History and Current Status of Phytoplasma Diseases in the Middle East
Abstract
:Simple Summary
Abstract
1. Introduction
2. Survey Methodology
3. A Historical Overview of Phytoplasma Diseases in the Middle East
4. Phytoplasmas Associated with Fruit Crops
4.1. Prunus Species
4.2. Pear
4.3. Apple
4.4. Grapevine
4.5. Date Palms
4.6. Acid Lime
4.7. Pistachios and Other Fruit Crops
5. Phytoplasmas Associated with Cereal and Forage Crops
5.1. Cereal Crops
5.2. Forage Crops
6. Phytoplasmas Associated with Vegetable Crops
6.1. Solanaceae
6.2. Cucurbits
6.3. Lettuce
6.4. Carrot
7. Other Vegetable Crops
8. Phytoplasmas Associated with Oilseed Crops
8.1. Sesame
8.2. Rapeseed
8.3. Asteraceae
9. Phytoplasmas Associated with Ornamentals, Weeds and Rangeland Plants
10. Weeds
11. Management of Phytoplasma Diseases
12. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Moghaddam, V.K.; Changani, F.; Mohammadi, A.; Hadei, M.; Ashabi, R.; Majd, L.E.; Mahvi, A.H. Sustainable development of water resources based on wastewater reuse and upgrading of treatment plants: A review in the Middle East. Desalin. Water Treat. 2017, 65, 463–473. [Google Scholar]
- FAO. FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 10 January 2020).
- Kolmer, J.A.; Herman, A.; Ordoñez, M.E.; German, S.; Morgounov, A.; Pretorius, Z.; Visser, B.; Anikster, Y.; Acevedo, M. Endemic and panglobal genetic groups, and divergence of host-associated forms in worldwide collections of the wheat leaf rust fungus Puccinia triticina as determined by genotyping by sequencing. Heredity 2020, 124, 397–409. [Google Scholar] [CrossRef]
- Kumar, S.; Abou-Jawdah, Y.; Siampour, M.; Sobh, H.; Tedeschi, R.; Alma, A.; Bianco, P.A.; Quaglino, F. Genetic diversity of ‘Candidatus phytoplasma phoenicium’ strain populations associated with almond witches’ broom in Lebanon and Iran. Phytopathogenic Mollicutes 2019, 9, 217–218. [Google Scholar] [CrossRef]
- Donkersley, P.; Silva, F.W.S.; Carvalho, C.M.; Al-Sadi, A.M.; Elliot, S.L. Biological, environmental and socioeconomic threats to citrus lime production. J. Plant Dis. Prot. 2018, 125, 339–356. [Google Scholar] [CrossRef] [Green Version]
- Alhudaib, K.A.; Rezk, A.A.; Soliman, A.M. Current status of watermelon chlorotic stunt virus (WmCSV) on some cucurbit plants (Cucurbitaceae) in Alahsa region of Saudi Arabia. Sci. J. King Faisal Univ. 2018, 19, 37–45. [Google Scholar]
- Al-Harthi, S.A.; Al-Sadi, A.M.; Al-Saady, A.A. Potential of citrus budlings originating in the Middle East as sources of citrus viroids. Crop Prot. 2013, 48, 13–15. [Google Scholar] [CrossRef]
- Maharachchikumbura, S.S.N.; Al-Sadi, A.M.; Al-Kharousi, M.; Al-Saady, N.A.; Hyde, K.D. A checklist of fungi in Oman. Phytotaxa 2016, 273, 219–261. [Google Scholar] [CrossRef]
- Al-Sadi, A.M.; Al-Moqbali, H.S.; Al-Yahyai, R.A.; Al-Said, F.A. AFLP data suggest a potential role for the low genetic diversity of acid lime (Citrus aurantifolia Swingle) in Oman in the outbreak of witches’ broom disease of lime. Euphytica 2012, 188, 285–297. [Google Scholar] [CrossRef]
- Mardi, M.; Nekouei, S.M.K.; Farsad, L.K.; Ehya, F.; Shabani, M.; Shafiee, M.; Tabatabaei, M.; Safarnejad, M.R.; Jouzani, G.S.; Salekdeh, G.H. Witches’ broom disease of Mexican lime trees: Disaster to be addressed before it will be too late. Bull. Insectol. 2011, 64, S205–S206. [Google Scholar]
- Firrao, G.; Andersen, M.; Bertaccini, A.; Boudon, E.; Bové, J.M.; Daire, X.; Davis, R.E.; Fletcher, J.; Garnier, M.; Gibb, K.S.; et al. ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 2004, 54, 1243–1255. [Google Scholar]
- Doi, Y.; Teranaka, M.; Yora, K.; Asuyama, H. Mycoplasma or PLT group-like micro-organisms found in the phloem element of plants infected with mulberry dwarf, potato witches’ broom, aster yellows or Paulownia witches’ broom. Ann. Phytopathol. Soc. Jpn. 1967, 33, 259–266. [Google Scholar] [CrossRef]
- Hill, G.; Sinclair, W. Taxa of leafhoppers carrying phytoplasmas at sites of ash yellows occurrence in New York State. Plant Dis. 2000, 84, 134–138. [Google Scholar] [CrossRef]
- Sugio, A.; MacLean, A.M.; Kingdom, H.N.; Grieve, V.M.; Manimekalai, R.; Hogenhout, S.A. Diverse targets of phytoplasma effectors: From plant development to defense against insects. Annu. Rev. Phytopathol. 2011, 49, 175–195. [Google Scholar] [CrossRef]
- Ammar, E.; Hogenhout, S. Mollicutes associated with arthropods and plants. Insect Symbiosis 2006, 2, 97–118. [Google Scholar]
- Weintraub, P.G.; Beanland, L. Insect vectors of phytoplasmas. Annu. Rev. Entomol. 2006, 51, 91–111. [Google Scholar] [CrossRef]
- Kakizawa, S.; Oshima, K.; Namba, S. Diversity and functional importance of phytoplasma membrane proteins. Trends Microbiol. 2006, 14, 254–256. [Google Scholar] [CrossRef]
- Kakizawa, S.; Oshima, K.; Ishii, Y.; Hoshi, A.; Maejima, K.; Jung, H.-Y.; Yamaji, Y.; Namba, S. Cloning of immunodominantmembrane protein genes of phytoplasmas and their in planta expression. FEMS Microbiol. Lett. 2009, 293, 92–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, S.; Oshima, K.; Kakizawa, S.; Arashida, R.; Jung, H.-Y.; Yamaji, Y.; Nishigawa, H.; Ugaki, M.; Namba, S. Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proc. Natl. Acad. Sci. USA 2006, 103, 4252–4257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, Y.; Kakizawa, S.; Hoshi, A.; Maejima, K.; Kagiwada, S.; Yamaji, Y.; Oshima, K.; Namba, S. In the non-insect-transmissible line of onion yellows phytoplasma (OY-NIM), the plasmid-encoded transmembrane protein ORF3 lacks the major promoter region. Microbiology 2009, 155, 2058–2067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galetto, L.; Bosco, D.; Balestrini, R.; Genre, A.; Fletcher, J.; Marzachì, C. The major antigenic membrane protein of “Candidatus Phytoplasma asteris” selectively interacts with ATP synthase and actin of leafhopper vectors. PLoS ONE 2011, 6, e22571. [Google Scholar] [CrossRef] [Green Version]
- Sugio, A.; Kingdom, H.; MacLean, A.; Grieve, V.; Hogenhout, S. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc. Natl. Acad. Sci. USA 2011, 108, E1254–E1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugio, A.; MacLean, A.M.; Hogenhout, S.A. The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN-TCP binding and destabilization. New Phytol. 2014, 202, 838–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlovskis, Z. Role of Phytoplasma Effector Proteins in Plant Development and Plant-Insect Interactions; University of East Anglia: Norwich, UK, 2017. [Google Scholar]
- Sugio, A.; Hogenhout, S.A. The genome biology of phytoplasma: Modulators of plants and insects. Curr. Opin. Microbiol. 2012, 15, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Du Toit, A. Bacterial pathogenicity: Phytoplasma converts plants into zombies. Nat. Rev. Microbiol. 2014, 12, 393. [Google Scholar] [CrossRef]
