Characterization of Bottlenose Dolphin (Tursiops truncatus) Sperm Based on Morphometric Traits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Animals
2.2. Semen Collection and Processing
2.3. Testosterone Experiment
2.4. Sperm Morphometric Analysis
2.5. Experimental Design
2.6. Statistical Analysis
3. Results
3.1. Development of Sperm Morphometric Variables as Principal Components (PCs)
3.2. Assessment of Data Clustering Tendency
3.3. Clustering Algorithms and Cluster Numbers
3.4. Hierarchical Clustering in a Heatmap
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valls, A.; Coll, M.; Christensen, V.; Ellison, A.M. Keystone species: Toward an operational concept for marine biodiversity conservation. Ecol. Monogr. 2015, 85, 29–47. [Google Scholar] [CrossRef] [Green Version]
- Bowen, W. Role of marine mammals in aquatic ecosystems. Mar. Ecol. Prog. Ser. 1997, 158, 267–274. [Google Scholar] [CrossRef] [Green Version]
- López, B.D. Bottlenose dolphins and aquaculture: Interaction and site fidelity on the north-eastern coast of Sardinia (Italy). Mar. Biol. 2012, 159, 2161–2172. [Google Scholar] [CrossRef]
- Reynolds, J.E.; Marsh, H.; Ragen, T.J. Marine mammal conservation. Endanger. Species Res. 2009, 7, 23–28. [Google Scholar] [CrossRef]
- Pace, D.; Tizzi, R.; Mussi, B. Cetaceans Value and Conservation in the Mediterranean Sea. J. Biodivers. Endanger. Species 2015, S1:004. [Google Scholar] [CrossRef]
- Wells, R.; Natoli, A.; Braulik, G. Tursiops truncatus (errata version published in 2019). IUCN Red List Threat. Species 2019, 8235, e.T22563A156932432. [Google Scholar]
- Barratclough, A.; Wells, R.S.; Schwacke, L.H.; Rowles, T.K.; Gomez, F.M.; Fauquier, D.A.; Sweeney, J.C.; Townsend, F.I.; Hansen, L.J.; Zolman, E.S.; et al. Health Assessments of Common Bottlenose Dolphins (Tursiops truncatus): Past, Present, and Potential Conservation Applications. Front. Veter Sci. 2019, 6, 444. [Google Scholar] [CrossRef] [Green Version]
- Herrick, J.R. Assisted reproductive technologies for endangered species conservation: Developing sophisticated protocols with limited access to animals with unique reproductive mechanisms. Biol. Reprod. 2019, 100, 1158–1170. [Google Scholar] [CrossRef]
- Kamler, J.F.; Ballard, W.B.; Lemons, P.R.; Mote, K. Variation in mating system and group structure in two populations of swift foxes, Vulpes velox. Anim. Behav. 2004, 68, 83–88. [Google Scholar] [CrossRef]
- Hayes, S.A.; Pearse, D.E.; Costa, D.P.; Harvey, J.T.; Le Boeuf, B.J.; Garza, J.C. Mating system and reproductive success in eastern Pacific harbour seals. Mol. Ecol. 2006, 15, 3023–3034. [Google Scholar] [CrossRef]
- Whitehead, H.; Mann, J. Female Reproductive Strategies of Cetaceans: Life Histories and Calf Care. In Cetacean Societies: Field Studies of Dolphins and Whales; Mann, J., Connor, R.C., Whitehead, P.T.H., Eds.; The University of Chicago Press: Chicago, IL, USA, 2000. [Google Scholar]
- Rommel, S.; Pabst, D.; McLellan, W. Functional Anatomy of the Cetacean Reproductive System, with Comparisons to the Domestic Dog. In Reproductive Biology and Phylogeny of Cetacea; CRC Press: Boca Raton, FL, USA, 2007; pp. 127–145. [Google Scholar]
- Brook, F.M. The Use of Diagnostic Ultrasound in Assessment of the Reproductive Status of the Bottlenose Dolphin, Tursiops Aduncas, in Captivity & Applications in Management of a Controlled Breeding Programme; The Hong Kong Polytechnic University: Hong Kong, China, 1997. [Google Scholar]
- Krützen, M.; Barré, L.M.; Connor, R.C.; Mann, J.; Sherwin, W.B. ‘O father: Where art thou?’—Paternity assessment in an open fission-fusion society of wild bottlenose dolphins (Tursiops sp.) in Shark Bay, Western Australia. Mol. Ecol. 2004, 13, 1975–1990. [Google Scholar] [CrossRef]
