Entomopathogenic Fungi and Bacteria in a Veterinary Perspective
Abstract
:Simple Summary
Abstract
1. Introduction
2. Entomopathogenic Fungi
3. Entomopathogenic Bacteria
4. Ticks
4.1. Fungi
4.2. Bacteria
5. Dermanyssus Gallinae
5.1. Fungi
5.2. Bacteria
6. Psoroptes sp.
6.1. Fungi
6.2. Bacteria
7. Varroa destructor
8. Zoonotic Potential of EPFs
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Eilenberg, J.; Hajek, A.; Lomer, C. Suggestions for unifying the terminology in biological control. BioControl 2001, 46, 387–400. [Google Scholar] [CrossRef]
- Hajek, A.E.; Delalibera, I. Fungal pathogens as classical biological control agents against arthropods. BioControl 2010, 55, 147–158. [Google Scholar] [CrossRef]
- Chandler, D.; Davidson, G.; Pell, J.K.; Ball, B.V.; Shaw, K.; Sunderland, K.D. Fungal Biocontrol of Acari. Biocontrol Sci. Technol. 2000, 10, 357–384. [Google Scholar] [CrossRef]
- Qu, J.; Zhou, Y.; Yu, J.; Zhang, J.; Han, Y.; Zou, X. Estimated divergence times of Hirsutella (asexual morphs) in Ophiocordyceps provides insight into evolution of phialide structure. BMC Evol. Biol. 2018, 18, 111. [Google Scholar] [CrossRef]
- Vilela, R.; Mendoza, L. Human Pathogenic Entomophthorales. Clin. Microbiol. Rev. 2018, 31, e00014-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humber, R.A.; Samson, R.A.; Evans, H.C.; Latge, J.-P. Atlas of Entomopathogenic Fungi; Springer: Berlin/Heidelberg, Germany, 1988; p. 187. [Google Scholar]
- Vega, F.E.; Goettel, M.S.; Blackwell, M.; Chandler, D.; Jackson, M.A.; Keller, S.; Koikeg, M.; Maniania, N.K.; Monzo´, N.A.; Ownley, B.H.; et al. Fungal entomopathogens: New insights on their ecology. Fungal Ecol. 2009, 2, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Roberts, D.W.; Campbell, A.S. Stability of entomopathogenic fungi. Misc. Publ. Entomol. Soc. Am. 1977, 10, 19–76. [Google Scholar]
- Fargues, J.; Goettle, M.S.; Smits, N.; Ouedraogo, A.; Vidal, C.; Lacey, L.A.; Lomer, C.J.; Rougier, M. Variability in suceptibility to simulated sunlightof conidia among isolates of entomopathogenic hyphomycetes. Mycopathologia 1996, 133, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Wang, Z.; Huang, Y.; Keyhani, N.O.; Huang, Z. Lack of resistance development in Bemisia tabaci to Isaria fumosorosea after multiple generations of selection. Sci. Rep. 2017, 7, srep42727. [Google Scholar] [CrossRef] [Green Version]
- Goettel, M.S.; Eilenberg, J.; Glare, T.R. Entomopathogenic fungi and their role in regulation of insect populations. In Comprehensive Molecular Insect Science; Gilbert, L., Iatrou, K., Gill, S., Eds.; Elsevier: Boston, MA, USA, 2005; Volume 6, pp. 361–406. [Google Scholar]
- Ortiz-Urquiza, A.; Keyhani, N. Molecular Genetics of Beauveria bassiana Infection of Insects. Adv. Genet. 2016, 94, 165–249. [Google Scholar] [PubMed]
- He, P.H.; Dong, W.X.; Chu, X.L.; Feng, M.G.; Ying, S.H. The cellular proteome isaffected by a gelsolin (BbGEL1) during morphological transitions in aerobic surface versus liquidgrowth in the entomopathogenic fungus Beauveria bassiana. Environ. Microbiol. 2016, 18, 4153–4169. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Bravo, M.; Garrido-Jurado, I.; Valverde-García, P.; Enkerli, J.; Quesada-Moraga, E. Responses to abiotic environmental stresses among phylloplane and soil isolates of Beauveria bassiana from two holm oak ecosystems. J. Invert. Pathol. 2016, 141, 6–17. [Google Scholar] [CrossRef]
- Huang, S.; Keyhani, N.O.; Zhao, X.; Zhang, Y. The Thm1 Zn(II)2Cys6transcription factor contributes to heat, membrane integrity and virulence in the insect pathogenic fungus Beauveria bassiana. Environ. Microbiol. 2019, 21, 3153–3171. [Google Scholar] [CrossRef]
- Wang, D.-Y.; Mou, Y.-N.; Tong, S.-M.; Ying, S.-H.; Feng, M.-G. Photoprotective Role of Photolyase-Interacting RAD23 and Its Pleiotropic Effect on the Insect-Pathogenic Fungus Beauveria bassiana. Appl. Environ. Microbiol. 2020, 86. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Patocka, J.; Nepovimova, E.; Kuca, K. A Review on the Synthesis and Bioactivity Aspects of Beauvericin, a Fusarium Mycotoxin. Front. Pharmacol. 2018, 9, 1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Khoury, C.; Nemer, N.; Nemer, G.; Kurban, M.; Bernigaud, C.; Fischer, K.; Guillot, J. In Vitro Activity of Beauvericin against All Developmental Stages of Sarcoptes scabiei. Antimicrob. Agents Chemother. 2020, 64, e02118-19. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, J.F.; Rehner, S.A.; Humber, R.A. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 2009, 101, 512–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mongkolsamrit, S.; Khonsanit, A.; Thanakitpipattana, D.; Tasanathai, K.; Noisripoom, W.; Lamlertthon, S.; Himaman, W.; Houbraken, J.; Samson, R.; Luangsa-Ard, J. Revisiting Metarhizium and the description of new species from Thailand. Stud. Mycol. 2020, 95, 171–251. [Google Scholar] [CrossRef]
- Raymond, B.; Johnston, P.R.; Nielsen-LeRoux, C.; Lereclus, D.; Crickmore, N. Bacillus thuringiensis: An impotent pathogen? Trends Microbiol. 2010, 18, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Bravo, A.S.M. Bacillus thuringiensis: Mechanisms and use. Compr. Mol. Insect Sci. 2005, 6, 175–205. [Google Scholar]
- Liu, X.Y.; Ruan, L.F.; Hu, Z.F.; Peng, D.H.; Cao, S.Y.; Yu, Z.N.; Liu, Y.; Zheng, J.S.; Sun, M. Genome-wide screen-ing reveals the genetic determinants of an antibiotic insecticide in Bacillus thuringiensis. J. Biol. Chem. 2010, 285, 39191–39200. [Google Scholar] [CrossRef] [Green Version]
- Perchat, S.; Buisson, C.; Chaufaux, J.; Sanchis, V.; Lereclus, D.; Gohar, M. Bacillus cereus produces several nonproteinaceous insecticidal exotoxins. J. Invertebr. Pathol. 2005, 90, 131–133. [Google Scholar] [CrossRef]
- Guttmann, D.M.; Ellard, D.J. Phenotypic and genotypic comparisons of 23 strains from the Bacillus cereus complex for a selection of known and putative B. thuringiensis virulence factors. FEMS Microbiol. Lett. 2000, 188, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Sanahuja, G.; Banakar, R.; Twyman, R.M.; Capell, T.; Christou, P. Bacillus thuringiensis: A century of research, development and commercial applications. Plant Biotechnol. J. 2011, 9, 283–300. [Google Scholar] [CrossRef] [Green Version]
- Lacey, L.A. Bacillus thuringiensis serovariety israelensis and bacillus sphaericus for mosquito control. J. Am. Mosq. Control. Assoc. 2007, 23, 133–163. [Google Scholar] [CrossRef]
- Berry, C. The bacterium, Lysinibacillus sphaericus, as an insect pathogen. J. Invertebr. Pathol. 2012, 109, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Laubach, A.C. Studies on aerobic, sporebearing, nonpathogenic bacteria. Spore bearing organisms in water. J. Bacteriol. 1916, 1, 505–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, G.F. European foul brood. U.S. Dept. Agric. Bur. Ent. Bull. 1920, 810, 39. [Google Scholar]
- McCray, A.H. Spore-forming bacteria in the apiary. J. Agric. Res. 1917, 8, 399–420. [Google Scholar]
- Bailey, L. Honey Bee Pathology; Academic Press: London, UK, 1981. [Google Scholar]
- Favret, M.E.; Yousten, A.A. Insecticidal activity of Bacillus laterosporus. J. Invertebr. Pathol. 1985, 45, 195–203. [Google Scholar] [CrossRef]
- Andersen, J.F.; Pham, V.M.; Meng, Z.; Champagne, D.E.; Ribeiro, J.M.C. Insight into the Sialome of the Black Fly, Simulium vittatum. J. Proteome Res. 2009, 8, 1474–1488. [Google Scholar] [CrossRef] [Green Version]
- Rivers, D.B.; Vann, C.N.; Zimmack, H.L.; Dean, D.H. Mosquitocidal activity of Bacillus laterosporus. J. Invertebr. Pathol. 1991, 58, 444–447. [Google Scholar] [CrossRef]
- Huang, X.; Tian, B.; Niu, Q.; Yang, J.; Zhang, L.; Zhang, K. An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Res. Microbiol. 2005, 156, 719–727. [Google Scholar] [CrossRef]
- Ghazanchyan, N.; Kinosyan, M.; Tadevosyan, P.; Khachaturyan, N.; Afrikian, E. Brevibacillus laterosporus as perspective source of new bioinsecticides. Ann. Agrar. Sci. 2018, 16, 413–415. [Google Scholar] [CrossRef]
- Ruiu, L.; Delrio, G.; Ellar, D.J.; Floris, I.; Paglietti, B.; Rubino, S.; Satta, A. Lethal and sublethal effects of Brevibacillus laterosporus on the housefly (Musca domestica). Entomol. Exp. Appl. 2006, 118, 137–144. [Google Scholar] [CrossRef]