- Lee, I.M.; Gundersen-Rindal, D.E.; Bertaccini, A. Phytoplasma: Ecology and genomic diversity. Phytopathology 1998, 88, 1359–1366. [Google Scholar] [CrossRef] [Green Version]
- Bertaccini, A.; Lee, I.M. Phytoplasmas: An update. In Phytoplasmas: Plant Pathogenic Bacteria—I: Characterisation and Epidemiology of Phytoplasma—Associated Diseases; Springer: Singapore, 2018; pp. 1–29. [Google Scholar]
- Hogenhout, S.A.; Oshima, K.; AMMAR, E.D.; Kakizawa, S.; Kingdom, H.N.; Namba, S. Phytoplasmas: Bacteria that manipulate plants and insects. Mol. Plant Pathol. 2008, 9, 403–423. [Google Scholar] [CrossRef]
- Mazraie, M.A.; Izadpanah, K.; Hamzehzarghani, H.; Salehi, M.; Faghihi, M.M. Spread and colonization pattern of ‘Candidatus Phytoplasma aurantifolia’ in lime plants [Citrus aurantifolia (Christm.) Swingle] as revealed by real-time PCR assay. J. Plant Pathol. 2019, 101, 629–637. [Google Scholar] [CrossRef]
- Caglayan, K.; Gazel, M.; Škorić, D. Transmission of phytoplasmas by agronomic practices. In Phytoplasmas: Plant Pathogenic Bacteria—II: Transmission and Management of Phytoplasma—Associated Diseases; Springer: Singapore, 2019; pp. 149–163. [Google Scholar]
- Foissac, X.; Wilson, M. Current and possible future distributions of phytoplasma diseases and their vectors. In Phytoplasmas: Genomes, Plant Hosts, and Vectors; Weintraub, P.G., Jones, P., Eds.; CAB International: Wallingford, UK, 2010; pp. 309–324. [Google Scholar]
- Bila, J.; Mondjana, A.; Santos, L.; Högberg, N. Coconut lethal yellowing disease and the oryctes monoceros beetle: A joint venture against coconut production in Mozambique. Phytopathogenic Mollicutes 2019, 9, 153–154. [Google Scholar] [CrossRef]
- Alma, A.; Lessio, F.; Nickel, H. Insects as phytoplasma vectors: Ecological and epidemiological aspects. In Phytoplasmas: Plant Pathogenic Bacteria—II: Transmission and Management of Phytoplasma—Associated Diseases; Springer: Singapore, 2019; pp. 1–25. [Google Scholar]
- Solomon, J.J.; Hegde, V.; Babu, M.; Geetha, L. Phytoplasmal diseases. In The Coconut Palm (Cocos nucifera L.)—Research and Development Perspectives; Springer: Singapore, 2019; pp. 519–556. [Google Scholar]
- Jones, R.A.; Barbetti, M.J. Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. Cab Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2012, 22, 1–31. [Google Scholar] [CrossRef]
- Classen, A.T.; Sundqvist, M.K.; Henning, J.A.; Newman, G.S.; Moore, J.A.M.; Cregger, M.A.; Moorhead, L.C.; Patterson, C.M. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere 2015, 6, 1–21. [Google Scholar] [CrossRef]
- Al-Sadi, A.M.; Al-Hilali, S.A.; Al-Yahyai, R.A.; Al-Said, F.A.; Deadman, M.L.; Al-Mahmooli, I.H.; Nolasco, G. Molecular characterization and potential sources of Citrus tristeza virus in Oman. Plant Pathol. 2012, 61, 632–640. [Google Scholar] [CrossRef]
- Abou-Jawdah, Y.; Sobh, H.; Akkary, M. First report of Almond witchesbroom phytoplasma (Candidatus Phytoplasma phoenicium) causing a severe disease on nectarine and peach trees in Lebanon. Eppo Bull. 2009, 39, 94–98. [Google Scholar] [CrossRef]
- Casati, P.; Quaglino, F.; Abou-Jawdah, Y.; Picciau, L.; Cominetti, A.; Tedeschi, R.; Jawhari, M.; Choueiri, E.; Sobh, H.; Molino Lova, M.; et al. Wild plants could play a role in the spread of diseases associated with phytoplasmas of pigeon pea witches’-broom group (16SrIX). J. Plant Pathol. 2016, 98, 71–81. [Google Scholar]
- Mall, S.; Rao, G.P.; Marcone, C. Phytoplasma diseases of weeds: Detection, taxonomy and diversity. In Recent Trends in Biotechnology and Microbiology; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2010; pp. 87–108. [Google Scholar]
- Siampour, M.; Izadpanah, K.; Salehi, M.; Afsharifar, A. Occurrence and Distribution of Phytoplasma Diseases in Iran. In Sustainable Management of Phytoplasma Diseases in Crops Grown in the Tropical Belt; Springer: Berlin/Heidelberg, Germany, 2019; pp. 47–86. [Google Scholar]
- Lee, I.M.; Davis, R.E.; Gundersen-Rindal, D.E. Phytoplasma: Phytopathogenic mollicutes. Annu. Rev. Microbiol. 2000, 54, 221–255. [Google Scholar] [CrossRef] [Green Version]
- Bertaccini, A. Phytoplasmas: Diversity, taxonomy, and epidemiology. Front. Biosci. 2007, 12, 673–689. [Google Scholar] [CrossRef] [Green Version]
- Gurr, G.M.; Johnson, A.C.; Ash, G.J.; Wilson, B.A.; Ero, M.M.; Pilotti, C.A.; Dewhurst, C.F.; You, M.S. Coconut lethal yellowing diseases: A phytoplasma threat to palms of global economic and social significance. Front. Plant Sci. 2016, 7, 1521. [Google Scholar] [CrossRef]
- Seemüller, E.; Schneider, B. ‘Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma pyri’ and ‘Candidatus Phytoplasma prunorum’, the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. Int. J. Syst. Evol. Microbiol. 2004, 54, 1217–1226. [Google Scholar] [CrossRef]
- Zhu, S.; Bertaccini, A.; Lee, I.; Paltrinieri, S.; Hadidi, A. Cherry Lethal Yellows and Decline Phytoplasmas. In Virus and Virus-Like Diseases of Pome and Stone Fruits; APS Press: St. Paul, MN, USA, 2011; pp. 255–257. [Google Scholar]
- Li, S.; Hao, W.; Lu, G.; Huang, J.; Liu, C.; Zhou, G. Occurrence and Identification of a New Vector of Rice Orange Leaf Phytoplasma in South China. Plant Dis. 2015, 99, 1483–1487. [Google Scholar] [CrossRef]
- Zhu, Y.; He, Y.; Zheng, Z.; Chen, J.; Wang, Z.; Zhou, G. Draft Genome Sequence of Rice Orange Leaf Phytoplasma from Guangdong, China. Genome Announc. 2017, 5, e00430-17. [Google Scholar] [CrossRef] [Green Version]
- Hemmati, C.; Nikooei, M.; Al-Sadi, A.M. Five decades of research on phytoplasma-induced witches’ broom diseases. Cab Rev. 2021, 16, 1–16. [Google Scholar] [CrossRef]
- Al-Ghaithi, A.G.; Al-Sadi, A.M.; Al-Hammadi, M.S.; Al-Shariqi, R.M.; Al-Yahyai, R.A.; Al-Mahmooli, I.H.; Carvalho, C.M.; Elliot, S.L.; Hogenhout, S. Expression of phytoplasma-induced witches’ broom disease symptoms in acid lime (Citrus aurantifolia) trees is affected by climatic conditions. Plant Pathol. 2017, 66, 1380–1388. [Google Scholar] [CrossRef]
- Zirak, L.; Bahar, M.; Ahoonmanesh, A. Molecular characterization of phytoplasmas associated with peach diseases in Iran. J. Phytopathol. 2010, 158, 105–110. [Google Scholar] [CrossRef]
- Molino Lova, M.; Quaglino, F.; Abou-Jawdah, Y.; Choueiri, E.; Tedeschi, R.; Casati, P.; Bianco, P. ‘Candidatus Phytoplasma phoenicium’-related strains infecting almond, peach and nectarine in Lebanon. Bull. Insectol. 2011, 64, S267–S268. [Google Scholar]
- Bridge, J.; Waller, J.M. Report on a Visit to the Sultanate of Oman to Review Plant Disease and Nematode Problems; Ministry of Agriculture and Fisheries: Muscat, Oman, 1974.
