Acaricidal Efficacy of Jasmine and Lavender Essential Oil or Mustard Fixed Oil against Two-Spotted Spider Mite and Their Impact on Growth and Yield of Eggplants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Layouts and Planting Procedure
2.2. Sampling Dates and Data Recorded
3. Results and Discussion
3.1. TSSM Motile Stages Population per Leaf
3.2. Growth Characteristics
3.3. Chlorophyll and Carotenoid Concentrations
3.4. Ions and Some Antioxidants
3.5. Yield and Fruit Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flamini, G. Acaricides of natural origin. Part 2. Rev. Lit. (2002–2006). Nat. Prod. Commun. 2006, 1, 1151–1158. [Google Scholar] [CrossRef] [Green Version]
- Farouk, S.; Osman, M.A. The effect of plant defense elicitors on common bean (Phaseolus vulgaris L.) growth and yield in absence or presence of spider mite (Tetranychusurticae Koch) infestation. J. Stress Physiol. Biochem. 2011, 7, 6–22. [Google Scholar]
- Pavela, R. Acaricidal properties of extracts and major furanochromenes from the seeds of Ammi visnaga Linn. against Tetranychusurticae Koch. Ind. Crop. Prod. 2015, 67, 108–113. [Google Scholar] [CrossRef]
- Zhang, Z. Mites of Greenhouses: Identification, Biology and Control; CABI Publishing: Wallingford, UK, 2003. [Google Scholar] [CrossRef]
- Farouk, S.; Osman, M.A. Alleviation of oxidative stress induced by spider mite invasion through application of elicitors in bean plants. Egypt. J. Biol. 2012, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Jee, Y.K.; Park, H.S.; Kim, H.Y.; Park, J.S.; Lee, K.Y.; Kim, K.Y.; Kim, Y.K.; Cho, S.H.; Minand, K.U.; Kim, Y.Y. Two-spotted spider mite Tetranychusurticae: An important allergen in asthmatic non-farmers symptomatic in summer and fall months. Ann. Allergy Asthma Immunol. 2000, 84, 543–548. [Google Scholar] [CrossRef]
- Tirello, P.; Pozzebon, A.; Cassanelli, S.; Van Leeuwen, T.; Duso, C. Resistance to acaricides in Italian strains of Tetranychusurticae: Toxicological and enzymatic assays. Exp. Appl. Acarol. 2012, 57, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Nicastro, R.L.; Sato, M.E.; Arthur, V.; Silva, M.Z. Chlorfenapyr resistance in the spider mite Tetranychusurticae: Stability, cross-resistance and monitoring of resistance. Phytoparasitica 2013, 41, 503–513. [Google Scholar] [CrossRef]
- Kumral, N.A.; Çobanoğlu, S.; Yalcin, C. Acaricidal, repellent and oviposition deterrent activities of Datura stramonium L. against adult Tetranychusurticae (Koch). J. Pest Sci. 2010, 83, 173–180. [Google Scholar] [CrossRef]
- Tedeschi, A.; Alma, A.; Tavella, L. Side-effects of three neem (Azadirachtaindica A. Juss) products on the predator Macrolophuscaliginosus Wagner (Het., Miridae). J. Appl. Entomol. 2001, 125, 397–402. [Google Scholar] [CrossRef]
- Attia, S.; Grissa, K.L.; Lognay, G.; Bitume, E.T.; Hance, T.; Mailleux, A.C. A Review of the major biological approaches to control the worldwide pest Tetranychusurticae (Acari: Tetranychidae) with special reference to natural pesticides. J. Pest. Sci. 2013, 86, 361–386. [Google Scholar] [CrossRef]
- El-Tanany, M.M.; El-Moghazy, T.F.A.; Abdul-Aziz, S.A. Efficacy of some essential oils on pest insect management in nursery and orchard and their impact on yield and fruit quality of Washington navel orange trees B. Impact of essential oils on leaf miner and mite’s acarida’s management and their influence on fruit yields and quality of Washington navel orange trees. Middle East J.Agric. Res. 2018, 7, 1452–1464. [Google Scholar]