- Moro, C.V.; Thioulouse, J.; Chauve, C.; Normand, P.; Zenner, L. Bacterial taxa associated with the hematophagous mite Dermanyssus gallinae detected by 16S rRNA PCR amplification and TTGE fingerprinting. Res. Microbiol. 2009, 160, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Zchori-Fein, E.; Gottlieb, Y.; Kelly, S.E.; Brown, J.K.; Wilson, J.M.; Karr, T.L.; Hunter, M.S. A newly discovered bacterium associated with parthenogenesis and a change in host selection behavior in parasitoid wasps. Proc. Natl. Acad. Sci. USA 2001, 98, 12555–12560. [Google Scholar] [CrossRef] [Green Version]
- Zchori-Fein, E.; Perlman, S.J. Distribution of the bacterial symbiont Cardinium in arthropods. Mol. Ecol. 2004, 13, 2009–2016. [Google Scholar] [CrossRef]
- Hunter, M.S.; Perlman, S.J.; Kelly, S.E. A bacterial symbiont in the Bacteroidetes includes cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proc. R Soc. Lond. B Biol. Sci. 2003, 270, 2185–2190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werren, J.; Skinner, S.; Huger, A. Male-killing bacteria in a parasitic wasp. Science 1986, 231, 990–992. [Google Scholar] [CrossRef] [PubMed]
- Weeks, A.R.; Marec, F.; Breeuwer, J.A.J. A Mite Species That Consists Entirely of Haploid Females. Science 2001, 292, 2479–2482. [Google Scholar] [CrossRef]
- De Luna, C.J.; Moro, C.V.; Guy, J.H.; Zenner, L.; Sparagano, O. Endosymbiotic bacteria living inside the poultry red mite (Dermanyssus gallinae). Exp. Appl. Acarol. 2009, 48, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Tinsley, M.C.; Majerus, M.E. A new male-killing parasitism: Spiroplasma bacteria infect the ladybird beetle Anisosticta novemdecimpunctata (Coleoptera: Coccinellidae). Parasitology 2006, 132, 757–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphery-Smith, I.; Grulet, O.; Legoff, F.; Robaux, P.; Chastel, C. Mosquito spiroplasmas and their role in the fight against the major tropical diseases transmitted by mosquitoes. Bull. Soc. Pathol. Exot. 1991, 84, 693–696. [Google Scholar] [PubMed]
- Gotoh, T.; Noda, H.; Ito, S. Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity 2006, 98, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Tóth, E.; Kovacs, G.; Schumann, P.; Kovács, A.L.; Steiner, U.; Halbritter, A.; Márialigeti, K. Schineria larvae gen. nov., sp. nov., isolated from the 1st and 2nd larval stages of Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int. J. Syst. Evol. Microbiol. 2001, 51, 401–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tóth, E.M.; Hell, E.; Kovacs, G.M.; Borsodi, A.K.; Márialigeti, K. Bacteria Isolated from the Different Developmental Stages and Larval Organs of the Obligate Parasitic Fly, Wohlfahrtia magnifica (Diptera: Sarcophagidae). Microb. Ecol. 2006, 51, 13–21. [Google Scholar] [CrossRef]
- Huger, A.M.; Krieg, A. New aspects of the mode of reproduction of Rickettsiella organisms in insects. J. Invertebr. Pathol. 1967, 9, 442–445. [Google Scholar] [CrossRef]
- Federici, A.B. Reproduction and morphogenesis of Rickettsiella chironomi, an unusual intracellular procaryotic parasite of midge larvae. J. Bacteriol. 1980, 143, 995–1002. [Google Scholar] [CrossRef] [Green Version]
- Delmas, F.; Timon-David, P. Action des rickettsies d’invertébrés sur des vertébrés: Infection expérimentale de la Souris par Rickettsiella grylli. C R Acad. Sci. III 1985, 300, 115–117. [Google Scholar]
- Jurat-Fuentes, J.L.; Jackson, T.A. Bacterial Pathogens. In Insect Pathology, 2nd ed.; Vega, F.E., Kaya, H.K., Eds.; Academic Press: London, UK; Elsevier: Berlin/Heidelberg, Germany, 2011; pp. 265–349. [Google Scholar]
- Hertig, M.; Wolbach, B. Studies on Rickettsia-like micro-organisms in insects. J. Med. Res. 1924, 44, 329–374. [Google Scholar] [PubMed]
- Gerth, M.; Gansauge, M.-T.; Weigert, A.; Bleidorn, C. Phylogenomic analyses uncover origin and spread of the Wolbachia pandemic. Nat. Commun. 2014, 5, 5117. [Google Scholar] [CrossRef] [Green Version]
- Panteleev, D.I.; Goriacheva, I.I.; Andrianov, B.V.; Reznik, N.L.; Lazebnyĭ, O.E.; Kulikov, A.M. The endosymbiotic bacterium Wolbachia enhances the nonspecific resistance to insect pathogens and alters behavior of Drosophila melanogaster. Genetika 2007, 43, 1277–1280. [Google Scholar] [CrossRef]
- Díaz-Nieto, L.M.; Gil, M.F.; Lazarte, J.N.; Perotti, M.A.; Berón, C.M. Culex quinquefasciatus carrying Wolbachia is less susceptible to entomopathogenic bacteria. Sci. Rep. 2021, 11, 1094. [Google Scholar] [CrossRef] [PubMed]
- Charlat, S.; Bourtzis, K.; Merçot, H. Incompatibility. In Symbiosis: Mechanisms and Model Systems; Seckbach, J., Ed.; Kluwer Academic Publisher: Dordrecht, The Netherlands, 2001; pp. 621–644. [Google Scholar]
- Gotoh, T.; Sugasawa, J.; Noda, H.; Kitashima, Y. Wolbachia-induced cytoplasmic incompatibility in Japanese populations of Tetranychus urticae (Acari: Tetranychidae). Exp. Appl. Acarol. 2007, 42, 1–16. [Google Scholar] [CrossRef]
- O’Neill, S.L.; Giordano, R.; Colbert, A.M.; Karr, T.L.; Robertson, H.M. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc. Natl. Acad. Sci. USA 1992, 89, 2699–2702. [Google Scholar] [CrossRef] [Green Version]
- Devescovi, F.; Conte-Junior, C.; Augustinos, A.; Martinez, E.I.C.; Segura, D.F.; Caceres, C.; Lanzavecchia, S.; Bourtzis, K. Symbionts do not affect the mating incompatibility between the Brazilian-1 and Peruvian morphotypes of the Anastrepha fraterculus cryptic species complex. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Perlman, S.J.; Kelly, S.E.; Zchori-Fein, E.; Hunter, M.S. Cytoplasmic incompatibility and multiple symbiont infection in the ash whitefly parasitoid Encarsia inaron. Biol. Control 2006, 39, 474–480. [Google Scholar] [CrossRef]
- Engelstädter, J.; Hurst, G.D.D. The Impact of Male-Killing Bacteria on Host Evolutionary Processes. Genetics 2007, 175, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Raychoudhury, R.; Grillenberger, B.K.; Gadau, J.; Bijlsma, R.; van de Zande, L.; Werren, J.H.; Beuke-boom, L.W. Phylogeography of Nasonia vitripenni (Hymenoptera) indicates amitochondrial-Wolbachia sweep in North America. Heredity 2010, 104, 318–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.F.; Magnarelli, L.A. Biology of Ticks. Infect. Dis. Clin. N. Am. 2008, 22, 195–215. [Google Scholar] [CrossRef]
- Estrada-Peña, A. Ticks as vectors: Taxonomy, biology and ecology. Revue Scientifique et Technique. de l’OIE 2015, 34, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, L. Altitudinal patterns of tick and host abundance: A potential role for climate change in regulating tick-borne diseases? Oecologia 2009, 162, 217–225. [Google Scholar] [CrossRef]
- Semenza, J.C.; Suk, J.E. Vector-borne diseases and climate change: A European perspective. FEMS Microbiol. Lett. 2018, 365, 244. [Google Scholar] [CrossRef] [PubMed]
- Madison-Antenucci, S.; Kramer, L.D.; Gebhardt, L.L.; Kauffman, E. Emerging Tick-Borne Diseases. Clin. Microbiol. Rev. 2020, 33. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Salman, M. Current limitations in the control and spread of ticks that affect livestock: A review. Agriculture 2013, 3, 221–235. [Google Scholar] [CrossRef] [Green Version]
- Padula, A.M.; Leister, E.M.; Webster, R.A. Tick paralysis in dogs and cats in Australia: Treatment and prevention deliverables from 100 years of research. Aust. Vet. J. 2019, 98, 53–59. [Google Scholar] [CrossRef]
- Simon, L.V.; West, B.; McKinney, W.P. Tick Paralysis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Nunen, A.S. Tick-induced allergies: Mammalian meat allergy and tick anaphylaxis. Med. J. Aust. 2018, 208, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.K.; Charles, R. Ticks of Trinidad and Tobago—An Overview, 1st ed.; Academic Press: London, UK, 2017. [Google Scholar]
- Rochlin, I.; Toledo, A. Emerging tick-borne pathogens of public health importance: A mini-review. J. Med. Microbiol. 2020, 69, 781–791. [Google Scholar] [CrossRef]
- Magdas, C.; Magdas, V.A.; Mihalca, A.D.; Baciu, H.; Gherman, C.M.; Ştefănuţ, C.L.; Lefkaditis, M.; Cozma, V. Laboratory development of Dermacentor marginatus ticks (Acari: Ixodidae) at two temperatures. Exp. Appl. Acarol. 2015, 67, 309–315. [Google Scholar] [CrossRef]
- Rodriguez-Vivas, R.I.; Jonsson, N.N.; Bhushan, C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitol. Res. 2018, 117, 3–29. [Google Scholar] [CrossRef] [Green Version]
- Stone, B.; Meyers, R. Dieldrin-resistant cattle ticks, Boophilus microplus (Canestrini) in Queensland. Aust. J. Agric. Res. 1957, 8, 312–317. [Google Scholar] [CrossRef]