- Waller, J.; Bridge, J. Plant diseases and nematodes in the Sultanate of Oman. Proc. Natl. Acad. Sci. USA 1978, 24, 313–326. [Google Scholar] [CrossRef]
- Bové, J.; Garnier, M.; Mjeni, A.; Khayrallah, A. Witches’ Broom Disease of Small-Fruited Acid Lime Trees in Oman: First MLO Disease of Citrus. In International Organization of Citrus Virologists Conference Proceedings (1957–2010); University of California: Riverside, CA, USA, 1988. [Google Scholar]
- Esmailzadeh Hosseini, S.; Salehi, M.; Khodakaramian, G.; Mirchenari, S.M.; Bertaccini, A. An up to date status of alfalfa witches’ broom disease in Iran. Phytopathogenic Mollicutes 2015, 5, 9–18. [Google Scholar] [CrossRef]
- Garnier, M.; Zreik, L.; Bové, J.M. Witches’ broom, a lethal mycoplasmal disease of lime trees in the Sultanate of Oman and the United Arab Emirates. Plant Dis. 1991, 75, 546–551. [Google Scholar] [CrossRef] [Green Version]
- Salehi, M.; Izadpanah, K. A comparative study of transmission, host range and symptomatology of sesame phyllody and alfalfa witches broom. Iran. J. Plant Pathol. 1993, 29, 157–158. [Google Scholar]
- Salehi, M.; Izadpanah, K. Etiology and transmission of sesame phyllody in Iran. J. Phytopathol. 1992, 135, 37–47. [Google Scholar] [CrossRef]
- Orenstein, S.; Zahavi, T.; Weintraub, P. Distribution of phytoplasma in grapevines in the Golan Heights, Israel, and development of a new universal primer. Vitis 2001, 40, 219–223. [Google Scholar]
- Alkuwaiti, N.A.S.; Kareem, T.A.; Sabier, L.J. Molecular detection of ‘Candidatus Phytoplasma australasia’ and ‘Ca. P. cynodontis’ in Iraq. Agriculture 2017, 63, 112–119. [Google Scholar] [CrossRef]
- Choueiri, E.; Jreijiri, F.; Issa, S.; Verdin, E.; Bové, J.; Garnier, M. First report of a phytoplasma disease of almond (Prunus amygdalus) in Lebanon. Plant Dis. 2001, 85, 802. [Google Scholar] [CrossRef] [PubMed]
- El-Banna, O.-H.M.; El-Deeb, S. First record of phytoplasma associated with malformed mango inflorescences in Egypt. Egypt J. Phytopathol. 2001, 29, 101–102. [Google Scholar]
- Alhudaib, K.; Arocha, Y.; Wilson, M.; Jones, P. “Al-Wijam”, a new phytoplasma disease of date palm in Saudi Arabia. Bull. Insectol. 2007, 60, 285–286. [Google Scholar]
- Abbasi, A.; Hasanzadeh, N.; Zamharir, M.G.; Tohidfar, M. Identification of a group 16SrIX ‘Candidatus Phytoplasma phoenicium’ phytoplasma associated with sweet orange exhibiting decline symptoms in Iran. Asutralas. Plant Dis. Notes 2019, 14, 11. [Google Scholar]
- Salehi, M.; Salehi, E.; Siampour, M.; Esmailzadeh-Hosseini, S.A.; Quaglino, F.; Bianco, P.A. ‘Candidatus Phytoplasma phoenicium’ associated with apricot yellows and peach witches’ broom in Iran. Phytopathogenic Mollicutes 2019, 9, 215–216. [Google Scholar] [CrossRef]
- Zirak, L.; Bahar, M.; Ahoonmanesh, A. Molecular characterization of phytoplasmas related to peanut witches’ broom and stolbur groups infecting plum in Iran. J. Plant Pathol. 2009, 91, 713–716. [Google Scholar]
- Abou-Jawdah, Y.; Dakhil, H.; El-Mehtar, S.; Lee, I.M. Almond witches’-broom phytoplasma: A potential threat to almond, peach, and nectarine. Can. J. Plant Pathol. 2003, 25, 28–32. [Google Scholar] [CrossRef]
- Salehi, M.; Izadpanah, K. Almond brooming. Iran. J. Plant Pathol. 1995, 32, 111–112. [Google Scholar]
- Abou-Jawdah, Y.; Karakashian, A.; Sobh, H.; Martini, M.; Lee, I.M. An epidemic of almond witches’-broom in Lebanon: Classification and phylogenetic relationships of the associated phytoplasma. Plant Dis. 2002, 86, 477–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salehi, M.; Haghshenas, F.; Khanchezar, A.; Esmailzadeh-Hosseini, S.A. Association of ‘candidatus phytoplasma phoenicium’ with Gf-677 witches’ broom in Iran. Bull. Insectol. 2011, 64, S113–S114. [Google Scholar]
- Salehi, M.; Izadpanah, K.; Heydarnejad, J. Characterization of a new almond witches’ broom phytoplasma in Iran. J. Phytopathol. 2006, 154, 386–391. [Google Scholar] [CrossRef]
- Lova, M.M.; Quaglino, F.; Abou-Jawdah, Y.; Choueiri, E.; Sobh, H.; Casati, P.; Tedeschi, R.; Alma, A.; Bianco, P.A. Identification of new 16SrIX subgroups, -F and -G, among ‘Candidatus phytoplasma phoenicium’ strains infecting almond, peach and nectarine in Lebanon. Phytopathol. Mediterr. 2011, 50, 273–282. [Google Scholar]
- Motamedi, E.; Salehi, M.; Sabbagh, S.K.; Salari, M. Differentiation and classification of phytoplasmas associated with almond and GF-677 witches’-broom diseases using rRNA and rp Genes. J. Phytopathol. 2016, 164, 185–192. [Google Scholar] [CrossRef]
- Salehi, M.; Esmailzadeh Hosseini, S.A.; Salehi, E.; Quaglino, F.; Bianco, P.A. Peach witches’-broom, an emerging disease associated with ‘Candidatus Phytoplasma phoenicium’ and ‘Candidatus Phytoplasma aurantifolia’ in Iran. Crop Prot. 2020, 127, 104946. [Google Scholar] [CrossRef]
- Salehi, M.; Salehi, E.; Abbasian, M.; Izadpanah, K. Wild almond (Prunus scoparia), a potential source of almond witches’ broom phytoplasma in Iran. J. Plant Pathol. 2015, 97, 377–381. [Google Scholar]
- Zirak, L.; Bahar, M.; Ahoonmanesh, A. Characterization of phytoplasmas associated with almond diseases in Iran. J. Phytopathol. 2009, 157, 736–741. [Google Scholar] [CrossRef]
- Verdin, E.; Salar, P.; Danet, J.L.; Choueiri, E.; Jreijiri, F.; El Zammar, S.; Gélie, B.; Bové, J.M.; Garnier, M. ‘Candidatus phytoplasma phoenicium’ sp. nov., a novel phytoplasma associated with an emerging lethal disease of almond trees in Lebanon and Iran. Int. J. Syst. Evol. Microbiol. 2003, 53, 833–838. [Google Scholar] [CrossRef] [Green Version]
- Zirak, L.; Bahar, M.; Ahoonmanesh, A. Characterization of phytoplasmas related to ‘Candidatus phytoplasma asteris’ and peanut WB group associated with sweet cherry diseases in Iran. J. Phytopathol. 2010, 158, 63–65. [Google Scholar] [CrossRef]
- Salehi, M.; Salehi, E.; Siampour, M.; Quaglino, F.; Bianco, P.A. Apricot yellows associated with ‘Candidatus Phytoplasma phoenicium’ in Iran. Phytopathol. Mediterr. 2018, 57, 269–283. [Google Scholar]