- Bano, S.; Begum, T.; Jain, R.R. Role of mustard oil in eco-friendly management of Fusarium verticillioides. Int. J. Pure App. Biosci. 2019, 7, 317–322. [Google Scholar] [CrossRef]
- Rattan, R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010, 29, 913–920. [Google Scholar] [CrossRef]
- Laborda, R.; Manzano, I.; Gamon, M.; Gavidia, I.; Boluda, R.; Perez-Bermudez, P. Spike lavender essential oil reduces the survival rate and fecundity of two-spotted spider mite, Tetranychusurticae (Acari: Tetranychidae). J. Agric. Sci. Technol. 2018, 20, 1013–1023. [Google Scholar]
- Dayeswari, D.; Dorajee Rao, A.V.D.; Rajasekhar, M.; Subbaramamma, P.; SalomiSuneetha, D.R. Effect of crude edible and non-edible oils on plants growth, yield and quality: A review. J. Pharmacogn. Phytochem. 2019, 8, 2024–2029. [Google Scholar]
- Raghavendra, K.V.; Chinniah, C.; Jayasimha, G.T.; Gowthami, R. Bio- efficacy of plant derivatives and natural oils against two-spotted spider mite, Tetranychusurticae Koch. J. Entomol. Zool. Stud. 2017, 5, 1456–1461. [Google Scholar]
- Reddy, S.G.E.; Dolma, S.K. Acaricidal activities of essential oils against two-spotted spider mite, Tetranychusurticae Koch. Toxin Rev. 2018, 37, 62–66. [Google Scholar] [CrossRef]
- Frabboni, L.; Tarantino, A.; Petruzzi, F.; Disciglio, G. Bio-herbicidal effects of oregano and rosemary essential oils on chamomile (Matricaria chamomilla L.) crop in organic farming system. Agronomy 2019, 9, 475. [Google Scholar] [CrossRef] [Green Version]
- Miresmailli, S.; Bradbury, R.; Isman, M.B. Comparative toxicity of Rosmarinus officinalis L. essential oil and blends of Its major constituents against Tetranychusurticae Koch (Acari: Tetranychidae) on two different host plants. Pest Manag. Sci. 2006, 62, 366–371. [Google Scholar] [CrossRef]
- Pavela, R.; Stepanycheva, E.; Shchenikova, A.; Chermenskaya, T.; Petrova, M. Essential oils as prospective fumigants againstTetranychusurticae Koch. Ind. Crop. Prod. 2016, 94, 755–761. [Google Scholar] [CrossRef]
- Tak, J.H.; Isman, M.B. Acaricidal and repellent activity of plant essential oil-derived terpenes and the effect of binary mixtures against Tetranychusurticae Koch (Acari: Tetranychidae). Ind. Crop.Prod. 2017, 108, 786–792. [Google Scholar] [CrossRef]
- Yesilayer, A. The repellency effects of three plant essential oils against the two-spotted spider mite Tetranychus urticae. Appl. Ecol. Environ. Res. 2018, 16, 6001–6006. [Google Scholar] [CrossRef]
- Enan, E. Insecticidal activity of essential oils: Octopaminergic site of action. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 2001, 130, 325–337. [Google Scholar] [CrossRef]
- Laborda, R.; Manzano, I.; Gamón, M.; Gavidia, I.; Pérez-Bermúdez, P.; Boluda, R. Effects of Rosmarinus officinalis and Salvia officinalis essential oils on Tetranychusurticae Koch (Acari: Tetranychidae). Ind. Crop. Prod. 2013, 48, 106–110. [Google Scholar] [CrossRef]
- Reddy, S.G.E.; Dolma, S.K.; Koundal, R.; Singh, B. Chemical composition and insecticidal activities of essential oils against diamondback moth, Plutellaxylostella (Lepidoptera: Yponomeutidae). Nat. Prod. Res. 2016, 30, 1834–1838. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization. FAOSTAT. 2007. Available online: http://faostat.fao.org (accessed on 3 April 2009).