- Abbas, R.Z.; Zaman, M.A.; Colwell, D.D.; Gilleard, J.; Iqbal, Z. Acaricide resistance in cattle ticks and approaches to its management: The state of play. Vet. Parasitol. 2014, 203, 6–20. [Google Scholar] [CrossRef]
- Klafke, G.M.; Webster, A.; Angol, B.D.; Pradel, E.; Silva, J.; de la Canal, L.H.; Becker, M.; Osório, M.F.; Mansson, M.; Barreto, R.; et al. Multiple resistance to acaricides in field populations of Rhipicephalus microplus from Rio Grande do Sul state, Southern Brazil. Ticks Tick-Borne Dis. 2017, 8, 73–80. [Google Scholar] [CrossRef]
- Godara, R.; Katoch, R.; Rafiqi, S.I.; Yadav, A.; Nazim, K.; Sharma, R.; Singh, N.K.; Katoch, M. Synthetic pyrethroid resistance in Rhipicephalus (Boophilus) microplus ticks from north-western Himalayas, India. Trop. Anim. Health Prod. 2019, 51, 1203–1208. [Google Scholar] [CrossRef]
- Sungirai, M.; Baron, S.; Moyo, D.Z.; De Clercq, P.; Maritz-Olivier, C.; Madder, M. Genotyping acaricide resistance profiles of Rhipicephalus microplus tick populations from communal land areas of Zimbabwe. Ticks Tick-Borne Dis. 2018, 9, 2–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagar, S.V.; Saini, K.; Sharma, A.K.; Kumar, S.; Kumar, R.; Fular, A.; Shakya, M.; Upadhaya, D.; Nagar, G.; Shanmuganath, C.; et al. Acaricide resistance in Rhipicephalus microplus collected from selected districts of Madhya Pradesh, Uttar Pradesh and Punjab states of India. Trop. Anim. Health Prod. 2019, 52, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Higa, L.D.O.S.; Piña, F.T.B.; Rodrigues, V.D.S.; Garcia, M.V.; Salas, D.R.; Miller, R.J.; de Leon, A.P.; Barros, J.C.; Andreotti, R. Evidence of acaricide resistance in different life stages of Amblyomma mixtum and Rhipicephalus microplus (Acari: Ixodidae) collected from the same farm in the state of Veracruz, Mexico. Prev. Vet. Med. 2020, 174, 104837. [Google Scholar] [CrossRef]
- Li, A.Y.; Davey, R.B.; Miller, R.J.; George, J.E. Detection and Characterization of Amitraz Resistance in the Southern Cattle Tick, Boophilus microplus (Acari: Ixodidae). J. Med Entomol. 2004, 41, 193–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, R.J.; Almazán, C.; Ortíz-Estrada, M.; Davey, R.B.; George, J.E.; De León, A.P. First report of fipronil resistance in Rhipicephalus (Boophilus) microplus of Mexico. Vet. Parasitol. 2013, 191, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Shakya, M.; Kumar, S.; Fular, A.; Upadhaya, D.; Sharma, A.K.; Bisht, N.; Nandi, A.; Ghosh, S. Emergence of fipronil resistant Rhipicephalus microplus populations in Indian states. Exp. Appl. Acarol. 2020, 80, 591–602. [Google Scholar] [CrossRef]
- Torrents, J.; Morel, N.; Rossner, M.V.; Martínez, N.C.; Toffaletti, J.R.; Nava, S. In vitro diagnosis of resistance of the cattle tick Rhipicephalus (Boophilus) microplus to fipronil in Argentina. Exp. Appl. Acarol. 2020, 82, 397–403. [Google Scholar] [CrossRef]
- Rodríguez-Vivas, R.I.; Pérez-Cogollo, L.C.; Rosado-Aguilar, J.A.; Ojeda-Chi, M.M.; Trinidad-Martinez, I.; Miller, R.J.; Li, A.Y.; De León, A.P.; Guerrero, F.; Klafke, G. Rhipicephalus (Boophilus) microplus resistant to acaricides and ivermectin in cattle farms of Mexico. Revista Brasileira de Parasitologia Veterinária 2014, 23, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Salas, A.; Rodríguez-Vivas, R.; Alonso-Díaz, M.; Basurto-Camberos, H. Ivermectin resistance status and factors associated in Rhipicephalus microplus (Acari: Ixodidae) populations from Veracruz, Mexico. Vet. Parasitol. 2012, 190, 210–215. [Google Scholar] [CrossRef]
- Rodríguez-Hidalgo, R.; Pérez-Otáñez, X.; Garcés-Carrera, S.; Vanwambeke, S.O.; Madder, M.; Benítez-Ortiz, W. The current status of resistance to alpha-cypermethrin, ivermectin, and amitraz of the cattle tick (Rhipicephalus microplus) in Ecuador. PLoS ONE 2017, 12, e0174652. [Google Scholar] [CrossRef]
- Vilela, V.L.R.; Feitosa, T.F.; Bezerra, R.A.; Klafke, G.M.; Riet-Correa, F. Multiple acaricide-resistant Rhipicephalus microplus in the semi-arid region of Paraíba State, Brazil. Ticks Tick-Borne Dis. 2020, 11, 101413. [Google Scholar] [CrossRef]
- Dantas-Torres, F. The brown dog tick, Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae): From taxonomy to control. Vet. Parasitol. 2008, 152, 173–185. [Google Scholar] [CrossRef]
- Demma, L.J.; Traeger, M.S.; Nicholson, W.L.; Paddock, C.D.; Blau, D.M.; Eremeeva, M.E.; Dasch, G.A.; Levin, M.L.; Singleton, J., Jr.; Zaki, S.R.; et al. Rocky Mountain spotted fever from an unexpected tick vector in Arizona. N. Engl. J. Med. 2005, 353, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Eiden, A.L.; Kaufman, P.E.; Oi, F.M.; Allan, S.A.; Miller, R.J. Detection of Permethrin Resistance and Fipronil Tolerance in Rhipicephalus sanguineus (Acari: Ixodidae) in the United States. J. Med. Entomol. 2015, 52, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Vivas, R.I.; Ojeda-Chi, M.M.; Trinidad-Martinez, I.; Bolio-González, M.E. First report of amitraz and cypermethrin resistance in Rhipicephalus sanguineus sensu latoinfesting dogs in Mexico. Med. Vet. Entomol. 2016, 31, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.; Webster, A.; Doyle, R.L.; Martins, J.R.; Reck, J.; Klafke, G.M. Resistance to deltamethrin, fipronil and ivermectin in the brown dog tick, Rhipicephalus sanguineus sensu stricto, Latreille (Acari: Ixodidae). Ticks Tick-Borne Dis. 2019, 10, 1046–1050. [Google Scholar] [CrossRef]
- Tucker, N.S.G.; Weeks, E.N.I.; Beati, L.; Kaufman, P.E. Prevalence and distribution of pathogen infection and permethrin resistance in tropical and temperate populations of Rhipicephalus sanguineus s.l. collected worldwide. Med. Vet. Entomol. 2020, 35, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Rosario-Cruz, R.; Almazan, C.; Miller, R.J.; Dominguez-Garcia, D.I.; Hernandez-Ortiz, R.; de la Fuente, J. Genetic basis and impact of tick acaricide resistance. Front. Biosci. 2009, 14, 2657–2665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eiden, A.L.; Kaufman, P.E.; Oi, F.M.; Dark, M.J.; Bloomquist, J.R.; Miller, R.J. Determination of metabolic resistance mechanisms in pyrethroid-resistant and fipronil-tolerant brown dog ticks. Med. Vet. Entomol. 2017, 31, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Nagar, G.; Sharma, A.K.; Kumar, S.; Saravanan, B.C.; Kumar, R.; Gupta, S.; Kumar, S.; Ghosh, S. Molecular mechanism of synthetic pyrethroid and organophosphate resistance in field isolates of Rhipicephalus microplus tick collected from a northern state of India. Exp. Appl. Acarol. 2018, 75, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R. Molecular markers and their application in the monitoring of acaricide resistance in Rhipicephalus microplus. Exp. Appl. Acarol. 2019, 78, 149–172. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sharma, A.K.; Ghosh, S. Menace of acaricide resistance in cattle tick, Rhipicephalus microplus in India: Status and possible mitigation strategies. Vet. Parasitol. 2020, 278, 108993. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, F.D.; Lovis, L.; Martins, J.R. Acaricide resistance mechanisms in Rhipicephalus (Boophilus) microplus. Revista Brasileira de Parasitologia Veterinária 2012, 21, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Cherepanova, N.P. Fungi which are met on ticks. Botanicnyi Zhurnal Kiev 1964, 49, 696–699. [Google Scholar]
- Samsináková, A.; Kálalová, S.; Daniel, M.; Dusbábek, F.; Honzáková, E.; Cerný, V. Entomogenous fungi associated with the tick Ixodes ricinus (L.). Folia Parasitol. 1974, 21, 39–48. [Google Scholar]
- Kalsbeek, V.; Frandsen, F.; Steenberg, T. Entomopathogenic fungi associated with Ixodes ricinus ticks. Exp. Appl. Acarol. 1995, 19, 45–51. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; González, J.; Casasolas, A. The activity of Aspergillus ochraceus (fungi) on replete females of Rhipicephalus sanguineus (Acari: Ixodidae) in natural and experimental conditions. Folia Parasitol. 1990, 37, 331–336. [Google Scholar]
- Casasolas-Oliver, A.; Estrada-Pena, A.; Gonzalez-Cabo, J. Activity of Rhizopus thailandensis, Rhizopus arrhizus and Curvularia lunata on reproductive efficacy of Rhipicephalus sanguineus (Ixodidae). In Modern Acaralogy; Dusbadek, E., Bukva, V., Eds.; Academia Prague and SPB Academic Publishing BV: Prague, Czech Republic, 1991; pp. 633–637. [Google Scholar]