- Hashemi-Tameh, M.; Bahar, M.; Zirak, L. Molecular characterization of phytoplasmas related to apple proliferation and aster yellows groups associated with pear decline disease in Iran. J. Phytopathol. 2014, 162, 660–669. [Google Scholar] [CrossRef]
- Allahverdi, T.; Rahimian, H.; Babaeizad, V. Prevalence and distribution of peach yellow leaf roll in North of Iran. J. Plant Pathol. 2014, 96, 603. [Google Scholar]
- Gera, A.; Maslenin, L.; Weintraub, P.G.; Weintraub, M. Phytoplasma and spiroplasma diseases in open-field crops in Israel. Bull. Insectol. 2011, 64, S53–S54. [Google Scholar]
- Çaglayan, K.; Gazel, M.; Küçükgöl, C.; Paltrineri, S.; Contaldo, N.; Bertaccini, A. First report of ‘candidatus phytoplasma asteris’ (group 16sri-b) infecting sweet cherries in Turkey. J. Plant Pathol. 2013, 95, 77. [Google Scholar]
- Weintraub, P.G.; Zeidan, M.; Spiegel, S.; Gera, A. Diversity of the known phytoplasmas in Israel. Bull. Insectol. 2007, 60, 143. [Google Scholar]
- Anfoka, G.H.; Fattash, I. Detection and identification of aster yellows (16SrI) phytoplasma in peach trees in Jordan by RFLP analysis of PCR-amplified products (16S rDNAs). J. Phytopathol. 2004, 152, 210–214. [Google Scholar] [CrossRef]
- Abou-Jawdah, Y.; Dakhil, H.; Lova, M.M.; Sobh, H.; Nehme, M.; Fakhr-Hammad, E.A.; Alma, A.; Samsatly, J.; Jawhari, M.; Abdul-Nour, H.; et al. Preliminary survey of potential vectors of ‘Candidatus phytoplasma phoenicium’ in lebanon and probability of occurrence of apricot chlorotic leaf roll (ACLR) phytoplasma. Bull. Insectol. 2011, 64, S123–S124. [Google Scholar]
- Mozaffarian, F.; Wilson, A.M. A checklist of the leafhoppers of Iran (Hemiptera: Auchenorrhyncha: Cicadellidae). Zootaxa 2016, 4062, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, R.; Picciau, L.; Quaglino, F.; Abou-Jawdah, Y.; Molino Lova, M.; Jawhari, M.; Casati, P.; Cominetti, A.; Choueiri, E.; Abdul-Nour, H.; et al. A cixiid survey for natural potential vectors of ‘Candidatus Phytoplasma phoenicium’ in Lebanon and preliminary transmission trials. Ann. Appl. Biol. 2015, 166, 372–388. [Google Scholar] [CrossRef]
- Salehi, M.; Izadpanah, K.; Taghayi, S.M.; Rahimian, H. Characterization of a phytoplasma associated with pear decline in Iran. J. Phytopathol. 2008, 156, 493–495. [Google Scholar] [CrossRef]
- Riedle-Bauer, M.; Paleskić, C.; Schwanzer, J.; Kölber, M.; Bachinger, K.; Antonielli, L.; Schönhuber, C.; Elek, R.; Stradinger, J.; Emberger, M.; et al. Epidemiological and molecular study on ‘Candidatus Phytoplasma prunorum’ in Austria and Hungary. Ann. Appl. Biol. 2019, 175, 400–414. [Google Scholar] [CrossRef]
- Hashemi-Tameh, M.; Bahar, M.; Zirak, L. ‘Candidatus Phytoplasma asteris’ and ‘Candidatus Phytoplasma aurantifolia’, New Phytoplasma Species Infecting Apple Trees in Iran. J. Phytopathol. 2014, 162, 472–480. [Google Scholar] [CrossRef]
- Canik, D.; Ertunc, F. Distribution and molecular characterization of apple proliferation phytoplasma in Turkey. Bull. Insectol. 2007, 60, 335–336. [Google Scholar]
- Salar, P.; Choueiri, E.; Jreijiri, F.; El Zammar, S.; Danet, J.L.; Foissac, X. Phytoplasmas in Lebanon: Characterization of ‘Candidatus Phytoplasma pyri’ and stolbur phytoplasma respectively associated with pear decline and grapevine “bois noir” diseases. Bull. Insectol. 2007, 60, 357–358. [Google Scholar]
- Bertaccini, A.; Duduk, B. Phytoplasma and phytoplasma diseases: A review of recent research. Phytopathol. Mediterr. 2009, 48, 355–378. [Google Scholar]
- Salehi, E.; Salehi, M.; Taghavi, S.M.; Izadpanah, K. First report of a 16SrIX group (Pigeon pea witches’-broom) phytoplasma associated with grapevine yellows in Iran. J. Plant Pathol. 2016, 98, 376. [Google Scholar]
- Ghayeb Zamharir, M.; Paltrinieri, S.; Hajivand, S.; Taheri, M.; Bertaccini, A. Molecular identification of diverse ‘Candidatus Phytoplasma’ species associated with grapevine decline in Iran. J. Phytopathol. 2017, 165, 407–413. [Google Scholar] [CrossRef]
- Contaldo, N.; Soufi, Z.; Bertaccini, A. Preliminary identification of phytoplasmas associated with grapevine yellows in Syria. Bull. Insectol. 2011, 64, S217–S218. [Google Scholar]
- Canik, D.; Ertunc, F.; Paltrinieri, S.; Contaldo, N.; Bertaccini, A. Identification of different phytoplasmas infecting grapevine in Turkey. Bull. Insectol. 2011, 64, S225–S226. [Google Scholar]
- Mirchenari, S.M.; Massah, A.; Zirak, L. Bois noir: New phytoplasma disease of grapevine in Iran. J. Plant Prot. Res. 2015, 55, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Salem, N.M.; Quaglino, F.; Abdeen, A.; Casati, P.; Bulgari, D.; Alma, A.; Bianco, P.A. First Report of ‘Candidatus Phytoplasma solani’ Strains Associated with Grapevine Bois Noir in Jordan. Plant Dis. 2013, 97, 1505. [Google Scholar] [CrossRef]
- Quaglino, F.; Sanna, F.; Moussa, A.; Faccincani, M.; Passera, A.; Casati, P.; Bianco, P.A.; Mori, N. Identification and ecology of alternative insect vectors of ‘Candidatus Phytoplasma solani’ to grapevine. Sci. Rep. 2019, 9, 19522. [Google Scholar] [CrossRef]
- Ghayeb Zamharir, M.; Taheri, M. Effect of new resistance inducers on grapevine phytoplasma disease. Arch. Phytopathol. Plant Prot. 2019, 52, 1207–1214. [Google Scholar] [CrossRef]
- Babaei, G.; Esmaeilzadeh-Hosseini, S.A.; Eshaghi, R.; Nikbakht, V. Incidence and molecular characterization of a 16SrI-B phytoplasma strain associated with Vitis vinifera leaf yellowing and reddening in the west of Iran. Can. J. Plant Pathol. 2019, 41, 468–474. [Google Scholar] [CrossRef]
- Klein, M.; Weintraub, P.; Davidovich, M.; Kuznetsova, L.; Zahavi, T.; Ashanova, A.; Orenstein, S.; Tanne, E. Monitoring phytoplasma-bearing leafhoppers/planthoppers in vineyards in the Golan Heights, Israel. J. Appl. Entomol. 2001, 125, 19–23. [Google Scholar] [CrossRef]
- Alkhazindar, M. Detection and molecular identification of aster yellows phytoplasma in date palm in Egypt. J. Phytopathol. 2014, 162, 621–625. [Google Scholar] [CrossRef]
- Al-Awadhi, H. Molecular and microscopical detection of phytoplasma associated with yellowing disease of date palms Phoenix dactylifera L. in Kuwait. Kuwait J. Sci. Eng. 2002, 29, 87–109. [Google Scholar]