- Rodriguez-Jimenez, J.R.; Amaya-Guerra, C.A.; Baez-Gonzalez, J.G.; Aguilera-Gonzalez, C.; Urias-Orona, V.; Nino-Medina, G. Physicochemical, functional, and nutraceutical properties of eggplant flours obtained by different drying methods. Molecules 2018, 23, 3210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, C.F.; Tilton, E.W. Test with acaricides against the brown wheat mite. J. Econ. Entomol. 1955, 48, 157–161. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV–vis spectroscopy. In Current Protocols in Food Analytical Chemistry (CPFA); Wrolstad, R.E., Acree, T.E., An, H., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Sporns, P., Eds.; John Wiley and Sons: New York, NY, USA, 2001; pp. F4.3.1–F4.3.8. [Google Scholar]
- Motsara, M.R.; Roy, R.N. Guide to laboratory establishment for plant nutrient analysis. In FAO Fertilizer and Plant Nutrition Bulletin No; 19; Food and Agriculture Organization: Rome, Italy, 2008. [Google Scholar]
- Conde, E.; Cadahia, E.; Garcia-Vallejo, M. HPLC analysis of flavonoids and phenolic acids and aldehydes in eucalyptus spp. Chromatographia 1995, 41, 657–660. [Google Scholar] [CrossRef]
- AOAC. International Official Methods of Analysis. In Association of Official Analytical Chemists; A.O.A.C International: Washington, DC, USA, 2000. [Google Scholar]
- Oxtoby, D.W.; Gillis, H.P.; Nachtrieb, N.H. Prinsip-Prinsip Kimia Modern; Erlangga: Jakarta, Indonesia, 2001. [Google Scholar]
- Garcia-Marı, F.; Gonzalez-Zamora, J.E. Biological control of Tetranychusurticae(Acari: Tetranychidae) with naturally occurring predators in strawberry plantings in Valencia, Spain. Exp. Appl. Acarol. 1999, 23, 487–495. [Google Scholar] [CrossRef]
- El-Zemity, S.R.; Rezk, H.A.; Zaitoon, A.A. Acaricidal potential of some essential oils and their monoterpenoids against the two-spotted spider mite Tetranychusurticae (Koch.). Arch. Phytopathol. Plant Prot. 2009, 42, 334–339. [Google Scholar] [CrossRef]
- Adil, B.; Tarik, A.; Kribii, A.; Ounine, K. The study of the insecticidal effect of Nigella sativa essential oil against Tutaabsoluta larvae. Int. J. Sci. Technol. Res. 2015, 4, 88–90. [Google Scholar]
- Chegini, S.G.; Abbasipour, H. Chemical composition and insecticidal effects of the essential oil of cardamom, Elettaria cardamomum on the tomato leaf miner, Tuta absoluta. Toxin Rev. 2017, 36, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Isman, M.B. Botanical insecticides deterrents and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 46–66. [Google Scholar] [CrossRef] [Green Version]
- Blenau, W.; Rademacher, E.; Baumann, A. Plant essential oils and formamidines as insecticides/acaricides: What were the molecular targets? Apidologie 2012, 43, 334–347. [Google Scholar] [CrossRef] [Green Version]
- Modarres-Najafabadi, S.S.; Taji, M.; Hajihassani, A. Study on Thymus vulgaris, Lavandula officinalis, and Eucalyptus camaldulensis extracts on the two-spotted spider mite. Int. J. Agric. Sci. 2012, 2, 228–236. [Google Scholar]
- Attia, S.; Lebdi, K.G.; Heuskin, S.; Lognay, G.; Hance, T. An analysis of potential resistance of the phytophagous mite, Tetranychusurticae Koch (Acari: Tetranychidae) to four botanical pesticides. Biotechnol. Agron. Soc. Environ. 2015, 19, 232–238. [Google Scholar]