- Bonnet, S.I.; Blisnick, T.; Al Khoury, C.; Guillot, J. Of fungi and ticks: Morphological and molecular characterization of fungal contaminants of a laboratory-reared Ixodes ricinus colony. Ticks Tick-Borne Dis. 2021, 12, 101732. [Google Scholar] [CrossRef]
- Gindin, G.; Samish, M.; Zangi, G.; Mishoutchenko, A.; Glazer, I. The Susceptibility of Different Species and Stages of Ticks to Entomopathogenic Fungi. Exp. Appl. Acarol. 2002, 28, 283–288. [Google Scholar] [CrossRef]
- Fernandes, É.K.; Bittencourt, V.R.; Roberts, D.W. Perspectives on the potential of entomopathogenic fungi in biological control of ticks. Exp. Parasitol. 2012, 130, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Samish, M.; Gindin, G.; Alekseev, E.; Glazer, I. Pathogenicity of entomopathogenic fungi to different develop-mental stages of Rhipicephalus sanguineus (Acari: Ixodidae). J. Parasitol. 2001, 87, 1355–1359. [Google Scholar] [CrossRef]
- Cafarchia, C.; Immediato, D.; Iatta, R.; Ramos, R.A.N.; Lia, R.P.; Porretta, D.; Figueredo, L.A.; Dantas-Torres, F.; Otranto, D. Native strains of Beauveria bassiana for the control of Rhipicephalus sanguineus sensu lato. Parasites Vectors 2015, 8, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkland, B.H.; Westwood, G.S.; Keyhani, N.O. Pathogenicity of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae to Ixodidae species Dermacentor variabilis, Rhipicephalus sanguineus, and Ixodes scapularis. J. Med. Entomol. 2004, 41, 705–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bharadwaj, A.; Stafford, K.C., 3rd. Susceptibility of Ixodes scapularis (Acari: Ixodidae) to Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) using three exposure assays in the laboratory. J. Econ. Entomol. 2012, 105, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, É.K.K.; Bittencourt, V.R.E.P. Entomopathogenic fungi against South American tick species. Exp. Appl. Acarol. 2008, 46, 71–93. [Google Scholar] [CrossRef]
- Wassermann, M.; Selzer, P.; Steidle, J.L.; Mackenstedt, U. Biological control of Ixodes ricinus larvae and nymphs with Metarhizium anisopliae blastospores. Ticks Tick-Borne Dis. 2016, 7, 768–771. [Google Scholar] [CrossRef]
- Pedrini, N.; Crespo, R.; Juárez, M.P. Biochemistry of insect epicuticle degradation by entomopathogenic fungi. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2007, 146, 124–137. [Google Scholar] [CrossRef]
- Ment, D.; Gindin, G.; Soroker, V.; Glazer, I.; Rot, A.; Samish, M. Metarhizium anisopliae conidial responses to lipids from tick cuticle and tick mammalian host surface. J. Invertebr. Pathol. 2010, 103, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, W.O.B.; Santi, L.; Schrank, A.; Vainstein, M.H. Metarhizium anisopliae lipolytic activity plays a pivotal role in Rhipicephalus (Boophilus) microplus infection. Fungal Biol. 2010, 114, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Angelo, I.C.; Gôlo, P.S.; Camargo, M.G.; Kluck, G.E.G.; Folly, E.; Bittencourt, V.R.E.P. Haemolymph Protein and Lipid Profile of Rhipicephalus (Boophilus) microplus Infected by Fungi. Transbound. Emerg. Dis. 2010, 57, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Angelo, I.C.; Gôlo, P.S.; Perinotto, W.M.S.; Camargo, M.G.; Quinelato, S.; Sá, F.A.; Pontes, E.G.; Bittencourt, V.R.E.P. Neutral lipid composition changes in the fat bodies of engorged females Rhipicephalus microplus ticks in response to fungal infections. Parasitol. Res. 2013, 112, 501–509. [Google Scholar] [CrossRef]
- Leemon, D.; Jonsson, N. Laboratory studies on Australian isolates of Metarhizium anisopliae as a biopesticide for the cattle tick Boophilus microplus. J. Invertebr. Pathol. 2008, 97, 40–49. [Google Scholar] [CrossRef]
- De Paulo, J.F.; Camargo, M.G.; Coutinho-Rodrigues, C.J.B.; Marciano, A.F.; De Freitas, M.C.; Da Silva, E.M.; Gôlo, P.S.; Morena, D.D.S.; Angelo, I.D.C.; Bittencourt, V.R.E.P. Rhipicephalus microplus infected by Metarhizium: Unveiling hemocyte quantification, GFP-fungi virulence, and ovary infection. Parasitol. Res. 2018, 117, 1847–1856. [Google Scholar] [CrossRef]
- Fiorotti, J.; Menna-Barreto, R.F.S.; Gôlo, P.S.; Coutinho-Rodrigues, C.J.B.; Bitencourt, R.O.B.; Spadacci-Morena, D.D.; Angelo, I.D.C.; Bittencourt, V.R.E.P. Ultrastructural and Cytotoxic Effects of Metarhizium robertsii Infection on Rhipicephalus microplus Hemocytes. Front. Physiol. 2019, 10, 654. [Google Scholar] [CrossRef]
- Da Silva, W.O.B.; Rosa, R.L.; Berger, M.; Coutinho-Rodrigues, C.J.; Vainstein, M.H.; Schrank, A.; Bittencourt, V.R.P.; Santi, L. Updating the application of Metarhizium anisopliae to control cattle tick Rhipicephalus microplus (Acari: Ixodidae). Exp. Parasitol. 2020, 208, 107812. [Google Scholar] [CrossRef]
- Salas, A.F.; Alonso-Díaz, M.A.; Alonso-Morales, R.A.; Lezama-Gutiérrez, R.; Rodríguez-Rodríguez, J.C.; Cervantes-Chávez, J.A. Acaricidal activity of Metarhizium anisopliae isolated from paddocks in the Mexican tropics against two populations of the cattle tick Rhipicephalus microplus. Med. Vet. Entomol. 2016, 31, 36–43. [Google Scholar] [CrossRef]
- Leemon, D.; Turner, L.; Jonsson, N. Pen studies on the control of cattle tick (Rhipicephalus (Boophilus) microplus) with Metarhizium anisopliae (Sorokin). Vet. Parasitol. 2008, 156, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Frazzon, A.P.G.; Junior, I.D.S.V.; Masuda, A.; Schrank, A.; Vainstein, M.H. In vitro assessment of Metarhizium anisopliae isolates to control the cattle tick Boophilus microplus. Vet. Parasitol. 2000, 94, 117–125. [Google Scholar] [CrossRef]
- Bernardo, C.C.; Barreto, L.P.; Silva, C.D.S.E.; Luz, C.; Arruda, W.; Fernandes, É.K. Conidia and blastospores of Metarhizium spp. and Beauveria bassiana s.l.: Their development during the infection process and virulence against the tick Rhipicephalus microplus. Ticks Tick-Borne Dis. 2018, 9, 1334–1342. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, M.R.D.S.; Camargo, M.G.; Rodrigues, C.J.B.C.; Marciano, A.F.; Quinelato, S.; De Freitas, M.C.; Fiorotti, J.; De Sá, F.A.; Perinotto, W.M.D.S.; Bittencourt, V.R.E.P. In vitro efficacy of two commercial products of Metarhizium anisopliae s.l. for controlling the cattle tick Rhipicephalus microplus. Rev. Bras. Parasitol. Veterinária 2020, 29, e000220. [Google Scholar] [CrossRef]
- Marciano, A.F.; Golo, P.S.; Coutinho-Rodrigues, C.J.B.; Camargo, M.G.; Fiorotti, J.; Mesquita, E.; Corrêa, T.A.; Perinotto, W.M.S.; Bittencourt, V.R.E.P. Metarhizium anisopliae sensu lato (s.l.) oil-in-water emulsions drastically reduced Rhipicephalus microplus larvae outbreak population on artificially infested grass. Med. Vet. Entomol. 2020, 34, 488–492. [Google Scholar] [CrossRef]
- Marciano, A.F.; Mascarin, G.M.; Franco, R.F.F.; Golo, P.S.; Jaronski, S.T.; Fernandes, É.K.; Bittencourt, V.R.E.P. Innovative granular formulation of Metarhizium robertsii microsclerotia and blastospores for cattle tick control. Sci. Rep. 2021, 11, 4972. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.V.; Rodrigues, V.D.S.; Monteiro, A.C.; Simi, L.D.; Higa, L.D.O.S.; Martins, M.M.; Prette, N.; Mochi, D.A.; Andreotti, R.; Szabó, M.P.J. In vitro efficacy of Metarhizium anisopliae sensu lato against unfed Amblyomma parvum (Acari: Ixodidae). Exp. Appl. Acarol. 2018, 76, 507–512. [Google Scholar] [CrossRef] [Green Version]
- Ren, Q.; Chen, Z.; Luo, J.; Liu, G.; Guan, G.; Liu, Z.; Liu, A.; Li, Y.; Niu, Q.; Liu, J.; et al. Laboratory evaluation of Beauveria bassiana and Metarhizium anisopliae in the control of Haemaphysalis qinghaiensis in China. Exp. Appl. Acarol. 2016, 69, 233–238. [Google Scholar] [CrossRef]
- Sullivan, C.F.; Parker, B.L.; Davari, A.; Lee, M.R.; Kim, J.S.; Skinner, M. Evaluation of spray applications of Metarhizium anisopliae, Metarhizium brunneum and Beauveria bassiana against larval winter ticks, Dermacentor albipictus. Exp. Appl. Acarol. 2020, 82, 559–570. [Google Scholar] [CrossRef]
- Szczepańska, A.; Kiewra, D.; Plewa-Tutaj, K.; Dyczko, D.; Guz-Regner, K. Sensitivity of Ixodes ricinus (L., 1758) and Dermacentor reticulatus (Fabr., 1794) ticks to entomopathogenic fungi isolates: Preliminary study. Parasitol. Res. 2020, 119, 3857–3861. [Google Scholar] [CrossRef]