- Alhudaib, K.; Arocha, Y.; Wilson, M.; Jones, P. First report of a 16SrI, Candidatus Phytoplasma asteris group phytoplasma associated with a date palm disease in Saudi Arabia. Plant Pathol. 2008, 57, 366. [Google Scholar] [CrossRef]
- Ghayeb Zamharir, M.; Eslahi, M.R. Molecular study of two distinct phytoplasma species associated with streak yellows of date palm in Iran. J. Phytopathol. 2019, 167, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Hemmati, C.; Al-Subhi, A.M.; Al-Housni, M.T.; Al-Sadi, A.M. Molecular detection and characterization of a 16SrII-D phytoplasma associated with streak yellows of date palm in Oman. Asutralas. Plant Dis. Notes 2020, 15, 35. [Google Scholar] [CrossRef]
- Alhudaib, K.; Arocha, Y.; Wilson, M.; Jones, P. Molecular identification, potential vectors and alternative hosts of the phytoplasma associated with a lime decline disease in Saudi Arabia. Crop Prot. 2009, 28, 13–18. [Google Scholar] [CrossRef]
- Bove, J.M.; Danet, J.L.; Bananej, K.; Hassanzadeh, N.; Taghizadeh, M.; Salehi, M.; Garnier, M. Witches’ broom disease of lime (WBDL) in Iran. In International Organization of Citrus Virologists Conference Proceedings (1957–2010); University of California: Riverside, CA, USA, 2000; pp. 207–212. [Google Scholar]
- Al-Yahyai, R.A.; Al-Sadi, A.M.; Al-Said, F.A.J.; Alkalbani, Z.H.; Carvalho, C.M.; Elliot, S.L.; Bertaccini, A. Development and morphological changes in leaves and branches of acid lime (Citrus aurantifolia) affected by witches’ broom. Phytopathol. Mediterr. 2015, 54, 133–139. [Google Scholar]
- Djavaheri, M.; Rahimian, H. Witches’-broom of bakraee (Citrus reticulata hybrid) in iran. Plant Dis. 2004, 88, 683. [Google Scholar] [CrossRef] [PubMed]
- Faghihi, M.; Bagheri, A.; Askari Seyahooei, M.; Pezhman, A.; Faraji, G. First report of a ‘Candidatus Phytoplasma aurantifolia’-related strain associated with witches’-broom disease of limequat in Iran. New Dis. Rep. 2017, 35, 24. [Google Scholar] [CrossRef] [Green Version]
- Al-Subhi, A.M.; Al-Yahyai, R.A.; Al-Sadi, A.M. First report of a ‘Candidatus phytoplasma aurantifolia’-related strain in citrus macrophylla in Oman. Phytopathogenic Mollicutes 2019, 9, 7–8. [Google Scholar] [CrossRef]
- Salehi, M.; Izadpanah, K.; Siampour, M.; Bagheri, A.; Faghihi, S.M. Transmission of ‘candidatus phytoplasma aurantifolia’ to bakraee (Citrus reticulata hybrid) by feral Hishimonus phycitis leafhoppers in Iran. Plant Dis. 2007, 91, 466. [Google Scholar] [CrossRef]
- Bagheri, A.N.; Salehiz, M.; Faghihi, M.M.; Samavi, S.; Sadeghi, A. Transmission of ‘Candidatus phytoplasma aurantifolia’ to Mexican lime by the leafhopper Hishimonus phycitys in Iran. J. Plant Pathol. 2009, 91, 105. [Google Scholar]
- Zreik, L.; Carle, P.; Bove, J.M.; Garnier, M. Characterization of the mycoplasmalike organism associated with Witches’- broom disease of lime and proposition of a Candidatus taxon for the organism, ‘Candidatus phytoplasma aurantifolia’. Int. J. Syst. Bacteriol. 1995, 45, 449–453. [Google Scholar] [CrossRef]
- Lee, I.-M.; Gundersen-Rindal, D.E.; Davis, R.E.; Bartoszyk, L.M. Revised classification scheme of phytoplasmas based on RFLP analyses of 16s rRNA and ribosomal protein gene sequences. Int. J. Syst. Bacteriol. 1998, 48, 1153–1169. [Google Scholar] [CrossRef] [Green Version]
- Queiroz, R.B.; Donkersley, P.; Silva, F.N.; Al-Mahmmoli, I.H.; Al-Sadi, A.M.; Carvalho, C.M.; Elliot, S.L. Invasive mutualisms between a plant pathogen and insect vectors in the middle East and Brazil. R. Soc. Open Sci. 2016, 3, 160557. [Google Scholar] [CrossRef] [Green Version]
- Hemmati, C.; Seyahooei, M.A.; Nikooei, M.; Najafabadi, S.S.M.; Goodarzi, A.; Mazraie, M.A.; Faghihi, M.M. Vector transmission of lime witches’ broom phytoplasma to mexican lime seedlings under greenhouse condition. J. Crop Prot. 2020, 9, 209–215. [Google Scholar]
- Ghayeb Zamharir, M. Molecular study of phytoplasmas associated with pistachio yellows in Iran. J. Phytopathol. 2018, 166, 161–166. [Google Scholar] [CrossRef]
- Salehi, M.; Esmailzadeh Hosseini, S.A.; Rasoulpour, R.; Salehi, E.; Bertaccini, A. Identification of a phytoplasma associated with pomegranate little leaf disease in Iran. Crop Prot. 2016, 87, 50–54. [Google Scholar] [CrossRef]
- Tavanaei, S.R.; Shams Bakhsh, M.; Akbari Motlagh, M. The first report pf a phytoplasma associated with Barberry (Berberis vulgaris) stem fasciation in Iran. In Proceedings of the 22nd Iranian Plant Protection Congress, Tehran, Iran, 27–30 August 2016. [Google Scholar]
- Bagheri, A.; Faghihi, M.M.; Khankahdani, H.H.; Seyahooei, M.A.; Ghanbari, N.; Sarbijan, S.S. First report of a phytoplasma associated with sapodilla flattened stem disease in Iran. Asutralas. Plant Dis. Notes 2017, 12, 25. [Google Scholar] [CrossRef] [Green Version]
- Gera, A.; Mawassi, M.; Zeidan, M.; Spiegel, S.; Bar-Joseph, M. An isolate of ‘Candidatus Phytoplasma australiense’ group associated with Nivun Haamir dieback disease of papaya in Israel. Plant Pathol. 2005, 54, 560. [Google Scholar] [CrossRef]
- Çağlar, B.K.; Satar, S.; Bertaccini, A.; Elbeaino, T. Detection and seed transmission of Bermudagrass phytoplasma in maize in Turkey. J. Phytopathol. 2019, 167, 248–255. [Google Scholar] [CrossRef]
- Zibadoost, S.; Rastgou, M. Molecular identification of phytoplasmas associated with some weeds in West Azarbaijan province, Iran. Acta Agric. Slov. 2016, 107, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Elsayed, A.I.; Boulila, M. Molecular Identification and Phylogenetic Analysis of Sugarcane Yellow Leaf Phytoplasma (SCYLP) in Egypt. J. Phytopathol. 2014, 162, 89–97. [Google Scholar] [CrossRef]
- Khan, A.J.; Botti, S.; Al-Subhi, A.M.; Gundersen-Rindal, D.E.; Bertaccini, A.F. Molecular identification of a new phytoplasma associated with alfalfa witches’-broom in Oman. Phytopathology 2002, 92, 1038–1047. [Google Scholar] [CrossRef]