- Ebadollahi, A.; Sendi, J.J.; Maroufpoor, M.; Rahimi-Nasrabadi, M. Acaricidal potentials of the terpene-rich essential oils of two Iranian Eucalyptus species against Tetranychusurticae Koch. J. Oleo Sci. 2017, 66, 307–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarrad, K.; Laarif, A.; Ben Hamouda, A.; Chaieb, I.; Mediouni-Ben Jemâa, J. Anticholinesterase potential of monoterpenoids on the whitefly Bemisiatabaci and their kinetic studies. J. Agric. Sci. Technol. 2017, 19, 643–652. [Google Scholar]
- Tsao, H.; Coats, J.R. Starting from nature to make better insecticides. ChemTech 1995, 25, 23–28. [Google Scholar]
- Bill, M.; Korsten, L.; Remize, F.; Glowacz, M.; Sivakumar, D. Effect of thyme oil vapours exposure on phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) genes expression, and control of anthracnose in ‘Hass’ and ‘Ryan’ avocado fruit. Sci. Hortic. 2017, 224, 232–237. [Google Scholar] [CrossRef] [Green Version]
- Abbed, A.M. Investigation effects of lavender flowers extracts on catalase activity and some microorganisms. Al-Nahrain Univ. Sci. 2019, 22, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Gogoi, R.; Singh, D.V.; Srivastava, K.D. Phenols as a biochemical basis of resistance in wheat against karnal bunt. Plant Pathol. 2001, 50, 470–476. [Google Scholar] [CrossRef]
- Marschner, P. Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier: London, UK, 2011. [Google Scholar]
- Al Hassan, M.; Martinez Fuertes, M.; Ramos Sanchez, F.J.; Vicente, O.; Boscaiu, M. Effects of salt and water stress on plant growth and on accumulation of osmolytes and antioxidant compounds in cherry tomato. Not. Bot. HortiAgrobot. Cluj-Napoca 2015, 43, 1–11. [Google Scholar] [CrossRef]
- Peer, W.A.; Cheng, Y.; Murphy, A.S. Evidence of oxidative attenuation of auxin signaling. J. Exp. Bot. 2013, 64, 2629–2639. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.M.; Muhlemann, J.K.; Gayomba, S.R.; Muday, G.K. RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses. Chem. Res. Toxicol. 2019, 32, 370–396. [Google Scholar] [CrossRef] [PubMed]
- Alatawi, F.; Margolies, D.; Nechols, J.R. Aesthetic damage thresholds for twospotted spider mites (Acari: Tetranychidae) on impatiens: Effect of plant age and level of infestation. J. Econ. Entomol. 2017, 100, 1904–1909. [Google Scholar] [CrossRef]
- Heng-Mosstm, T.M.; Ni, X.; Macedot, T.; Markwell, J.P.; Baxendale, F.B.; Quisenberry, S.S.; Tolmay, V. Comparison of chlorophyll and carotenoid concentrations among Russian wheat aphid (Homoptera: Aphididae)-infested wheat isolines. Plant Resist. 2003, 96, 475–481. [Google Scholar] [CrossRef]
- Burd, J.D.; Elliott, N.C. Changes in chlorophyll a fluorescence induction kinetics in cereals infested with Russian wheat aphid (Homoptera: Aphididae). J. Econ. Entomol. 1996, 89, 1332–1337. [Google Scholar] [CrossRef]
- Stacey, G.; Keen, N.T. Plant Microbe Interactions; APS Press: St. Paul, MN, USA, 1996. [Google Scholar]