- Sánchez-Calabuig, M.; López-Fernández, C.; Johnston, S.; Blyde, D.; Cooper, J.; Harrison, K.; De La Fuente, J.; Gosálvez, J. Effect of Cryopreservation on the Sperm DNA Fragmentation Dynamics of the Bottlenose Dolphin (Tursiops truncatus). Reprod. Domest. Anim. 2015, 50, 227–235. [Google Scholar] [CrossRef]
- Van Der Horst, G.; Medger, K.; Steckler, D.; Luther, I.; Bartels, P. Bottlenose dolphin (Tursiops truncatus) sperm revisited: Motility, morphology and ultrastructure of fresh sperm of consecutive ejaculates. Anim. Reprod. Sci. 2018, 195, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Kenagy, G.J.; Trombulak, S.C. Size and Function of Mammalian Testes in Relation to Body Size. J. Mammal. 1986, 67, 1–22. [Google Scholar] [CrossRef]
- Turner, J.P.; Clark, L.S.; Haubold, E.M.; Worthy, G.A.J.; Cowan, D.F. Organ Weights and Growth Profiles in Bottlenose Dolphins (Tursiops truncatus) from the Northwestern Gulf of Mexico. Aquat. Mamm. 2006, 32, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Mead, J.G. Shepherd’s Beaked Whale. In Encyclopedia of Marine Mammals; Academic Press: Cambridge, MA, USA, 2018; pp. 853–854. [Google Scholar]
- Van Der Horst, G.; Maree, L. Sperm form and function in the absence of sperm competition. Mol. Reprod. Dev. 2014, 81, 204–216. [Google Scholar] [CrossRef]
- Parker, G.A. Sperm Competition and Its Evolutionary Consequences in the Insects. Biol. Rev. 1970, 45, 525–567. [Google Scholar] [CrossRef]
- Holt, W.; Fazeli, A. Sperm selection in the female mammalian reproductive tract. Focus on the oviduct: Hypotheses, mechanisms, and new opportunities. Theriogenology 2016, 85, 105–112. [Google Scholar] [CrossRef] [PubMed]
- A García-Vázquez, F.; Gadea, J.; Matás, C.; Holt, W.V. Importance of sperm morphology during their transport and fertilization in mammals. Asian J. Androl. 2016, 18, 844–850. [Google Scholar] [CrossRef]
- Vicente-Fiel, S.; Palacín, I.; Santolaria, P.; Yániz, J. A comparative study of sperm morphometric subpopulations in cattle, goat, sheep and pigs using a computer-assisted fluorescence method (CASMA-F). Anim. Reprod. Sci. 2013, 139, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Yániz, J.; Soler, C.; Santolaria, P. Computer assisted sperm morphometry in mammals: A review. Anim. Reprod. Sci. 2015, 156, 1–12. [Google Scholar] [CrossRef]
- Santolaria, P.; Soler, C.; Recreo, P.; Carretero, T.; Bono, A.; Berné, J.M.; Yániz, J.L. Morphometric and kinematic sperm subpopulations in the split ejaculate of normozoospermic men. Asian J. Androl. 2016, 18, 831. [Google Scholar] [CrossRef]
- Anderson, M.J.; Nyholt, J.; Dixson, A.F. Sperm competition and the evolution of sperm midpiece volume in mammals. J. Zool. 2005, 267, 135–142. [Google Scholar] [CrossRef]
- Bauer, M.; Breed, W.G. Variation of sperm head shape and tail length in a species of Australian hydromyine rodent: The spinifex hopping mouse, Notomys alexis. Reprod. Fertil. Dev. 2006, 18, 797–805. [Google Scholar] [CrossRef]
- Kleven, O.; Laskemoen, T.; Lifjeld, J.T. Sperm length in sand martinsRiparia riparia: A comment on Helfenstein et al. J. Avian Biol. 2009, 40, 241–242. [Google Scholar] [CrossRef]
- Lüpold, S.; Calhim, S.; Immler, S.; Birkhead, T.R. Sperm morphology and sperm velocity in passerine birds. Proc. R. Soc. B Boil. Sci. 2008, 276, 1175–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García–Vázquez, F.A.; Hernández-Caravaca, I.; Yánez-Quintana, W.; Matas, C.; Soriano-Úbeda, C.; Izquierdo-Rico, M.J. Morphometry of boar sperm head and flagellum in semen backflow after insemination. Theriogenology 2015, 84, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, J.L.; Lüpold, S. Sexual selection and the evolution of sperm quality. Mol. Hum. Reprod. 2014, 20, 1180–1189. [Google Scholar] [CrossRef] [Green Version]
- Ramm, S. Sperm competition and the evolution of reproductive systems. Mol. Hum. Reprod. 2014, 20, 1159–1160. [Google Scholar] [CrossRef] [Green Version]
