yeganeh, F.; Saffar, S.; Tahriri, M. Preparation, Optimization and In-Vitro Evaluation of Curcumin-Loaded Niosome@calcium Alginate Nanocarrier as a New Approach for Breast Cancer Treatment. Biology 2021, 10, 173. https://doi.org/10.3390/biology10030173
Akbarzadeh I, Shayan M, Bourbour M, Moghtaderi M, Noorbazargan H, Eshrati Yeganeh F, Saffar S, Tahriri M. Preparation, Optimization and In-Vitro Evaluation of Curcumin-Loaded Niosome@calcium Alginate Nanocarrier as a New Approach for Breast Cancer Treatment. Biology. 2021; 10(3):173. https://doi.org/10.3390/biology10030173
Chicago/Turabian StyleAkbarzadeh, Iman, Mona Shayan, Mahsa Bourbour, Maryam Moghtaderi, Hassan Noorbazargan, Faten Eshrati Yeganeh, Samaneh Saffar, and Mohammadreza Tahriri. 2021. "Preparation, Optimization and In-Vitro Evaluation of Curcumin-Loaded Niosome@calcium Alginate Nanocarrier as a New Approach for Breast Cancer Treatment" Biology 10, no. 3: 173. https://doi.org/10.3390/biology10030173
APA StyleAkbarzadeh, I., Shayan, M., Bourbour, M., Moghtaderi, M., Noorbazargan, H., Eshrati Yeganeh, F., Saffar, S., & Tahriri, M. (2021). Preparation, Optimization and In-Vitro Evaluation of Curcumin-Loaded Niosome@calcium Alginate Nanocarrier as a New Approach for Breast Cancer Treatment. Biology, 10(3), 173. https://doi.org/10.3390/biology10030173