- Sivritepe, N.; Kumral, N.A.; Erturk, U.; Yerlikaya, C.; Kumral, A. Responses of grapevines to two-spotted spider mite mediated biotic stress. J. Biol. Sci. 2009, 9, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Amaresh, C.; Bhatt, R.K. Biochemical and physiological response to salicylic acid in reaction to systemic acquired resistance. Photosynthetica 1998, 35, 255–258. [Google Scholar] [CrossRef]
- Souri, M.K.; Bakhtiarizade, M. Biostimulation effects of rosemary essential oil on growth and nutrient uptake of tomato seedlings. Sci. Hortic. 2019, 243, 472–476. [Google Scholar] [CrossRef]
- Possingham, J.V. Plastid replication, and development in the life cycle of higher plants. Annu. Rev. Plant Physiol. 1980, 31, 113–129. [Google Scholar] [CrossRef]
- Bakalova, R.; Zhelev, Z.; Miller, T.; Aoki, I.; Higashi, T. Vitamin C versus cancer: Ascorbic acid radical and impairment of mitochondrial respiration? Hindawi Oxidative Med. Cell. Longev. 2020, 2020, 1504048. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.R.; Ramirez, M.V.; Miller, N.D.; Vallabhaneni, P.; Ray, W.K.; Helm, R.F.; Winkel, B.S.J.; Muday, G.K. Auxin, and ethylene induce flavonol accumulation through distinct transcriptional networks. Plant Physiol. 2011, 156, 144–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, M.T.; Patti, A.F.; Little, K.R.; Brown, A.L. A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. Adv. Agron. 2014, 124, 37–89. [Google Scholar] [CrossRef]
- Lucas, Y. The role of plants in controlling rates and products of weathering: Importance of biological pumping. Annu. Rev. Earth Planet. Sci. 2001, 29, 135–163. [Google Scholar] [CrossRef]
- Vermerris, W.; Nicholson, R. Phenolic compounds Biochemistry; Springer: Dordrecht, The Netherland, 2006. [Google Scholar]
- Smirnoff, N. Ascorbic acid metabolism and functions: A comparison of plants and Mammals. Free Rad. Bio. Med. 2018, 122, 116–129. [Google Scholar] [CrossRef] [PubMed]
- IbtesamBadawy, F.M.; NaashwaSallem, M.A.; Ibrahim, A.R.; Asran, M.R. Efficacy of some essential oils on controlling green mold of orange and their effects on post-harvest quality parameters. Plant Pathol. J. 2011, 10, 168–174. [Google Scholar] [CrossRef]
- Samra, N.R.; Mansour, A.M.; Tourky, M.N.; Tarabih, M.E. Pre and post-harvest treatments on peach fruits grown under desert conditions. J. Agric. Sci. Mansoura Univ. 2006, 31, 7835–7846. [Google Scholar] [CrossRef]
- Abd Elwahab, S.M. Maintain postharvest quality of nectarine fruits by using some essential oils. Middle East J. Appl. Sci. 2015, 5, 855–868. [Google Scholar]
- Umar, S.; Bansad, S.K. Potassium requirement of mustard (Brassica juncea L.) under moisture stress conditions. Plant Physiol. Biochem. New Delhi 1995, 22, 130–135. [Google Scholar]
- Rabiei, V.; Shirzadeh, E.; Angourani, H.R.; Sharafi, Y. Effect of thyme and lavender essential oils on the qualitative and quantitative traits and storage life of apple ‘Jonagold’ cultivar. J. Med. Plants Res. 2011, 5, 5522–5527. [Google Scholar]
- Ylstra, B.; Touraev, A.; Moreno, R.M.B.; Stoger, E.; van Tunen, A.J.; Vicente, O.; Mol, J.N.M.; Heberle-Bors, E. Flavonols stimulate development, germination, and tube growth of tobacco pollen. Plant Physiol. 1992, 100, 902–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadilova, E.; Stintzing, F.C.; Carle, R. Anthocyanins, colour and antioxidant properties of eggplant (Solanum melongena L.) and violet pepper (Capsicum annuum L.) peel extracts. Z. Nat. C 2006, 61, 527–535. [Google Scholar] [CrossRef]