- Al-Saleh, M.A.; Amer, M.A.; Al-Shahwan, I.M.; Abdalla, O.A.; Damiri, B.V. Detection and molecular characterization of alfalfa witches’-broom phytoplasma and its leafhopper vector in riyadh region of Saudi Arabia. Int. J. Agric. Biol. 2014, 16, 300–306. [Google Scholar]
- Al-Kuwaiti, N.; Kareem, T.; Sadaq, F.H.; Al-Aadhami, L.H. First report of phytoplasma detection on sand olive, cowpea and alfalfa in Iraq. J. Plant Prot. Res. 2019, 59, 428–431. [Google Scholar]
- Salehi, M.; Izadpanah, K.; Siampour, M.; Esmailzadeh-Hosseini, S.A. Polyclonal antibodies for the detection and identification of fars alfalfa witches’ broom phytoplasma. Bull. Insectol. 2011, 64, S59–S60. [Google Scholar]
- Esmailzadeh-Hosseini, S.A.; Salehi, M.; Mirzaie, A. Alternate hosts of alfalfa witches’ broom phytoplasma and winter hosts of its vector orosius albicinctus in Yazd-Iran. Bull. Insectol. 2011, 64, S247–S248. [Google Scholar]
- Salehi, M.; Siampour, M.; Esmailzadeh Hosseini, S.A.; Bertaccini, A. Characterization and vector identification of phytoplasmas associated with cucumber and squash phyllody in Iran. Bull. Insectol. 2015, 68, 311–319. [Google Scholar]
- Al-Subhi, A.M.; Hogenhout, S.A.; Al-Yahyai, R.A.; Al-Sadi, A.M. Detection, identification, and molecular characterization of the 16SrII-D phytoplasmas infecting vegetable and field crops in Oman. Plant Dis. 2018, 102, 576–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salehi, M.; Hosseini, S.A.E. The first report of a 16SrXII-A phytoplasma associated with tomato big bud disease in Iran. J. Plant Pathol. 2016, 98, 692. [Google Scholar]
- Sertkaya, G.; Martini, M.; Musetti, R.; Osler, R. Detection and molecular characterization of phytoplasmas infecting sesame and solanaceous croos in Turkey. Bull. Insectol. 2007, 60, 141–142. [Google Scholar]
- Alhudaib, K.; Rezk, A.A. Molecular characterization of phytoplasma-associated disease in tomato (Lycopersicun esculentum) in Saudi Arabia. Int. J. Virol. 2014, 10, 180–191. [Google Scholar] [CrossRef] [Green Version]
- Khalil, H.; Yousef, R.N.; Girsova, N.V.; Bogoutdinov, D.Z.; Kastalyeva, T.B.; Aldenkawe, S. First report of tomato “Big Bud” disease in Syria caused by ‘Candidatus phytoplasma trifolii’-related strain. Plant Dis. 2019, 103, 578. [Google Scholar] [CrossRef]
- Omar, A.F.; Foissac, X. Occurrence and incidence of phytoplasmas of the 16SrII-D subgroup on solanaceous and cucurbit crops in Egypt. Eur. J. Plant Pathol. 2012, 133, 353–360. [Google Scholar] [CrossRef]
- Alhudaib, K.; Razq, A. First report of witches’ broom disease of tomato associated with phytoplasmas in Saudi Arabia. Bull. Insectol. 2011, 64, S237–S238. [Google Scholar] [CrossRef] [Green Version]
- Choueiri, E.; Salar, P.; Jreijiri, F.; El Zammar, S.; Massaad, R.; Abdul-Nour, H.; Bové, J.M.; Danet, J.L.; Foissac, X. Occurrence and distribution of ‘Candidatus Phytoplasma trifolii’ associated with diseases of solanaceous crops in Lebanon. Eur. J. Plant Pathol. 2007, 118, 411–416. [Google Scholar] [CrossRef]
- El-Sisi, Y.; Omar, A.F.; Sidaros, S.A.; ElSharkawy, M.M. Characterization of 16SrII-D subgroup associated phytoplasmas in new host plants in Egypt. Arch. Phytopathol. Plant Prot. 2017, 50, 504–513. [Google Scholar] [CrossRef]
- Salem, N.M.; Tahzima, R.; Abdeen, A.O.; Bianco, P.A.; Massart, S.; Goedefroit, T.; De Jonghe, K. First Report of ‘Candidatus Phytoplasma aurantifolia’-Related Strains Infecting Potato (Solanum tuberosum) in Jordan. Plant Dis. 2019, 103, 1406. [Google Scholar] [CrossRef]
- Omar, A.F.; Alsohim, A.S.; Dumonceaux, T.J.; Pérez-López, E. Molecular characterization of ‘Candidatus Phytoplasma australasia’ 16SrII subgroups associated with eggplant, cabbage, beetroot, and celery in Saudi Arabia. Crop Prot. 2020, 127, 104970. [Google Scholar] [CrossRef]
- Esmaeilzadeh-Hosseini, S.A.; Babaei, G.; Purmohamadi, S.; Bertaccini, A. Phytoplasmas infecting greenhouse cucumber in Iran. Phytopathogenic Mollicutes 2019, 9, 31–32. [Google Scholar] [CrossRef]
- Salehi, M.; Izadpanah, K.; Nejat, N.; Siampour, M. Partial characterization of phytoplasmas associated with lettuce and wild lettuce phyllodies in Iran. Plant Pathol. 2007, 56, 669–676. [Google Scholar] [CrossRef]
- Sichani, F.V.; Bahar, M.; Zirak, L. Characterization of phytoplasmas related to aster yellows group infecting annual plants in iran, based on the studies of 16s rRNA and rp genes. J. Plant Prot. Res. 2014, 54, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Salehi, M.; Esmailzadeh Hosseini, S.A.; Salehi, E.; Bertaccini, A. Molecular and biological characterization of a 16SrII phytoplasma associated with carrot witches’ broom in Iran. J. Plant Pathol. 2016, 98, 83–90. [Google Scholar]
- Weintraub, P.G.; Orenstein, S. Potential leafhopper vectors of phytoplasma in carrots. Int. J. Trop. Insect Sci. 2004, 24, 228–235. [Google Scholar] [CrossRef]
- Ghayeb Zamharir, M.; Aldaghi, M. First report of a’Candidatus Phytoplasma trifolii’-related strain associated with soybean bud proliferation and seed pod abortion in Iran. New Dis. Rep. 2018, 37, 15. [Google Scholar] [CrossRef] [Green Version]
- Al-Saady, N.A.; Khan, A.J.; Calari, A.; Al-Subhi, A.M.; Bertaccini, A. ‘Candidatus Phytoplasma omanense’, associated with witches’-broom of Cassia italica (Mill.) Spreng. in Oman. Int. J. Syst. Evol. Microbiol. 2008, 58, 461–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirzaie, A.; Esmailzadeh-Hosseini, S.A.; Jafari-Nodoshan, A.; Rahimian, H. Molecular characterization and potential insect vector of a phytoplasma associated with garden beet witches’ broom in Yazd, Iran. J. Phytopathol. 2007, 155, 198–203. [Google Scholar] [CrossRef]
- Omar, A.F. Detection and molecular characterization of phytoplasmas associated with vegetable and alfalfa crops in Qassim region. J. Plant Interact. 2017, 12, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.F.; Aljmhan, K.A.; Alsohim, A.S.; Pérez-López, E. Potato purple top disease associated with the novel subgroup 16SrII-X phytoplasma. Int. J. Syst. Evol. Microbiol. 2018, 68, 3678–3682. [Google Scholar] [CrossRef] [PubMed]