- Sun, M.; Ren, Q.; Guan, G.; Liu, Z.; Ma, M.; Gou, H.; Chen, Z.; Li, Y.; Liu, A.; Niu, Q.; et al. Virulence of Beauveria bassiana, Metarhizium anisopliae and Paecilomyces lilacinus to the engorged female Hyalomma anatolicum anatolicum tick (Acari: Ixodidae). Vet. Parasitol. 2011, 180, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.R.; Li, D.; Lee, S.J.; Kim, J.C.; Kim, S.; Park, S.E.; Baek, S.; Shin, T.Y.; Lee, D.-H.; Kim, J.S. Use of Metarhizum aniopliae s.l. to control soil-dwelling longhorned tick, Haemaphysalis longicornis. J. Invertebr. Pathol. 2019, 166, 107230. [Google Scholar] [CrossRef] [PubMed]
- Zhendong, H.; Guangfu, Y.; Zhong, Z.; Ruiling, Z. Phylogenetic relationships and effectiveness of four Beauveria bassiana sensu lato strains for control of Haemaphysalis longicornis (Acari: Ixodidae). Exp. Appl. Acarol. 2018, 77, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Behle, R.W.; Jackson, M.A.; Flor-Weiler, L.B. Efficacy of a Granular Formulation Containing Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) Microsclerotia Against Nymphs of Ixodes scapularis (Acari: Ixoididae). J. Econ. Entomol. 2013, 106, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Samish, M.; Rot, A.; Ment, D.; Barel, S.; Glazer, I.; Gindin, G. Efficacy of the entomopathogenic fungus Metarhizium brunneum in controlling the tick Rhipicephalus annulatus under field conditions. Vet. Parasitol. 2014, 206, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Campos, R.; Boldo, J.; Pimentel, I.; Dalfovo, V.; Arajo, W.; Azevedo, J.; Vainstein, M.; Barros, N. Endophytic and entomopathogenic strains of Beauveria sp to control the bovine tick Rhipicephalus (Boophilus) microplus. Genet. Mol. Res. 2010, 9, 1421–1430. [Google Scholar] [CrossRef]
- Rivera, A.P.T.; Cuadros, M.O.; Claros, B.P.; Ayola, S.C.P.; Romero, D.C.M. Efectividad de Beauveria bassiana (Baubassil®) sobre la garrapata común del ganado bovino Rhipicephalus microplus en el Departamento de la Guajira, Colombia. Rev. Argent. Microbiol. 2018, 50, 426–430. [Google Scholar] [CrossRef]
- Olmeda, A.S.; Pe´rez Sanchez, J.L.; Valcarcel, F.; Espada-Espada, N.; Garcıa- Rojo Lopez, B.; Cota-Guajardo, S.; Cutuli, M.T. Isolation of entomopathogenic fungi from Hyalomma lusitanicum tick, in Spain. In Proceedings of the Seventh Ticks and Tick-Borne Pathogens International Conference, Zaragoza, Spain, 28 August–2 September 2011. [Google Scholar]
- González, J.; Valcárcel, F.; Pérez-Sánchez, J.L.; Tercero-Jaime, J.M.; Cutuli, M.T.; Olmeda, A.S. Control of Hyalomma lusitanicum (Acari: Ixodidade) Ticks Infesting Oryctolagus cuniculus (Lagomorpha: Leporidae) Using the Entomopathogenic Fungus Beauveria bassiana (Hyocreales: Clavicipitaceae) in Field Conditions. J. Med Entomol. 2016, 53, 1396–1402. [Google Scholar] [CrossRef] [PubMed]
- Cradock, K.R.; Needham, G.R. Beauveria bassiana (Ascomycota: Hypocreales) as a management agent for free-living Amblyomma americanum (Acari: Ixodidae) in Ohio. Exp. Appl. Acarol. 2010, 53, 57–62. [Google Scholar] [CrossRef]
- Murigu, M.M.; Nana, P.; Waruiru, R.M.; Nga’Nga’, C.J.; Ekesi, S.; Maniania, N.K. Laboratory and field evaluation of entomopathogenic fungi for the control of amitraz-resistant and susceptible strains of Rhipicephalus decoloratus. Vet. Parasitol. 2016, 225, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Kaaya, G.P.; Hassan, S. Entomogenous Fungi as Promising Biopesticides for Tick Control. Exp. Appl. Acarol. 2000, 24, 913–926. [Google Scholar] [CrossRef]
- Kaaya, G.P.; Mwangi, E.N.; Ouna, E.A. Prospects for Biological Control of Livestock Ticks, Rhipicephalus appendiculatus and Amblyomma variegatum, Using the Entomogenous Fungi Beauveria bassiana and Metarhizium Anisopliae. J. Invertebr. Pathol. 1996, 67, 15–20. [Google Scholar] [CrossRef]
- Maranga, R.O.; Kaaya, G.P.; Mueke, J.M.; Hassanali, A. Effects of combining the fungi Beauveria bassiana and Metarhiziumanisopliae on the mortality of the tick Amblyomma variegatum (ixodidae) in relation to seasonal changes. Mycopathologia 2005, 159, 527–532. [Google Scholar] [CrossRef]
- Weeks, E.N.I.; Allan, S.A.; Gezan, S.A.; Kaufman, P.E. Auto-dissemination of commercially available fungal pathogens in a laboratory assay for management of the brown dog tick Rhipicephalus sanguineus. Med. Vet. Entomol. 2020, 34, 184–191. [Google Scholar] [CrossRef]
- Bittencourt, V.R.E.P.; Peralva, S.L.F.S.; Viegas, E.C.; Alves, S.B. Avaliação do sefeitos do contato de Beauveria bassiana (Bals.) Vuill. como vose larvas de Boophilus microplus (Canestrini, 1887) (Acari:Ixodidae). Rev. Brasiliana Parasitol. Vetinaria 1996, 5, 81–84. [Google Scholar]
- Fernandes, E.K.K.; da Costa, G.L.; de Souza, E.J.; de Moraes, A.M.; Bittencourt, V.R.E.P. Beauveria bassiana isolated from engorged females and tested against eggs and larvae of Boophilus microplus. J. Basic Microbiol. 2003, 43, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, E.K.K.; Costa, G.L.; Moraes, Á.M.L.; Zahner, V.; Bittencourt, V.R.E.P. Study on morphology, pathogenicity, and genetic variability of Beauveria bassiana isolates obtained from Boophilus microplus tick. Parasitol. Res. 2005, 98, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Perinotto, W.; Angelo, I.; Golo, P.; Quinelato, S.; Camargo, M.; Sá, F.; Bittencourt, V. Susceptibility of different populations of ticks to entomopathogenic fungi. Exp. Parasitol. 2012, 130, 257–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, A.; Pradel, E.; Souza, U.A.; Martins, J.R.; Reck, J.; Schrank, A.; Klafke, G. Does the effect of a Metarhizium anisopliae isolate on Rhipicephalus microplus depend on the tick population evaluated? Ticks Tick-Borne Dis. 2017, 8, 270–274. [Google Scholar] [CrossRef]
- Fernández-Salas, A.; Alonso-Díaz, M.A.; Alonso-Morales, R.A. Effect of entomopathogenic native fungi from paddock soils against Rhipicephalus microplus larvae with different toxicological behaviors to acaricides. Exp. Parasitol. 2019, 204, 107729. [Google Scholar] [CrossRef]
- Polar, P.; Moore, D.; Kairo, M.T.K.; Ramsubhag, A. Topically applied myco-acaricides for the control of cattle ticks: Overcoming the challenges. Exp. Appl. Acarol. 2008, 46, 119–148. [Google Scholar] [CrossRef]
- Angelo, I.C.; Fernandes, É.K.; Bahiense, T.C.; Perinotto, W.M.S.; Golo, P.S.; Moraes, A.P.R.; Bittencourt, V.R.E.P. Virulence of Isaria sp. and Purpureocillium lilacinum to Rhipicephalus microplus tick under laboratory conditions. Parasitol. Res. 2012, 111, 1473–1480. [Google Scholar] [CrossRef]
- Yoder, J.A.; Hanson, P.E.; Zettler, L.W.; Benoit, J.B.; Ghisays, F.; Piskin, K.A. Internal and External Mycoflora of the American Dog Tick, Dermacentor variabilis (Acari: Ixodidae), and Its Ecological Implications. Appl. Environ. Microbiol. 2003, 69, 4994–4996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrucci, S.; Zini, A.; Donadio, E.; Mancianti, F.; Fichi, G. Isolation of Scopulariopsis spp. fungi from Psoroptes cuniculi body surface and evaluation of their entomopathogenic role. Parasitol. Res. 2008, 102, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Xie, W.; Zhang, J.; Hu, Q. Biodiversity of Entomopathogenic Fungi in the Soils of South China. Microorganisms 2019, 7, 311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoder, J.A.; Benoit, J.B.; Denlinger, D.L.; Tank, J.L.; Zettler, L.W. An endosymbiotic conidial fungus, Scopulariopsis brevicaulis, protects the American dog tick, Dermacentor variabilis, from desiccation imposed by an entomopathogenic fungus. J. Invertebr. Pathol. 2008, 97, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Yoder, J.A.; Rodell, B.M.; Klever, L.A.; Dobrotka, C.J.; Pekins, P.J. Vertical transmission of the entomopathogenic soil fungus Scopulariopsis brevicaulis as a contaminant of eggs in the winter tick, Dermacentor albipictus, collected from calf moose (New Hampshire, USA). Mycologia 2019, 10, 174–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenz, S.-C.; Humbert, P.; Patel, A.V. Chitin increases drying survival of encapsulated Metarhizium pemphigi blastospores for Ixodes ricinus control. Ticks Tick-Borne Dis. 2020, 11, 101537. [Google Scholar] [CrossRef]
- Ángel-Sahagún, C.A.; Lezama-Gutiérrez, R.; Molina-Ochoa, J.; Pescador-Rubio, A.; Skoda, S.R.; Cruz-Vázquez, C.; Lorenzoni, A.G.; Galindo-Velasco, E.; Fragoso-Sánchez, H.; Foster, J.E. Virulence of Mexican isolates of entomopathogenic fungi (Hypocreales: Clavicipitaceae) upon Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) larvae and the efficacy of conidia formulations to reduce larval tick density under field conditions. Vet. Parasitol. 2010, 170, 278–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, G.; Wang, Z.; Yin, Y.; Zeng, D.; Xia, Y. Field trials of Metarhizium anisopliae var. acridum (Ascomycota: Hypocreales) against oriental migratory locusts, Locusta migratoria manilensis (Meyen) in Northern China. Crop. Prot. 2008, 27, 1244–1250. [Google Scholar] [CrossRef]