- Tateyama, C.; Igarashi, K. Anthocyanin and chlorogenic acid contents of some selected eggplant (Solanum melongena L.) cultivars, and the radical scavenging activities of their extracts. J. Jpn. Soc. Food Sci. Technol. 2006, 53, 218–224. [Google Scholar] [CrossRef] [Green Version]
- San José, R.; Sánchez-Mata, M.C.; Cámara, M.; Prohens, J. Eggplant fruit composition as affected by the cultivation environment and genetic constitution. J. Sci. Food Agric. 2014, 94, 2774–2784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatemi, S.M.; Jafarpour, S.; Eghbalsaied, S.; Rezapour, A.; Borji, H. Effect of essential oils of Thymus vulgaris and Mentha pipertia on the control of green mould and pest harvest quality of Citrus sinensis cv. Valencia. Afr. J. Biotechnol. 2011, 10, 14932–14936. [Google Scholar] [CrossRef]
- Zeng, R.; Zhang, A.; Chen, J.; Yong-Qi, F. Postharvest quality and physiological responses of clove bud extract dip on navel orange. Sci. Hortic. 2012, 138, 253–258. [Google Scholar] [CrossRef]
- Mohamed, B.M.H.; El-Badawy, H.E.M. Response of Washington navel orange to Thyme and clove oils as natural postharvest treatments under cold storage conditions. J. Appl. Sci. Res. 2013, 9, 4335–4344. [Google Scholar]
Treatment | Pretreatment Count | After 1 DPI | After 10 DPI | Efficiency | Reducing Rate |
---|---|---|---|---|---|
Control | 252 ± 3.21 b | 390 ± 2.08 a | 426 ± 3.21 a | 0 ± 0 c | 0 ± 0 c |
LEO | 252 ± 4.72 b | 220 ± 5.85 b | 186 ± 2.64 b | 50.2 ± 1.51 b | 19.34 ± 2.80 b |
JEO | 276 ± 1.52 a | 197 ± 2.60 c | 84 ± 1.73 d | 68.5 ± 0.48 a | 49.03 ± 0.41 a |
MFO | 270 ± 4.58 a | 200 ± 4.72 c | 100 ± 1.52 c | 65.6 ± 1.27 a | 44.37 ± 1.96 a |
p-value | ** | *** | *** | *** | *** |
LSD 5% | 12.20 | 13.42 | 7.76 | 4.58 | 5.62 |
Treatment | Plant Height (cm) | Branches No/ Plant | LeavesNumber/Plant | 3rd–5th Leaf Area (cm2) | Relative Leaf Dry Mass (3rd–5th Leaves, g) |
---|---|---|---|---|---|
Control | 68.6 ± 2.46 c | 5.0 ± 0.00 c | 47.6 ± 3.48 c | 21.21 ± 0.52 b | 8.90 ± 0.38 c |
LEO | 75.4 ± 1.31 c | 6.0 ± 0.00 b | 55.3 ± 1.76 b | 35.86 ± 2.92 a | 10.71 ± 0.12 b |
JEO | 102 ± 1.56 a | 7.3 ± 0.33 a | 65.3 ± 1.66 a | 42.53 ± 3.79 a | 12.31 ± 0.14 a |
MFO | 89.1 ± 4.10 b | 7.0 ± 0.00 a | 60.3 ± 1.20 ab | 38.14 ± 0.52 a | 11.51 ± 0.28a b |
p-value | *** | *** | ** | ** | *** |
LSD 5% | 8.49 | 0.54 | 7.19 | 1.71 | 0.83 |
Treatment | Chlorophylla | Chlorophyllb | Chlorophylla:b | Total Chlorophyll | Total Carotenoids |
---|---|---|---|---|---|
Control | 1.061 ± 0.051 b | 0.445 ± 0.10 c | 0.417 ± 0.08 a | 1.506 ± 0.13 b | 0.115 ± 0.01 b |
LEO | 1.850 ± 0.29 a | 1.015 ± 0.03 b | 0.590 ± 0.13 a | 2.866 ± 0.26 a | 0.146 ± 0.005 ab |
JEO | 2.105 ± 0.249 a | 1.354 ± 0.13 a | 0.655 ± 0.07 a | 3.459 ± 0.31 a | 0.259 ± 0.031 a |
MFO | 1.897 ± 0.083 a | 1.023 ± 0.07 b | 0.542 ± 0.05 a | 2.921 ± 0.08 a | 0.186 ± 0.064 ab |
p-value | * | ** | ns | ** | ns |
LSD 5% | 0.65 | 0.309 | 0.304 | 0.723 | 0.118 |
Treatment | Nitrogen % | Phosphorus % | Potassium % | Phenol (mg/g FW) | Ascorbic Acid (mg/100 g FW) |