- Salehi, M.; Esmailzadeh Hosseini, S.A.; Salehi, E.; Bertaccini, A. Genetic diversity and vector transmission of phytoplasmas associated with sesame phyllody in Iran. Folia Microbiol. 2017, 62, 99–109. [Google Scholar] [CrossRef]
- Hemmati, C.; Nikooei, M.; Bertaccini, A. Identification, occurrence, incidence and transmission of phytoplasma associated with Petunia violacea witches’ broom in Iran. J. Phytopathol. 2019, 167, 547–552. [Google Scholar] [CrossRef]
- Catal, M.; Ikten, C.; Yol, E.; Üstün, R.; Uzun, B. First report of a 16SrIX group (pigeon pea Witches’-broom) phytoplasma associated with sesame phyllody in Turkey. Plant Dis. 2013, 97, 835. [Google Scholar] [CrossRef]
- Khabbaz, S.E.; Alnabhan, M.; Arafeh, M. First report of the natural occurrence of phyllody disease of sesame in Syria. Int. J. Sci. Res. 2013, 2, 1–3. [Google Scholar]
- Hamed, A.H.; El Attar, A.K.; El-Banna, O.H.M. First record of a phytoplasma associated with faba bean (Vicia faba L.) witches’-broom in Egypt. Int. J. Virol. 2014, 10, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Salehi, M.; Izadpanah, K.; Siampour, M. Occurrence, molecular characterization and vector transmission of a phytoplasma associated with rapeseed phyllody in Iran. J. Phytopathol. 2011, 159, 100–105. [Google Scholar] [CrossRef]
- Salehi, M.; Izadpanah, K.; Siampour, M. First report of ‘Candidatus phytoplasma trifolii’-related strain associated with safflower phyllody disease in Iran. Plant Dis. 2008, 92, 649. [Google Scholar] [CrossRef]
- Tazehkand, S.A.; Pour, A.H.; Heydarnejad, J.; Varsani, A.; Massumi, H. Identification of phytoplasmas associated with cultivated and ornamental plants in Kerman province, Iran. J. Phytopathol. 2010, 158, 713–720. [Google Scholar] [CrossRef]
- Salehi, M.; Esmailzadeh, S.; Salehi, E. Characterisation of a phytoplasma associated with sunflower phyllody in Fars, Isfahan and Yazd provinces of Iran. New Dis. Rep. 2015, 31, 6. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.G.; Morris, M. Plants of Dhofar, the Southern Region of Oman Traditional, Economic and Medicinal Uses; The Office of The Conservation of the Environment, Diwan of Royal Court: Seeb, Oman, 1988.
- Hemmati, C.; Nikooei, M. Molecular characterization of a Candidatus Phytoplasma aurantifolia-related strain associated with Zinnia elegans phyllody disease in Iran. Asutralas. Plant Dis. Notes 2017, 12, 11. [Google Scholar] [CrossRef] [Green Version]
- Nikooei, M.; Hemmati, C.; Bagheri, A. Association of ‘Candidatus Phytoplasma aurantifolia’ with Cosmos bipinnatus phyllody disease in Iran. J. Plant Prot. Res. 2017, 57, 314–317. [Google Scholar] [CrossRef] [Green Version]
- Bahari, A.; Alavi, S.; Shams-Bakhsh, M.; Saberi, E. First report of a 16SrII group related phytoplasma associated with witches’ broom of Cupressus sempervirens var. horizontalis in Iran. New Dis. Rep. 2016, 34, 21. [Google Scholar] [CrossRef] [Green Version]
- Salari, M.R.; Azadvar, M. First report of a 16SrII-D phytoplasma associated with Albizia lebbeck witches’ broom disease in Iran. New Dis. Rep. 2019, 40, 14. [Google Scholar] [CrossRef] [Green Version]
- Faghihi, M.; Taghavi, S.; Salehi, M.; Sadeghi, M.; Samavi, S.; Siampour, M. Characterisation of a phytoplasma associated with Petunia witches’ broom disease in Iran. New Dis. Rep. 2014, 30, 21. [Google Scholar] [CrossRef] [Green Version]
- Hemmati, C.; Nikooei, M. Austroagallia sinuata transmission of “Candidatus Phytoplasma aurantifolia” to Zinnia elegans. J. Plant Pathol. 2019, 101, 1223. [Google Scholar] [CrossRef] [Green Version]
- Babaie, G.; Khatabi, B.; Bayat, H.; Rastgou, M.; Hosseini, A.; Salekdeh, G. Detection and characterization of phytoplasmas infecting ornamental and weed plants in Iran. J. Phytopathol. 2007, 155, 368–372. [Google Scholar] [CrossRef]
- Hemmati, C.; Nikooei, M.; Pasalari, H. Cota tinctoria and Orosius albicinctus: A new plant host and potential insect vector of ‘Candidatus Phytoplasma trifolii’. Asutralas. Plant Dis. Notes 2018, 13, 13. [Google Scholar] [CrossRef] [Green Version]
- Ghayeb Zamharir, M. Association of ‘Candidatus Phytoplasma trifolii’ related strain with white willow proliferation in Iran. Asutralas. Plant Dis. Notes 2018, 13, 17. [Google Scholar] [CrossRef] [Green Version]
- Shahryari, F.; Allahverdipour, T. ‘Candidatus Phytoplasma trifolii’ related strain affecting Salix babylonica in Iran. Asutralas. Plant Dis. Notes 2018, 13, 40. [Google Scholar] [CrossRef] [Green Version]
- Karimzade, M.; Siampour, M.; Zakiaghl, M.; Mehrvar, M. Identification and characterization of a phytoplasma associated with black locust yellow disease in two provinces of Iran. Crop Prot. 2018, 110, 261–268. [Google Scholar] [CrossRef]
- Salehi, M.; Esmailzadeh Hosseini, S.A.; Salehi, E. First report of a ‘Candidatus phytoplasma asteris’ related phytoplasma associated with eucalyptus little leaf disease in Iran. J. Plant Pathol. 2016, 98, 175. [Google Scholar]
- Rashidi, M.; Habili, N.; Ghasemi, A. First report of a stolbur phytoplasma associated with witches’ broom of Japanese spindle (Euonymus japonicus). Plant Pathol. 2010, 59, 796. [Google Scholar] [CrossRef]
- Baghaee-Ravari, S.; Jamshidi, E.; Falahati-Rastegar, M. “Candidatus Phytoplasma solani” associated with Eucalyptus witches’ broom in Iran. For. Pathol. 2018, 48, e12394. [Google Scholar] [CrossRef]
- Gera, A.; Weintraub, P.G.; Maslenin, L.; Spiegel, S.; Zeidan, M. A new disease causing stunting and shoot proliferation in Gypsophila is associated with phytoplasma. Bull. Insectol. 2007, 60, 271–272. [Google Scholar]
- Gera, A.; Maslenin, L.; Rosner, A.; Zeidan, M.; Weintraub, P.G. Phytoplasma diseases in ornamental crops in Israel. Acta Hortic. 2006, 722, 155–161. [Google Scholar] [CrossRef]
- Tanne, E.; Kuznetsova, L.; Cohen, J.; Alexandrova, S.; Gera, A. Phytoplasmas as causal agents of celosia disease in Israel. Hortscience 2000, 35, 1103–1106. [Google Scholar] [CrossRef]
- Marcone, C.; Guerra, L.J.; Uyemoto, J.K. Phytoplasmal diseases of peach and associated phytoplasma taxa. J. Plant Pathol. 2014, 96, 15–28. [Google Scholar]