- Bahiense, T.C.; Fernandes, É.K.; Bittencourt, V.R.E.P. Compatibility of the fungus Metarhizium anisopliae and deltamethrin to control a resistant strain of Boophilus microplus tick. Vet. Parasitol. 2006, 141, 319–324. [Google Scholar] [CrossRef]
- Bahiense, T.C.; Fernandes, É.K.; Angelo, I.D.C.; Perinotto, W.M.S.; Bittencourt, V.R.E.P. Performance of Metarhizium anisopliae and Its Combination with Deltamethrin against a Pyrethroid-Resistant Strain of Boophilus microplus in a Stall Test. Ann. N. Y. Acad. Sci. 2008, 1149, 242–245. [Google Scholar] [CrossRef]
- Webster, A.; Reck, J.; Santi, L.; Souza, U.A.; Dall’Agnol, B.; Klafke, G.M.; Beys-Da-Silva, W.O.; Martins, J.R.; Schrank, A. Integrated control of an acaricide-resistant strain of the cattle tick Rhipicephalus microplus by applying Metarhizium anisopliae associated with cypermethrin and chlorpyriphos under field conditions. Vet. Parasitol. 2015, 207, 302–308. [Google Scholar] [CrossRef]
- Williams, S.C.; Stafford, K.C.; Molaei, G.; Linske, M.A. Integrated Control of Nymphal Ixodes scapularis: Effectiveness of White-Tailed Deer Reduction, the Entomopathogenic Fungus Metarhizium anisopliae, and Fipronil-Based Rodent Bait Boxes. Vector-Borne Zoonotic Dis. 2018, 18, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Little, E.A.H.; Williams, S.C.; StaffordIII, K.C.; Linske, M.A.; Molaei, G. Evaluating the effectiveness of an integrated tick management approach on multiple pathogen infection in Ixodes scapularis questing nymphs and larvae parasitizing white-footed mice. Exp. Appl. Acarol. 2020, 80, 127–136. [Google Scholar] [CrossRef]
- Prado-Rebolledo, O.F.; Lezama-Gutiérrez, R.; García-Márquez, L.J.; Morales-Barrera, E.; Tellez, G.; Hargis, B.; Molina-Ochoa, J.; Minchaca-Llerenas, Y.B.; Skoda, S.R.; Foster, J.E. Effect of Metarhizium anisopliae (Ascomycete), Cypermethrin, and D-Limonene, Alone and Combined, on Larval Mortality of Rhipicephalus sanguineus (Acari: Ixodidae). J. Med. Entomol. 2017, 54, 1323–1327. [Google Scholar] [CrossRef] [Green Version]
- Nardoni, S.; Ebani, V.V.; D’Ascenzi, C.; Pistelli, L.; Mancianti, F. Sensitivity of Entomopathogenic Fungi and Bacteria to Plants Secondary Metabolites, for an Alternative Control of Rhipicephalus (Boophilus) microplus in Cattle. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Schulze, T.L.; Jordan, R.A. Synthetic Pyrethroid, Natural Product, and Entomopathogenic Fungal Acaricide Product Formulations for Sustained Early Season Suppression of Host-Seeking Ixodes scapularis (Acari: Ixodidae) and Amblyomma americanum Nymphs. J. Med. Entomol. 2021, 58, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Samish, M.; Alekseev, E.; Glazer, I. Biocontrol of ticks by entomopathogenic nematodes. Research update. Ann. N. Y. Acad. Sci. 2006, 916, 589–594. [Google Scholar] [CrossRef]
- Bolaños, T.A.; Ruiz-Vega, J.; Hernández, Y.D.O.; Castañeda, J.C.J. Survival of Entomopathogenic Nematodes in Oil Emulsions and Control Effectiveness on Adult Engorged Ticks (Acari: Ixodida). J. Nematol. 2019, 51, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pavela, R.; Canale, A.; Mehlhorn, H.; Benelli, G. Application of ethnobotanical repellents and acaricides in prevention, control and management of livestock ticks: A review. Res. Vet. Sci. 2016, 109, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Banumathi, B.; Vaseeharan, B.; Rajasekar, P.; Prabhu, N.M.; Ramasamy, P.; Murugan, K.; Canale, A.; Benelli, G. Exploitation of chemical, herbal and nanoformulated acaricides to control the cattle tick, Rhipicephalus (Boophilus) microplus—A review. Vet. Parasitol. 2017, 244, 102–110. [Google Scholar] [CrossRef]
- Nwanade, C.F.; Wang, M.; Wang, T.; Yu, Z.; Liu, J. Botanical acaricides and repellents in tick control: Current status and future directions. Exp. Appl. Acarol. 2020, 81, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Ndawula, J.C.; Tabor, A.E. Cocktail Anti-Tick Vaccines: The Unforeseen Constraints and Approaches towards Enhanced Efficacies. Vaccines 2020, 8, 457. [Google Scholar] [CrossRef]
- Almazan, C. Immunological control of ticks and tick-borne diseases that impact cattle health and production. Front. Biosci. 2018, 23, 1535–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verissimo, C.J. Natural enemies of the cattle tick. Agropecu. Catarin. 1995, 8, 35–37. [Google Scholar]
- Bittencourt, V.R.E.P.; Massard, C.L.; De Lima, A.F. Action of the fungus Metarhizium anisopliae on eggs and larvae of the tick Boophilus microplus. Rev. Univ. Rural Ser. Cienc. Vida 1994, 16, 41–47. [Google Scholar]
- Bittencourt, V.R.E.P.; Massard, C.L.; De Lima, A.F. Action of the fungus Metarhizium anisopliae on the freeliving phase of the life cycle of Boophilus microplus. Rev. Univ. Rural Ser. Cienc. Vida 1994, 16, 49–55. (In Portuguese) [Google Scholar]
- Correia, A.C.B.; Fiorin, A.C.; Monteiro, A.C.; Verissimo, C.J. Effects of Metarhizium anisopliae on the tick Boophilus microplus (Acari: Ixodidae) in stabled cattle. J. Invert. Pathol. 1998, 71, 189–191. [Google Scholar] [CrossRef]
- Lipa, J.J. Microbial control of mites and ticks. In Microbial Control of Insects and Mites; Burges, H.D., Hussey, N.W., Eds.; Academic Press: London, UK, 1971; pp. 357–373. [Google Scholar]
- Balazy, S.; Wisniewski, J.; Kaczmarek, S. Some noteworthy fungi occurring on mites. Bull. Polish Acad. Sci. Biol. Sci. 1987, 35, 199–224. [Google Scholar]
- Zhioua, E.; Browning, M.; Johnson, P.W.; Ginsberg, H.S.; Lebrun, R.A. Pathogenicity of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycetes) to Ixodes scapularis (Acari: Ixodidae). J. Parasitol. 1997, 83, 815. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, E.N.; Kaaya, G.P.; Essuman, S. Experimental infections of the tick Rhipicephalus appendiculatus with entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, and natural infections of some ticks with bacteria and fungi. J. Afr. Zool. 1995, 109, 151–160. [Google Scholar]
- Lombardini, G. Biological and anatomical observations on Rhipicephalus sanguineus. Latr. Redia 1950, 35, 173–183. [Google Scholar]
- Fernández-Ruvalcaba, M.; Peña-Chora, G.; Romo-Martínez, A.; Hernández-Velázquez, V.; De Parra, A.B.; De La Rosa, D.P. Evaluation of Bacillus thuringiensis Pathogenicity for a Strain of the Tick, Rhipicephalus microplus, Resistant to Chemical Pesticides. J. Insect Sci. 2010, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bravo, A.; Gill, S.S.; Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 2007, 49, 423–435. [Google Scholar] [CrossRef] [Green Version]
- Hassanain, M.A.; El Garhy, F.M.; Abdel-Ghaffar, A.F.; El-Sharaby, A.; Abdel Megeed, N.K. Biological control studies of soft and hard ticks in Egypt. I. The effect of Bacillus thuringiensis varieties on soft and hard ticks (Ixodidade). Parasitol. Res. 1997, 83, 209–213. [Google Scholar] [CrossRef]
- Zhioua, E.; Heyer, K.; Browning, M.; Ginsberg, H.S.; Lebrun, R.A. Pathogenicity of Bacillus thuringiensis Variety kurstaki to Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 1999, 36, 900–902. [Google Scholar] [CrossRef]
- Szczepańska, A.; Kiewra, D.; Guz-Regner, K. Sensitivity of Ixodes ricinus (L., 1758) and Dermacentor reticultaus (Fabr., 1794) ticks to Bacillus thuringiensis isolates: Preliminary results. Parasitol. Res. 2018, 117, 3897–3902. [Google Scholar] [CrossRef] [PubMed]
- Habeeb, S.M.; El-Hag, H.A.A. Ultrastructural changes in hemocyte cells of hard tick (Hyalomma dromedarii: Ixodidae): A model of Bacillus thuringiensis var. thuringiensis H14 d-endotoxin mode of action. Am. Eurasian J. Agric. Environ. Sci. 2008, 3, 829–836. [Google Scholar]
- René-Martellet, M.; Minard, G.; Massot, R.; Van, V.T.; Moro, C.V.; Chabanne, L.; Mavingui, P. Bacterial microbiota associated with Rhipicephalus sanguineus (s.l.) ticks from France, Senegal and Arizona. Parasites Vectors 2017, 10, 1–10. [Google Scholar] [CrossRef]
- Brown, R.S.; Reichelderfer, C.; Anderson, W.R. An endemic disease among laboratory populations of Dermacentor andersoni (= D. venustus) (acarina: Ixodidae). J. Invertebr. Pathol. 1970, 16, 142–143. [Google Scholar] [CrossRef]