---|---|---|---|---|---|
Control | 2.04 ± 0.01 c | 0.012 ± 0.0008 b | 2.12 ± 0.004 c | 0.602 ± 0.02 c | 10.0 ± 0.00 b |
LEO | 2.74 ± 0.16 b | 0.012 ± 0.0006 b | 1.50 ± 0.001 d | 0.961 ± 0.04 b | 16.6 ± 1.35 a |
JEO | 3.19 ± 0.10 a | 0.010 ± 0.0003 b | 1.95 ± 0.001 b | 1.459 ± 0.02 a | 20.0 ± 1.15 a |
MFO | 2.77 ± 0.04 b | 0.022 ± 0.0005 a | 2.90 ± 0.002 a | 1.011 ± 0.02 b | 18.0 ± 1.15 a |
p-value | *** | *** | *** | *** | *** |
LSD 5% | 0.325 | 0.002 | 0.008 | 0.096 | 3.437 |
Treatment | Fruit No/Plant | Fruit Length | Fruit Diameter | Fruit Weight | Fruit Yield/Plant |
---|---|---|---|---|---|
Control | 13.6 ± 0.33 c | 12.8 ± 0.64 c | 7.66 ± 0.33 c | 138.6 ± 6.35 c | 3379 ± 58.8 b |
LEO | 15.3 ± 0.33 b | 14.8 ± 0.30 b | 9.66 ± 0.33 b | 228.3 ± 21.7 b | 4032 ± 165 b |
JEO | 16.6 ± 0.33 a | 16.4 ± 0.21 a | 11.6 ± 0.66 a | 343.3 ± 19.4 a | 5910 ± 532 a |
MFO | 16.3 ± 0.33 ab | 15.1 ± 0.06 b | 10.6 ± 0.66 ab | 270.6 ± 22.5 b | 5103 ± 270 a |
p-value | *** | ** | ** | *** | ** |
LSD 5% | 1.87 | 1.22 | 1.41 | 60.94 | 1014 |
Treatment | Nitrogen % | Phosphorus % | Potassium % | Protein % | Phenol (mg/g FW) | Ascorbic Acid (mg/100 g FW) | Total Acidityg Citric Acid/100 g fruit | Total Soluble Solid (Brix) |
---|---|---|---|---|---|---|---|---|
Control | 2.81 ± 0.011 d | 0.067 ± 0.001 c | 3.95 ± 0.002 b | 17.59 ± 0.073 d | 2.99 ± 0.02 c | 62.0 ± 1.15 c | 0.458 ± 0.01 a | 4.1 ± 0.10 c |
LEO | 2.95 ± 0.001 b | 0.077 ± 0.001 b | 4.17 ± 0.001 a | 18.44 ± 0.009 b | 3.08 ± 0.03 c | 68.6 ± 1.33 b | 0.362 ± 0.02 b | 4.5 ± 0.18 bc |
JEO | 3.45 ± 0.001 a | 0.042 ± 0.001 d | 3.67 ± 0.001 c | 21.59 ± 0.010 a | 4.27 ± 0.05 a | 72.6 ± 0.66 a | 0.245 ± 0.01 c | 5.6 ± 0.08 a |
MFO | 2.87 ± 0.008 c | 0.095 ± 0.001 a | 3.05 ± 0.002 d | 17.93 ± 0.055 c | 3.38 ± 0.04 b | 70.0 ± 1.15 ab | 0.256 ± 0.00 c | 4.8 ± 0.25 b |
p-value | *** | *** | *** | *** | *** | *** | *** | ns |
LSD 5% | 0.024 | 0.005 | 0.005 | 0.151 | 0.141 | 3.605 | 0.042 | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farouk, S.; Almutairi, A.B.; Alharbi, Y.O.; Al-Bassam, W.I. Acaricidal Efficacy of Jasmine and Lavender Essential Oil or Mustard Fixed Oil against Two-Spotted Spider Mite and Their Impact on Growth and Yield of Eggplants. Biology 2021, 10, 410. https://doi.org/10.3390/biology10050410
Farouk S, Almutairi AB, Alharbi YO, Al-Bassam WI. Acaricidal Efficacy of Jasmine and Lavender Essential Oil or Mustard Fixed Oil against Two-Spotted Spider Mite and Their Impact on Growth and Yield of Eggplants. Biology. 2021; 10(5):410. https://doi.org/10.3390/biology10050410
Chicago/Turabian StyleFarouk, Saad, Ahmad B. Almutairi, Yousef O. Alharbi, and Waleed I. Al-Bassam. 2021. "Acaricidal Efficacy of Jasmine and Lavender Essential Oil or Mustard Fixed Oil against Two-Spotted Spider Mite and Their Impact on Growth and Yield of Eggplants" Biology 10, no. 5: 410. https://doi.org/10.3390/biology10050410
APA StyleFarouk, S., Almutairi, A. B., Alharbi, Y. O., & Al-Bassam, W. I. (2021). Acaricidal Efficacy of Jasmine and Lavender Essential Oil or Mustard Fixed Oil against Two-Spotted Spider Mite and Their Impact on Growth and Yield of Eggplants. Biology, 10(5), 410. https://doi.org/10.3390/biology10050410