- Omar, A.F.; Dewir, Y.H.; El-Mahrouk, M.E. Molecular identification of phytoplasmas in fasciated cacti and succulent species and associated hormonal perturbation. J. Plant Interact. 2014, 9, 632–639. [Google Scholar] [CrossRef]
- Salehi, M.; Rasoulpour, R.; Izadpanah, K. Molecular characterization, vector identification and partial host range determination of phytoplasmas associated with faba bean phyllody in Iran. Crop Prot. 2016, 89, 12–20. [Google Scholar] [CrossRef]
- Al-Zadjali, A.D.; Natsuaki, T.; Okuda, S. Detection, identification and molecular characterization of a phytoplasma associated with Arabian jasmine (Jasminum sambac L.) witches’ broom in Oman. J. Phytopathol. 2007, 155, 211–219. [Google Scholar] [CrossRef]
- Omar, A.F.; Alsohim, A.; Rehan, M.R.; Al-Jamhan, K.A.; Pérez-López, E. 16SrII phytoplasma associated with date palm and Mexican fan palm in Saudi Arabia. Asutralas. Plant Dis. Notes 2018, 13, 39. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.F.; Alsohim, A.S. Identification of new plant hosts of 16SrII group phytoplasmas in Saudi Arabia. Phytopathogenic Mollicutes 2016, 6, 71–76. [Google Scholar] [CrossRef]
- Al-Awadhi, H.A.; Montasser, M.S.; Suleman, P.; Hanif, A.M. Phytoplasma associated with yellowing disease of Washingtonia sp. in Kuwait. Plant Pathol. J. 2001, 17, 329–335. [Google Scholar]
- Hemmati, C.; Nikooei, M.; Bertaccini, A. Identification and transmission of phytoplasmas and their impact on essential oil composition in Aerva javanica. 3 Biotech. 2019, 9, 310. [Google Scholar] [CrossRef]
- Salehi, M.; Izadpanah, K.; Siampour, M.; Taghizadeh, M. Molecular characterization and transmission of bermuda grass white leaf phytoplasma in Iran. J. Plant Pathol. 2009, 91, 655–661. [Google Scholar]
- Çaǧlar, B.K.; Satar, S.; Elbeaino, T. Detection and molecular characterization of bermuda grass (Cynodon dactylon) white leaf phytoplasma from Turkey. Int. J. Agric. Biol. 2013, 15, 90–94. [Google Scholar]
- Omar, A.F. Association of ‘Candidatus phytoplasma cynodontis’ with Bermuda grass white leaf disease and its new hosts in Qassim province, Saudi Arabia. J. Plant Interact. 2016, 11, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Marcone, C.; Bellardi, M.G.; Bertaccini, A. Phytoplasma diseases of medicinal and aromatic plants. J. Plant Pathol. 2016, 98, 379–404. [Google Scholar]
- Al-Subhi, A.; Hogenhout, S.A.; Al-Yahyai, R.A.; Al-Sadi, A.M. Classification of a new phytoplasmas subgroup 16SrII-W associated with Crotalaria witches’ broom diseases in Oman based on multigene sequence analysis. BMC Microbiol. 2017, 17, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Subhi, A.M.; Al-Saady, N.A.B.; Khan, A.J. Molecular characterization of phytoplasma associated with Echinops witches’ broom disease. Bull. Insectol. 2007, 60, 289–290. [Google Scholar]
- Bragard, C.; Dehnen-Schmutz, K.; Gonthier, P.; Jaques Miret, J.A.; Justesen, A.F.; MacLeod, A.; Magnusson, C.S.; Milonas, P.; Navas-Cortes, J.A.; Parnell, S.; et al. Pest categorisation of the non-EU phytoplasmas of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. EFSA J. 2020, 18, e05929. [Google Scholar]
- Carraro, L.; Loi, N.; Ermacora, P. The ‘life cycle’ of pear decline phytoplasma in the vector Cacopsylla pyri. J. Plant Pathol. 2001, 83, 87–90. [Google Scholar]
- Bangels, E.; Peusens, G.; Beliën, T. Integrated management of phytoplasma diseases in pome fruit: An overview of efficacy results of IPM insecticides against pear Psylla (Cacopsylla pyri). Commun. Agric. Appl. Biol. Sci. 2010, 75, 255–263. [Google Scholar]
- Roddee, J.; Kobori, Y.; Hanboonsong, Y. Multiplication and Distribution of Sugarcane White Leaf Phytoplasma Transmitted by the Leafhopper, Matsumuratettix hiroglyphicus (Matsumura) (Hemiptera: Cicadellidae), in Infected Sugarcane. Sugar Tech 2018, 20, 445–453. [Google Scholar] [CrossRef]
- McCoy, R.; Carroll, V.; Poucher, C.; Gwin, G. Field control of coconut lethal yellowing with oxytetracycline hydrochloride. Phytopathology 1976, 66, 1148–1150. [Google Scholar] [CrossRef]
- McCoy, R.E. Use of tetracycline antibiotics to control yellows diseases. Plant Dis. 1982, 66, 539–542. [Google Scholar] [CrossRef]
- Gabelman, W.; Goldman, I.; Breitbach, D. Field evaluation and selection for resistance to aster yellows in carrot (Daucus carota L.). J. Am. Soc. Hortic. Sci. 1994, 119, 1293–1297. [Google Scholar] [CrossRef] [Green Version]
- Musetti, R.; Ermacora, P.; Martini, M.; Loi, N.; Osler, R. Current knowledge about recovery from phytoplasma diseases. In Phytoplasma and Phytoplasma Disease Management: How to Reduce Their Economic Impact; International Phytoplasmologist Working Group: Bologna, Italy, 2014; pp. 250–258. [Google Scholar]
- Musetti, R.; Ermacora, P.; Martini, M.; Loi, N.; Osler, R. What can we learn from the phenomenon of “recovery”? Phytopathogenic Mollicutes 2013, 3, 63–65. [Google Scholar] [CrossRef]
- Musetti, R.; Farhan, K.; De Marco, F.; Polizzotto, R.; Paolacci, A.; Ciaffi, M.; Ermacora, P.; Grisan, S.; Santi, S.; Osler, R. Differentially-regulated defence genes in Malus domestica during phytoplasma infection and recovery. Eur. J. Plant Pathol. 2013, 136, 13–19. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hemmati, C.; Nikooei, M.; Al-Subhi, A.M.; Al-Sadi, A.M. History and Current Status of Phytoplasma Diseases in the Middle East. Biology 2021, 10, 226. https://doi.org/10.3390/biology10030226
Hemmati C, Nikooei M, Al-Subhi AM, Al-Sadi AM. History and Current Status of Phytoplasma Diseases in the Middle East. Biology. 2021; 10(3):226. https://doi.org/10.3390/biology10030226
Chicago/Turabian StyleHemmati, Chamran, Mehrnoosh Nikooei, Ali M. Al-Subhi, and Abdullah M. Al-Sadi. 2021. "History and Current Status of Phytoplasma Diseases in the Middle East" Biology 10, no. 3: 226. https://doi.org/10.3390/biology10030226
APA StyleHemmati, C., Nikooei, M., Al-Subhi, A. M., & Al-Sadi, A. M. (2021). History and Current Status of Phytoplasma Diseases in the Middle East. Biology, 10(3), 226. https://doi.org/10.3390/biology10030226