- Fleming, A.D.; Yanagimachi, R.; Yanagimachi, H. Spermatozoa of the Atlantic bottlenosed dolphin, Tursiops truncatus. Reproduction 1981, 63, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.L.; Styer, E.L.; Decker, S.J.; Robeck, T. Ultrastructure of the spermatozoa from three odontocetes: A killer whale (Orcinus orca), a Pacific white-sided dolphin (Lagenorhynchus obliquidens) and a beluga (Delphinapterus leucas). Anat. Histol. Embryol. 2002, 31, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Meisner, A.D.; Klaus, A.V.; O’Leary, M.A. Sperm head morphology in 36 species of artiodactylans, perissodactylans, and cetaceans (Mammalia). J. Morphol. 2004, 263, 179–202. [Google Scholar] [CrossRef]
- Amaral, R.S.; Da Silva, V.M.F.; Domingos, F.X.V.; Martin, A.R. Morphology and Ultrastructure of the Amazon River Dolphin (Inia geoffrensis) Spermatozoa. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2017, 300, 1519–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, E.; Esteso, M.; Castaño, C.; Toledano-Díaz, A.; Bóveda, P.; Martínez-Fresneda, L.; López-Sebastián, A.; Martínez-Nevado, E.; Guerra, R.; Fernández, M.L.; et al. Effectiveness of ultra-rapid cryopreservation of sperm from endangered species, examined by morphometric means. Theriogenology 2019, 129, 160–167. [Google Scholar] [CrossRef]
- Rubio-Guillén, J.; González, D.; Garde, J.; Esteso, M.; Santos, F.; Rodríguez-Gil, J.; Madrid-Bury, N.; Quintero-Moreno, A. Effects of Cryopreservation on Bull Spermatozoa Distribution in Morphometrically Distinct Subpopulations. Reprod. Domest. Anim. 2007, 42, 354–357. [Google Scholar] [CrossRef]
- Dorado, J.; Alcaraz, L.; Duarte, N.; Portero, J.; Acha, D.; Hidalgo, M. Changes in the structures of motile sperm subpopulations in dog spermatozoa after both cryopreservation and centrifugation on PureSperm® gradient. Anim. Reprod. Sci. 2011, 125, 211–218. [Google Scholar] [CrossRef]
- Esteso, M.; Santos, F.; Soler, A.J.; Montoro, V.; Quintero-Moreno, A.; Garde, J. The Effects of Cryopreservation on the Morphometric Dimensions of Iberian Red Deer (Cervus elaphus hispanicus) Epididymal Sperm Heads. Reprod. Domest. Anim. 2006, 41, 241–246. [Google Scholar] [CrossRef]
- Martí, J.; Aparicio, I.; García-Herreros, M. Head morphometric changes in cryopreserved ram spermatozoa are related to sexual maturity. Theriogenology 2011, 75, 473–481. [Google Scholar] [CrossRef]
- Goeritz, F.; Quest, M.; Wagener, A.; Fassbender, M.; Broich, A.; Hildebrandt, T.; Hofmann, R.; Blottner, S. Seasonal timing of sperm production in roe deer: Interrelationship among changes in ejaculate parameters, morphology and function of testis and accessory glands. Theriogenology 2003, 59, 1487–1502. [Google Scholar] [CrossRef]
- Immler, S.; Pryke, S.R.; Birkhead, T.R.; Griffith, S.C. Pronounced within-Individual Plasticity in Sperm Morphometry across Social Environments. Evolution 2009, 64, 1634–1643. [Google Scholar] [CrossRef]
- Sánchez-Calabuig, M.J.; García-Vázquez, F.A.; Laguna-Barraza, R.; Barros-García, C.; García-Parraga, D.; Rizos, D.; Gutierrez-Adan, A.; Pérez-Gutíerrez, J.F. Bottlenose Dolphin (Tursiops truncatus) Spermatozoa: Collection, Cryopreservation, and Heterologous In Vitro Fertilization. J. Vis. Exp. 2017, 2017, e55237. [Google Scholar] [CrossRef]
- Ros-Santaella, J.L.; Domínguez-Rebolledo, Á.E.; Garde, J.J. Sperm Flagellum Volume Determines Freezability in Red Deer Spermatozoa. PLoS ONE 2014, 9, e112382. [Google Scholar] [CrossRef] [Green Version]
- Saravia, F.; Núñez-Martínez, I.; Morán, J.; Soler, C.; Muriel, A.; Rodríguez-Martínez, H.; Peña, F. Differences in boar sperm head shape and dimensions recorded by computer-assisted sperm morphometry are not related to chromatin integrity. Theriogenology 2007, 68, 196–203. [Google Scholar] [CrossRef]
- Kassambara, A. Machine Learning Essentials: Practical Guide in R. 2018. Available online: https://www.amazon.com/Machine-Learning-Essentials-Practical-Guide/dp/1986406857 (accessed on 1 March 2021).