- Drzewiecka, D. Significance and Roles of Proteus spp. Bacteria in Natural Environments. Microb. Ecol. 2016, 72, 741–758. [Google Scholar] [CrossRef] [Green Version]
- Madhav, M.; Baker, D.; Morgan, J.A.; Asgari, S.; James, P. Wolbachia: A tool for livestock ectoparasite control. Vet. Parasitol. 2020, 288, 109297. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Montgomery, B.L.; Popovici, J.; Iturbeormaetxe, I.; Johnson, P.; Muzzi, F.; Greenfield, M.; Durkan, M.; Leong, Y.S.; Dong, Y.; et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nat. Cell Biol. 2011, 476, 454–457. [Google Scholar] [CrossRef] [PubMed]
- Mains, J.W.; Brelsfoard, C.L.; Rose, R.I.; Dobson, S.L. Female Adult Aedes albopictus Suppression by Wolbachia-Infected Male Mosquitoes. Sci. Rep. 2016, 6, srep33846. [Google Scholar] [CrossRef] [PubMed]
- Popovici, J.; A Moreira, L.; Poinsignon, A.; Iturbe-Ormaetxe, I.; McNaughton, D.; O’Neill, S.L. Assessing key safety concerns of a Wolbachia-based strategy to control dengue transmission by Aedes mosquitoes. Memórias Inst. Oswaldo Cruz 2010, 105, 957–964. [Google Scholar] [CrossRef] [Green Version]
- Starkey, L.A.; Newton, K.; Brunker, J.; Crowdis, K.; Edourad, E.J.P.; Meneus, P.; Little, S.E. Prevalence of vector-borne pathogens in dogs from Haiti. Vet. Parasitol. 2016, 224, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Huber, D.; Reil, I.; Duvnjak, S.; Jurković, D.; Lukačević, D.; Pilat, M.; Beck, A.; Mihaljević, Ž.; Vojta, L.; Polkinghorne, A.; et al. Molecular detection of Anaplasma platys, Anaplasma phagocytophilum and Wolbachia sp. but not Ehrlichia canis in Croatian dogs. Parasitol. Res. 2017, 116, 3019–3026. [Google Scholar] [CrossRef]
- Turba, M.E.; Zambon, E.; Zannoni, A.; Russo, S.; Gentilini, F. Detection of Wolbachia DNA in blood for diagnosing filaria-associated syndromes in cats. J. Clin. Microbiol. 2012, 50, 2624–2630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, L.; Chauve, C. Historical review of the genus Dermanyssus Dugès, 1834 (Acari: Mesostigmata: Dermanyssidae). Parasite 2007, 14, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Sparagano, O. A nonexhaustive overview on potential impacts of the poultry red mite (Dermanyssus gallinae) on poultry production systems. J. Anim. Sci. 2020, 98, S58–S62. [Google Scholar] [CrossRef]
- Maurer, V.; Bieri, M.; Fölsch, D.W. Das suchverhalten von Dermanyssus gallinae in Hühnerstllen. Arch Geflügelk 1988, 52, 209–215. [Google Scholar]
- Pritchard, J.; Kuster, T.; Sparagano, O.; Tomley, F. Understanding the biology and control of the poultry red mite Dermanyssus gallinae: A review. Avian Pathol. 2015, 44, 143–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decru, E.; Mul, M.; Nisbet, A.J.; Navarro, A.H.V.; Chiron, G.; Walton, J.; Norton, T.; Roy, L.; Sleeckx, N. Possibilities for IPM Strategies in European Laying Hen Farms for Improved Control of the Poultry Red Mite (Dermanyssus gallinae): Details and State of Affairs. Front. Vet. Sci. 2020, 7, 565866. [Google Scholar] [CrossRef] [PubMed]
- Nordenfors, H.; Hoglund, J.; Uggla, A. Effects of temperature and humidity on oviposition, molting, and longevity of Dermanyssus gallinae (Acari: Dermanyssidae). J. Med. Entomol. 1999, 36, 68–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilpinen, O.; Roepstorff, A.; Permin, A.; Norgaard-Nielsen, G.; Lawson, L.G.; Simonsen, H.B. Influence of Dermanyssus gallinae and Ascaridia galli infections on behaviour and health of laying hens (Gallus gallus domesticus). Br. Poult. Sci. 2005, 46, 26–34. [Google Scholar] [CrossRef]
- Sparagano, O.; George, D.; Harrington, D.; Giangaspero, A. Significance and Control of the Poultry Red Mite, Dermanyssus gallinae. Annu. Rev. Entomol. 2014, 59, 447–466. [Google Scholar] [CrossRef] [Green Version]
- George, D.R.; Finn, R.D.; Graham, K.M.; Mul, M.F.; Maurer, V.; Moro, C.V.; Sparagano, O.A. Should the poultry red mite Dermanyssus gallinae be of wider concern for veterinary and medical science? Parasites Vectors 2015, 8, 178. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.-I.; Do, Y.J.; Kim, E.; Yi, S.W.; Yoo, J.G. Prevalence of poultry red mite (Dermanyssus gallinae) in Korean layer farms and the presence of avian pathogens in the mite. Exp. Appl. Acarol. 2020, 81, 223–238. [Google Scholar] [CrossRef]
- Sparagano, O.A.E.; Ho, J. Parasitic Mite Fauna in Asian Poultry Farming Systems. Front. Vet. Sci. 2020, 7, 400. [Google Scholar] [CrossRef]
- George, D.; Finn, R.; Graham, K.; Mul, M.; Sparagano, O.A.E. Of mites and men: Preliminary evidence for in-creasing incidence of avian ectoparasitosis in humans and support of its potential threat to medical health. In Proceedings of the XVIIIth World Congress of the World Veterinary Poultry Association Nantes, Nantes, France, 19–23 August 2013; pp. 635–636. [Google Scholar]
- Maurer, V.; Perler, E.; Heckendorn, F. In vitro efficacies of oils, silicas and plant preparations against the poultry red mite Dermanyssus gallinae. Exp. Appl. Acarol. 2009, 48, 31–41. [Google Scholar] [CrossRef]
- Alves, L.F.A.; De Oliveira, D.G.P.; Pares, R.B.; Sparagano, O.; Godinho, R.P. Association of mechanical cleaning and a liquid preparation of diatomaceous earth in the management of poultry red mite, Dermanyssus gallinae (Mesostigmata: Dermanyssidae). Exp. Appl. Acarol. 2020, 81, 215–222. [Google Scholar] [CrossRef]
- Gay, M.; Lempereur, L.; Francis, F.; Megido, R.C. Control of Dermanyssus gallinae (De Geer 1778) and other mites with volatile organic compounds, a review. Parasitology 2020, 147, 731–739. [Google Scholar] [CrossRef]
- Zeman, P.; Železný, J. The susceptibility of the poultry red mite, Dermanyssus gallinae (De Geer, 1778), to some acaricides under laboratory conditions. Exp. Appl. Acarol. 1985, 1, 17–22. [Google Scholar] [CrossRef]
- Beugnet, F.; Chauve, C.; Gauthey, M.; Beert, L. Resistance of the red poultry mite to pyrethroids in France. Vet. Rec. 1997, 140, 577–579. [Google Scholar] [CrossRef] [PubMed]
- Marangi, M.; Cafiero, M.A.; Capelli, G.; Camarda, A.; Sparagano, O.E.A.; Giangaspero, A. Evaluation of poul-try red mite (Dermanyssus gallinae, Acarina: Dermanyssidae) susceptibility to some acaricides in a field population from Italy. Exp. Appl. Acarol. 2009, 48, 11–18. [Google Scholar] [CrossRef]
- Abbas, R.Z.; Colwell, D.D.; Iqbal, Z.; Khan, A. Acaricidal drug resistance in poultry red mite (Dermanyssus gallinae) and approaches to its management. World Poult. Sci. J. 2014, 70, 113–124. [Google Scholar] [CrossRef]
- Wang, C.; Xu, X.; Huang, Y.; Yu, H.; Li, H.; Wan, Q.; Li, H.; Wang, L.; Sun, Y.; Pan, B. Susceptibility of Dermanyssus gallinae from China to acaricides and functional analysis of glutathione S-transferases associated with beta-cypermethrin resistance. Pestic. Biochem. Physiol. 2021, 171, 104724. [Google Scholar] [CrossRef] [PubMed]
- Marangi, M.; Morelli, V.; Pati, S.; Camarda, A.; Cafiero, M.A.; Giangaspero, A. Acaricide Residues in Laying Hens Naturally Infested by Red Mite Dermanyssus gallinae. PLoS ONE 2012, 7, e31795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gokbulut, C.; Ozuicli, M.; Aslan, B.; Aydin, L.; Cirak, V.Y. The residue levels of spinosad and abamectin in eggs and tissues of laying hens following spray application. Avian Pathol. 2019, 48, S44–S51. [Google Scholar] [CrossRef]
- Chauve, C. The poultry red mite Dermanyssus gallinae (De Geer, 1778): Current situation and future prospects for control. Vet. Parasitol. 1998, 79, 239–245. [Google Scholar] [CrossRef]
- Kaaya, G.P.; Okech, M.A. Horizontal transmission of mycotic infection in adult tsetse, Glossina morsitans morsitans. Entomophaga 1990, 35, 46–57. [Google Scholar] [CrossRef]
- Kaufman, P.E.; Reasor, C.; Donald, A.; Rutz, D.A.; Ketzis, J.K.; Arends, J.J. Evaluation of Beauveria bassiana applications against adult house fly, Musca domestica, in commercial caged-layer poultry facilities in New York state. BioControl 2005, 33, 360–367. [Google Scholar] [CrossRef]
- Gindin, G.; Glazer, I.; Mishoutchenko, A.; Samish, M. Entomopathogenic fungi as a potential control agent against the lesser mealworm, Alphitobius diaperinus in broiler houses. BioControl 2009, 54, 549–558. [Google Scholar] [CrossRef]