- Brock, G.; Pihur, V.; Datta, S.; Datta, S. clValid: AnRPackage for Cluster Validation. J. Stat. Softw. 2008, 25, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Cerdeira, J.; Sánchez-Calabuig, M.; Pérez-Gutiérrez, J.; Hijon, M.; Castaño, C.; Santiago-Moreno, J. Cryopreservation effects on canine sperm morphometric variables and ultrastructure: Comparison between vitrification and conventional freezing. Cryobiology 2020, 95, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Cucho, H.; Alarcón, V.; Ordóñez, C.; Ampuero, E.; Meza, A.; Soler, C. Puma (Puma concolor) epididymal sperm morphometry assessed by the ISAS®v1 CASA-Morph system. Asian J. Androl. 2016, 18, 879–881. [Google Scholar] [CrossRef]
- Esteso, M.; Rodríguez, E.; Toledano-Díaz, A.; Castaño, C.; Pradiee, J.; López-Sebastián, A.; Santiago-Moreno, J. Descriptive analysis of sperm head morphometry in Iberian ibex (Capra pyrenaica): Optimum sampling procedure and staining methods using Sperm-Class Analyzer®. Anim. Reprod. Sci. 2015, 155, 42–49. [Google Scholar] [CrossRef]
- García-Herreros, M.; Leal, C.L.V. Sperm morphometry: A tool for detecting biophysical changes associated with viability in cryopreserved bovine spermatozoa. Andrologia 2013, 46, 820–822. [Google Scholar] [CrossRef] [PubMed]
- Buendía, P.; Soler, C.; Paolicchi, F.; Gago, G.; Urquieta, B.; Sánchez, F.P.; Bustos-Obregón, E. Morphometric characterization and classification of alpaca sperm heads using the Sperm-Class Analyzer® computer-assisted system. Theriogenology 2002, 57, 1207–1218. [Google Scholar] [CrossRef]
- Villaverde-Morcillo, S.; Soler, A.; Esteso, M.; Castaño, C.; Miñano-Berna, A.; Gonzalez, F.; Santiago-Moreno, J. Immature and mature sperm morphometry in fresh and frozen-thawed falcon ejaculates. Theriogenology 2017, 98, 94–100. [Google Scholar] [CrossRef]
- Santiago-Moreno, J.; Esteso, M.C.; Pradieé, J.; Castano, C.; Toledano-Díaz, A.; O’Brien, E.; López-Sebastián, A.; Martinez-Nevado, E.; Delclaux, M.; Fernandez-Morán, J.; et al. Giant panda (Ailuropoda melanoleuca) sperm morphometry and function after repeated freezing and thawing. Andrologia 2015, 48, 470–474. [Google Scholar] [CrossRef]
- Urióstegui-Acosta, M.; Hernández-Ochoa, I.; Sánchez-Gutiérrez, M.; Piña-Guzmán, B.; Rafael-Vázquez, L.; Solís-Heredia, M.; Martínez-Aguilar, G.; Quintanilla-Vega, B. Methamidophos alters sperm function and DNA at different stages of spermatogenesis in mice. Toxicol. Appl. Pharmacol. 2014, 279, 391–400. [Google Scholar] [CrossRef]
- Sheldon, B. Promiscuity: An Evolutionary History of Sperm Competition and Sexual Conflict. Anim. Behav. 2000, 60, 704. [Google Scholar] [CrossRef]
- O’Brien, J.K.; Robeck, T.R. Development of sperm sexing and associated assisted reproductive technology for sex preselection of captive bottlenose dolphins (Tursiops truncatus). Reprod. Fertil. Dev. 2006, 18, 319–329. [Google Scholar] [CrossRef]
- Robeck, T.R.; O’Brien, J.K. Effect of Cryopreservation Methods and Precryopreservation Storage on Bottlenose Dolphin (Tursiops truncatus) Spermatozoa1. Biol. Reprod. 2004, 70, 1340–1348. [Google Scholar] [CrossRef] [Green Version]
- Robeck, T.; Steinman, K.; Yoshioka, M.; Jensen, E.; O’Brien, J.; Katsumata, E.; Gili, C.; McBain, J.; Sweeney, J.; Monfort, S. Estrous cycle characterisation and artificial insemination using frozen–thawed spermatozoa in the bottlenose dolphin (Tursiops truncatus). Reproduction 2005, 129, 659–674. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.J.; Dixson, A.F. Sperm competition: Motility and the midpiece in primates. Nature 2002, 416, 496. [Google Scholar] [CrossRef]
- Peña, F.J.; Saravia, F.; García-Herreros, M.; Núñezmartínez, I.; Tapia, J.A.; Wallgren, M.; Rodriguez-Martinez, H.; Johannisson, A. Identification of Sperm Morphometric Subpopulations in Two Different Portions of the Boar Ejaculate and Its Relation to Postthaw Quality. J. Androl. 2005, 26, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Urbano, M.; Ortiz, I.; Dorado, J.; Hidalgo, M. Identification of sperm morphometric subpopulations in cooled-stored canine sperm and its relation with sperm DNA integrity. Reprod. Domest. Anim. 2017, 52, 468–476. [Google Scholar] [CrossRef]
- Robles-Gómez, L.; Fuentes-Albero, M.D.C.; Huerta-Retamal, N.; Sáez-Espinosa, P.; García-Párraga, D.; Romero, A.; Gómez-Torres, M.J. Lectin spatial immunolocalization during in vitro capacitation in Tursiops truncatus spermatozoa. Anim. Reprod. 2020, 17, e20190083. [Google Scholar] [CrossRef] [Green Version]
- Bakker, T.C.M.; Hollmann, M.; Mehlis, M.; Zbinden, M. Functional variation of sperm morphology in sticklebacks. Behav. Ecol. Sociobiol. 2014, 68, 617–627. [Google Scholar] [CrossRef]
- García-Vázquez, F.A.; Hernández-Caravaca, I.; Matás, C.; Soriano-Úbeda, C.; Abril-Sánchez, S.; Izquierdo-Rico, M.J. Morphological study of boar sperm during their passage through the female genital tract. J. Reprod. Dev. 2015, 61, 407–413. [Google Scholar] [CrossRef]
- Firman, R.C.; Cheam, L.Y.; Simmons, L.W. Sperm competition does not influence sperm hook morphology in selection lines of house mice. J. Evol. Biol. 2011, 24, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Maroto-Morales, A.; García-Álvarez, O.; Ramón, M.; Martínez-Pastor, F.; Fernández-Santos, M.R.; Soler, A.J.; Garde, J.J. Current status and potential of morphometric sperm analysis. Asian J. Androl. 2016, 18, 863–870. [Google Scholar] [CrossRef]
- Gu, N.-H.; Zhao, W.-L.; Wang, G.-S.; Sun, F. Comparative analysis of mammalian sperm ultrastructure reveals relationships between sperm morphology, mitochondrial functions and motility. Reprod. Biol. Endocrinol. 2019, 17, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroeder, J.P.; Keller, K.V. Seasonality of serum testosterone levels and sperm density inTursiops truncatus. J. Exp. Zool. 1989, 249, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Díaz, S.; Luongo, C.; Fuentes-Albero, M.; Abril-Sánchez, S.; Sánchez-Calabuig, M.; Barros-García, C.; De La Fe, C.; García-Galán, A.; Ros-Santaella, J.; Pintus, E.; et al. Effect of temperature and cell concentration on dolphin (Tursiops truncatus) spermatozoa quality evaluated at different days of refrigeration. Anim. Reprod. Sci. 2020, 212, 106248. [Google Scholar] [CrossRef]
- Gomendio, M.; Malo, A.F.; Garde, J.; Roldan, E.R.S. Sperm traits and male fertility in natural populations. Reproduction 2007, 134, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Lavara, R.; Vicente, J.; Baselga, M. Genetic variation in head morphometry of rabbit sperm. Theriogenology 2013, 80, 313–318. [Google Scholar] [CrossRef]
- Hirai, M.; Boersma, A.; Hoeflich, A.; Wolf, E.; Foll, J.; Aumüller, T.R.; Braun, J. Objectively measured sperm motility and sperm head morphometry in boars (Sus scrofa): Relation to fertility and seminal plasma growth factors. J. Androl. 2001, 22, 104–110. [Google Scholar] [PubMed]
- Marco-Jiménez, F.; Vicente, J.-S.; Lavara, R.; Balasch, S.; Viudes-De-Castro, M.-P. Poor Prediction Value of Sperm Head Morphometry for Fertility and Litter Size in Rabbit. Reprod. Domest. Anim. 2009, 45, e118–e123. [Google Scholar] [CrossRef]
- Vernocchi, V.; Morselli, M.G.; Consiglio, A.L.; Faustini, M.; Luvoni, G.C. DNA fragmentation and sperm head morphometry in cat epididymal spermatozoa. Theriogenology 2014, 82, 982–987. [Google Scholar] [CrossRef] [PubMed]
- Phetudomsinsuk, K.; Sirinarumitr, K.; Laikul, A.; Pinyopummin, A. Morphology and head morphometric characters of sperm in Thai native crossbred stallions. Acta Veter Scand. 2008, 50, 41. [Google Scholar] [CrossRef] [Green Version]
- Martí, J.; Aparicio, I.; Leal, C.; García-Herreros, M. Seasonal dynamics of sperm morphometric subpopulations and its association with sperm quality parameters in ram ejaculates. Theriogenology 2012, 78, 528–541. [Google Scholar] [CrossRef]
- Cardullo, R.A.; Baltz, J.M. Metabolic regulation in mammalian sperm: Mitochondrial volume determines sperm length and flagellar beat frequency. Cell Motil. Cytoskelet. 1991, 19, 180–188. [Google Scholar] [CrossRef]
- Fawcett, D.W. The mammalian spermatozoon. Dev. Biol. 1975, 44, 394–436. [Google Scholar] [CrossRef]
- Fisher, H.S.; Jacobs-Palmer, E.; Lassance, J.-M.; Hoekstra, H.E. The genetic basis and fitness consequences of sperm midpiece size in deer mice. Nat. Commun. 2016, 7, 13652. [Google Scholar] [CrossRef] [Green Version]
- González Villalobos, D.; Quintero-Moreno, A.; Garde López-Brea, J.J.; Esteso, M.C.; Rocío Fernández-Santos, M.; Rubio-Guillén, J.; Mejía Silva, W.; González Marval, Y.; León Atencio, G.; Bohórquez Corona, R. Morphometry characterization of boar sperm head with computer assisted analysis (preliminary results). Rev. Cient. Fac. Cienc. Vet. La Univ. Del Zulia 2008, 18, 570–577. [Google Scholar]
- Morales, B.; Quintero-Moreno, A.; Osorio-Meléndez, C.; Rubio-Guillén, J. Valoración de la biometría de la cabeza del espermatozoide mediante análisis computarizado en semen de cerdo recién colectado y refrigerado. Rev. Fac. Agron. 2012, 29, 413–431. [Google Scholar]
- Gravance, C.G.; Vishwnath, R.; Pitt, C.; Garner, L.; Casey, J. Effects of Cryopreservation on Bull sperm head morphometry. J. Androl. 1998, 19, 704–709. [Google Scholar]
- Esteso, M.C.; Fernández-Santos, M.R.; Soler, A.J.; Garde, J.J. Head dimensions of cryopreserved red deer spermatozoa are affected by thawing procedure. Cryo Lett. 2003, 24, 260–267. [Google Scholar]
- Villaverde-Morcillo, S.; García-Sánchez, R.; Castaño, C.; Rodríguez, E.; Gonzalez, F.; Esteso, M.; Santiago-Moreno, J. Characterization of Natural Ejaculates and Sperm Cryopreservation in a Golden Eagle (Aquila chrysaetus). J. Zoo Wildl. Med. 2015, 46, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.A.; Garner, D.L.; DeJarnette, J.M.; Marshall, C.E. Effect of Cryopreservation on Bovine Sperm Organelle Function and Viability as Determined by Flow Cytometry. Biol. Reprod. 1998, 58, 786–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Núñez-Martinez, I.; Morán, J.M.; Peña, F.J. Identification of sperm morphometric subpopulations in the canine ejaculate: Do they reflect different subpopulations in sperm chromatin integrity? Zygote 2007, 15, 257–266. [Google Scholar] [CrossRef]
- Utsuno, H.; Oka, K.; Yamamoto, A.; Shiozawa, T. Evaluation of sperm head shape at high magnification revealed correlation of sperm DNA fragmentation with aberrant head ellipticity and angularity. Fertil. Steril. 2013, 99, 1573–1580.e1. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, M.; García-Macías, V.; Martínez-Pastor, F.; Martínez, F.; Borragán, S.; Mata, M.; Garde, J.; Anel, L.; De Paz, P. Effects of cryopreservation on head morphometry and its relation with chromatin status in brown bear (Ursus arctos) spermatozoa. Theriogenology 2008, 70, 1498–1506. [Google Scholar] [CrossRef]
- Charpentier, G.; Fournier, F.; Behue, N.; Marlot, D.; Brulé, G.; Parker, G.A.; Begon, M.E. Sperm competition games: Sperm size and number under gametic control. Proc. R. Soc. B Boil. Sci. 1993, 253, 255–262. [Google Scholar] [CrossRef]
- Du Plessis, S.S.; Agarwal, A.; Mohanty, G.; Van Der Linde, M. Oxidative phosphorylation versus glycolysis: What fuel do spermatozoa use? Asian J. Androl. 2015, 17, 230–235. [Google Scholar] [CrossRef]
Species (Reference) | |||||||
---|---|---|---|---|---|---|---|
Sperm | Parameters | Atlantic Bottlenose Dolphin (Fleming et al., 1981) [34] | Pacific White-Sided Dolphin (Miller et al., 2002) [35] | Humpback Dolphin, Long-Beaked Common Dolphin, Rough Tooth Dolphin (Downing Meisner et al., 2005) [36] | Amazon River Dolphin (Amaral et al., 2017) [37] | Atlantic Bottlenose Dolphin (van der Horst et al., 2018) [16] | Atlantic Bottlenose Dolphin (O’Brien et al., 2019) [38] |
Head | Width (µm) | 2.0 | 1.4 a; 1.9 b,c | 1.9–2.0 | 2.2 | 2.2–2.5 | 2.7 |
Length (µm) | 4.5 | 3.5 a,b; 3.8 c | 3.9–3.6 | 5.6 | 4.7–5.0 | 4.4 | |
Area (µm2) | -- | -- | -- | -- | 9.1–10.7 | 7.1 | |
Perimeter (µm) | -- | -- | -- | -- | 12.1–13.1 | 9.2 | |
Ellipticity | -- | -- | -- | -- | 1.9–2.2 | -- | |
Rugosity | -- | -- | -- | -- | 0.7–0.8 | -- | |
Elongation | -- | -- | -- | -- | -- | -- | |
Flagellum | Midpiece width (µm) | -- | 0.6 a,b,c | -- | 1.2 | 1.1–1.2 | -- |
Midpiece length (µm) | 4.0 | 2.3 a,c; 2.5 b | -- | 3.3 | 3.5 | -- | |
Principal piece length (µm) | -- | -- | -- | -- | -- | -- | |
Terminal piece length (µm) | -- | -- | -- | -- | -- | -- | |
Flagellum length (µm) | 60.0 | 60.5 a; 59.8 d | -- | 52.9 | 60.0 | -- | |
Total sperm length (µm) | 65.0 | 62–68 d | -- | 62.3 | 65.0 | -- | |
Observations | Frozen-thawed ejaculated sperm | Epididymal sperm | Fresh ejaculated sperm | Fresh ejaculated sperm | Fresh ejaculated sperm The values represent a range between three dolphins | Epididymal sperm | |
Evaluation technique | Scanning Electron Microscopy | a Negatively stained sperm b Scanning Electron Microscopy c Ultrathin-sectioned sperm d Light Microscopy | Scanning Electron Microscopy | Phase-contrast Microscopy | Automated Sperm Class Analyzer using SpermBlue stain | Automated Sperm Class Analyzer using Hemacolor stain |
Male 1 | Male 2 | Average | ||||||
---|---|---|---|---|---|---|---|---|
Sperm | Parameters | Mean | SD | Mean | SD | Mean | SD | p-Value |
Head | Width (µm) | 2.48 | 0.12 | 2.53 | 0.12 | 2.51 | 0.12 | ns |
Length (µm) | 4.96 | 0.22 | 5.29 | 0.19 | 5.12 | 0.21 | <0.0001 | |
Area (µm2) | 9.67 | 0.67 | 10.53 | 0.57 | 10.10 | 0.62 | 0.004 | |
Perimeter (µm) | 12.01 | 0.43 | 12.68 | 0.36 | 12.35 | 0.39 | <0.0001 | |
Ellipticity | 2.00 | 0.12 | 2.09 | 0.13 | 2.05 | 0.13 | <0.0001 | |
Rugosity | 0.84 | 0.03 | 0.82 | 0.03 | 0.83 | 0.03 | <0.0001 | |
Elongation | 0.33 | 0.03 | 0.35 | 0.03 | 0.34 | 0.03 | <0.0001 | |
Flagellum | Midpiece width (µm) | 1.30 | 0.11 | 1.29 | 0.11 | 1.30 | 0.11 | ns |
Midpiece length (µm) | 3.11 | 0.25 | 2.86 | 0.22 | 2.99 | 0.23 | <0.0001 | |
Principal piece length (µm) | 45.98 | 1.28 | 53.66 | 1.13 | 49.82 | 1.20 | <0.0001 | |
Terminal piece length (µm) | 15.05 | 1.14 | 10.75 | 0.72 | 12.90 | 0.93 | <0.0001 | |
Flagellum length (µm) | 64.15 | 1.11 | 67.27 | 1.22 | 65.71 | 1.17 | <0.0001 | |
Total sperm length (µm) | 69.10 | 1.16 | 72.56 | 1.22 | 70.83 | 1.19 | <0.0001 |
Parameters | PC1 | PC2 | PC3 | PC4 | |
---|---|---|---|---|---|
Eigenvalues | 2.48 | 1.83 | 1.21 | 1.00 | |
Variance Explained (%) * | 47.21 | 25.65 | 11.17 | 7.72 | |
Cumulative Proportion (%) | 47.21 | 72.86 | 84.03 | 91.74 | |
Eigenvectors † | Head width | 0.04 | (0.51) | 0.29 | 0.01 |
Head length | (0.37) | −0.06 | 0.33 | −0.03 | |
Head area | 0.27 | 0.29 | (0.42) | −0.01 | |
Head perimeter | 0.35 | 0.10 | (0.39) | −0.02 | |
Head ellipticity | 0.26 | (−0.42) | 0.05 | −0.03 | |
Head rugosity | −0.26 | (0.42) | −0.05 | 0.03 | |
Head elongation | 0.26 | (−0.42) | 0.05 | −0.03 | |
Midpiece width | −0.01 | −0.04 | 0.06 | (0.99) | |
Midpiece length | −0.16 | −0.22 | (0.40) | 0.07 | |
Principal piece length | (0.35) | 0.16 | −0.29 | 0.03 | |
Terminal piece length | (−0.31) | −0.14 | 0.17 | 0.03 | |
Flagellum length | 0.32 | 0.12 | (−0.34) | 0.10 | |
Total sperm length | (0.35) | 0.11 | −0.28 | 0.09 |
Sperm | Parameters | Spearman’s Correlation | p-Value |
---|---|---|---|
Head | Width | −0.62 | 0.04 |
Length | −0.37 | 0.27 | |
Area | −0.57 | 0.07 | |
Perimeter | −0.44 | 0.17 | |
Ellipticity | −0.14 | 0.68 | |
Rugosity | 0.04 | 0.90 | |
Elongation | −0.09 | 0.79 | |
Flagellum | Midpiece width | 0.00 | 1.00 |
Midpiece length | 0.68 | 0.02 | |
Principal piece length | −0.65 | 0.03 | |
Terminal piece length | 0.37 | 0.26 | |
Flagellum length | −0.60 | 0.04 | |
Total sperm length | −0.62 | 0.04 | |
PCs | PC1 | 0.53 | 0.09 |
PC2 | 0.63 | 0.04 | |
PC3 | 0.53 | 0.09 | |
PC4 | −0.49 | 0.12 |
Time | |||||
---|---|---|---|---|---|
Sperm | Parameters | Day 1 | Day 7 | SEM | p-Value |
Head | Width (µm) | 2.45 | 2.42 | 0.06 | 0.002 |
Length (µm) | 5.04 | 5.06 | 0.18 | ns | |
Area (µm2) | 9.74 | 9.59 | 0.58 | 0.001 | |
Perimeter (µm) | 12.16 | 12.09 | 0.40 | 0.04 | |
Ellipticity | 2.07 | 2.09 | 0.03 | 0.04 | |
Rugosity | 0.83 | 0.82 | 0.01 | 0.04 | |
Elongation | 0.34 | 0.35 | 0.01 | 0.04 | |
Flagellum | Midpiece width (µm) | 1.26 | 1.25 | 0.02 | ns |
Midpiece length (µm) | 2.95 | 2.87 | 0.07 | <0.001 | |
Principal piece length (µm) | 49.73 | 49.58 | 3.93 | ns | |
Terminal piece length (µm) | 12.60 | 12.49 | 2.25 | ns | |
Flagellum length (µm) | 65.28 | 64.94 | 1.61 | 0.001 | |
Total sperm length (µm) | 70.35 | 69.99 | 1.80 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes-Albero, M.d.C.; Abril Sánchez, S.; Ros-Santaella, J.L.; Pintus, E.; Luongo, C.; Ruiz Díaz, S.; Barros García, C.; Sánchez Calabuig, M.J.; García Párraga, D.; García Vázquez, F.A. Characterization of Bottlenose Dolphin (Tursiops truncatus) Sperm Based on Morphometric Traits. Biology 2021, 10, 355. https://doi.org/10.3390/biology10050355
Fuentes-Albero MdC, Abril Sánchez S, Ros-Santaella JL, Pintus E, Luongo C, Ruiz Díaz S, Barros García C, Sánchez Calabuig MJ, García Párraga D, García Vázquez FA. Characterization of Bottlenose Dolphin (Tursiops truncatus) Sperm Based on Morphometric Traits. Biology. 2021; 10(5):355. https://doi.org/10.3390/biology10050355
Chicago/Turabian StyleFuentes-Albero, María del Carmen, Silvia Abril Sánchez, José Luis Ros-Santaella, Eliana Pintus, Chiara Luongo, Sara Ruiz Díaz, Carlos Barros García, María Jesús Sánchez Calabuig, Daniel García Párraga, and Francisco Alberto García Vázquez. 2021. "Characterization of Bottlenose Dolphin (Tursiops truncatus) Sperm Based on Morphometric Traits" Biology 10, no. 5: 355. https://doi.org/10.3390/biology10050355
APA StyleFuentes-Albero, M. d. C., Abril Sánchez, S., Ros-Santaella, J. L., Pintus, E., Luongo, C., Ruiz Díaz, S., Barros García, C., Sánchez Calabuig, M. J., García Párraga, D., & García Vázquez, F. A. (2021). Characterization of Bottlenose Dolphin (Tursiops truncatus) Sperm Based on Morphometric Traits. Biology, 10(5), 355. https://doi.org/10.3390/biology10050355