- Immediato, D.; Camarda, A.; Iatta, R.; Puttilli, M.R.; Ramos, R.A.N.; Di Paola, G.; Giangaspero, A.; Otranto, D.; Cafarchia, C. Laboratory evaluation of a native strain of Beauveria bassiana for controlling Dermanyssus gallinae (De Geer, 1778) (Acari: Dermanyssidae). Vet. Parasitol. 2015, 212, 478–482. [Google Scholar] [CrossRef] [PubMed]
- Steenberg, T.; Kilpinen, O. Fungus infection of the chicken mite Dermanyssus gallinae. IOBC WPRS Bull. 2003, 26, 23–26. [Google Scholar]
- Kasburg, C.R.; Alves, L.F.A.; Oliveira, D.G.P.; Rohde, C. Activity of some Brazilian isolates of entomopathogenic fungi against the poultry red mite Dermanyssus gallinae De Geer (Acari: Dermanyssidae). Braz. J. Poult. Sci. 2016, 18, 457–460. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, D.G.P.; Kasburg, C.R.; Alves, L.F.A. Efficacy of Beauveria bassiana against the poultry red mite, Dermanyssus gallinae (De Geer, 1778) (Mesostigmata: Dermanyssidae), under laboratory and hen house conditions. Syst. Appl. Acarol. 2020, 25, 895–905. [Google Scholar] [CrossRef]
- Kaoud, H.A. Susceptibility of Poultry Red Mites to Entomopathogens. Int. J. Poult. Sci. 2010, 9, 259–263. [Google Scholar] [CrossRef]
- Steenberg, T.; Kilpinen, O. Synergistic interaction between the fungus Beauveria bassiana and desiccant dusts applied against poultry red mites (Dermanyssus gallinae). Exp. Appl. Acarol. 2013, 62, 511–524. [Google Scholar] [CrossRef] [PubMed]
- Kilpinen, O.; Steenberg, T. Repellent activity of desiccant dusts and conidia of the entomopathogenic fungus Beauveria bassiana when tested against poultry red mites (Dermanyssus gallinae) in laboratory experiments. Exp. Appl. Acarol. 2016, 70, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Immediato, D.; Figueredo, L.A.; Iatta, R.; Camarda, A.; de Luna, R.L.N.; Giangaspero, A.; Brandão-Filho, S.P.; Otranto, D.; Cafarchia, C. Essential oils and Beauveria bassiana against Dermanyssus gallinae (Acari: Dermanyssidae): Towards new natural acaricides. Vet. Parasitol. 2016, 229, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, M.M.; Alves, L.F.A.; De Oliveira, D.G.P.; Lopes, R.B.; Guimarães, A.T.B. Laboratory and field evaluation of an autoinoculation device as a tool to manage poultry red mite, Dermanyssus gallinae, infestations with Beauveria bassiana. Exp. Appl. Acarol. 2020, 80, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Tavassoli, M.; Ownag, A.; Pourseyed, S.H.; Mardani, K. Laboratory evaluation of three strains of the entomopathogenic fungus Metarhizium anisopliae for controlling Dermanyssus gallinae. Avian Pathol. 2008, 37, 259–263. [Google Scholar] [CrossRef]
- Tavassoli, M.; Allymehr, M.; Pourseyed, S.; Ownag, A.; Bernousi, I.; Mardani, K.; Ghorbanzadegan, M.; Shokrpoor, S. Field bioassay of Metarhizium anisopliae strains to control the poultry red mite Dermanyssus gallinae. Vet. Parasitol. 2011, 178, 374–378. [Google Scholar] [CrossRef]
- Tomer, H.; Blum, T.; Arye, I.; Faigenboim, A.; Gottlieb, Y.; Ment, D. Activity of native and commercial strains of Metarhizium spp. against the poultry red mite Dermanyssus gallinae under different environmental conditions. Vet. Parasitol. 2018, 262, 20–25. [Google Scholar] [CrossRef]
- Wang, C.; Huang, Y.; Zhao, J.; Ma, Y.; Xu, X.; Wan, Q.; Li, H.; Yu, H.; Pan, B. First record of Aspergillus oryzae as an entomopathogenic fungus against the poultry red mite Dermanyssus gallinae. Vet. Parasitol. 2019, 271, 57–63. [Google Scholar] [CrossRef]
- Briggs, L.L.; Colwell, D.D.; Wall, R. Control of the cattle louse Bovicola bovis with the fungal pathogen Metarhizium anisopliae. Vet. Parasitol. 2006, 142, 344–349. [Google Scholar] [CrossRef]
- Steenberg, T.; Moore, D. Fungi for Control of the Poultry Red Mite, Dermanyssus Gallinae; CABI and Danish Institute of Agricultural Science: Slagelse, Denmark, 2006; Available online: http://www2.asg.wur.nl/NR/rdonlyres/C46DBE42-73CD./DaveMoore.pdf (accessed on 10 June 2011).
- Roberts, D.W.; Leger, R.J.S. Metarhizium spp., Cosmopolitan Insect-Pathogenic Fungi: Mycological Aspects. Adv. Appl. Microbiol. 2004, 54, 1–70. [Google Scholar] [CrossRef]
- Sparagano, O.A.E.; George, D.R.; Finn, R.D.; Giangaspero, A.; Bartley, K.; Ho, J. Dermanyssus gallinae and chicken egg production: Impact, management, and a predicted compatibility matrix for integrated approaches. Exp. Appl. Acarol. 2020, 82, 441–453. [Google Scholar] [CrossRef]
- Torres, E.C.; Hernández, J.F. Actividad acaricida de Bacillus thuringiensis sobre el acaro rojo de las aves, Dermanyssus gallinae. Revista Veterinaria 2018, 29, 128–132. [Google Scholar] [CrossRef]
- Mullens, B.A.; Wills, L.E.; Rodriguez, J.L. Evaluation of ABG-6208 (Thuringiensin) for control of northern fowl mite, 1987. Insect Acar. Tests 1988, 13, 408–409. [Google Scholar]
- Bates, P. Inter- and intra-specific variation within the genus Psoroptes (Acari: Psoroptidae). Vet. Parasitol. 1999, 83, 201–217. [Google Scholar] [CrossRef]
- Broek, A.V.D.; Huntley, J. Sheep Scab: The Disease, Pathogenesis and Control. J. Comp. Pathol. 2003, 128, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Sanders, A.; Froggatt, P.; Wall, R.; Smith, K.E. Life-cycle stage morphology of Psoroptes mange mites. Med Vet. Entomol. 2000, 14, 131–141. [Google Scholar] [CrossRef]
- Pegler, K.R.; Evans, L.; Stevens, J.R.; Wall, R. Morphological and molecular comparison of host-derived populations of parasitic Psoroptes mites. Med. Vet. Entomol. 2005, 19, 392–403. [Google Scholar] [CrossRef]
- Núñez, C.R.; Ortega, A.F.; Waisburd, G.S.; Cordero, A.M.; Jaramillo, E.Y.; Cárdenas, R.H.; Gómez, L.G.B. Evaluation of the effect of afoxalaner with milbemycin 1 oxime in the treatment of rabbits naturally infected with Psoroptes cuniculi. PLoS ONE 2020, 15, e0230753. [Google Scholar] [CrossRef]
- Huntley, J.F.; Machell, J.; Nisbet, A.J.; Broek, A.V.D.; Chua, K.Y.; Cheong, N.; Hales, B.J.; Thomas, W.R. Identification of tropomyosin, paramyosin and apolipophorin/vitellogenin as three major allergens of the sheep scab mite, Psoroptes ovis. Parasite Immunol. 2004, 26, 335–342. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, D.J.; Gray, J.S.; O’Reilly, P.F. Survival and retention of infectivity of the mite Psoroptes ovis off the host. Vet. Res. Commun. 1994, 18, 27–36. [Google Scholar] [CrossRef]
- Plant, J.W.; Lewis, C.J. Treatment and Control of Ectoparasites in Sheep. Vet. Clin. N. Am. Food Anim. Pract. 2011, 27, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Bates, P. Diazinon for control of sheep scab. Vet. Rec. 2020, 186, 254–255. [Google Scholar] [CrossRef] [PubMed]
- Doherty, E.; Burgess, S.; Mitchell, S.; Wall, R. First evidence of resistance to macrocyclic lactones in Psoroptes ovis sheep scab mites in the UK. Vet. Rec. 2018, 182, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sturgess-Osborne, C.; Burgess, S.; Mitchell, S.; Wall, R. Multiple resistance to macrocyclic lactones in the sheep scab mite Psoroptes ovis. Vet. Parasitol. 2019, 272, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Haraguchi, N.; Uchida, K.; Meng, Y. Jaw movements and EMG activities of limb-licking behavior during grooming in rabbits. Physiol. Behav. 1993, 53, 301–307. [Google Scholar] [CrossRef]
- Laffont, C.M.; Alvinerie, M.; Bousquet-Mélou, A.; Toutain, P.L. Licking behaviour and environmental contamination arising from pour-on ivermectin for cattle. Int. J. Parasitol. 2001, 31, 1687–1692. [Google Scholar] [CrossRef]
- El-Nahas, E.A. Effect of ivermectin on male fertility and its interaction with P-glycoprotein inhibitor (vera-pamil) in rats. Environ. Toxicol. Pharmacol. 2008, 26, 206–211. [Google Scholar] [CrossRef]
- McKellar, Q.A.; Midgley, D.M.; Galbraith, E.A.; Scott, E.W.; Bradley, A. Clinical and pharmacological properties of ivermectin in rabbits and guinea pigs. Vet. Rec. 1992, 130, 71–73. [Google Scholar] [CrossRef]
- McNair, C.M. Ectoparasites of medical and veterinary importance: Drug resistance and the need for alternative control methods. J. Pharm. Pharmacol. 2015, 67, 351–363. [Google Scholar] [CrossRef]
- Smith, K.; Wall, R.; French, N. The use of entomopathogenic fungi for the control of parasitic mites, Psoroptes spp. Vet. Parasitol. 2000, 92, 97–105. [Google Scholar] [CrossRef]
- Lekimme, M.; Mignon, B.; Tombeux, S.; Focant, C.; Marechal, F.; Losson, B. In vitro entomopathogenic activity of Beauveria bassiana against Psoroptes spp. (Acari: Psoroptidae). Vet. Parasitol. 2006, 139, 196–202. [Google Scholar] [CrossRef]
- Lekimme, M.; Focant, C.; Farnir, F.; Mignon, B.; Losson, B. Pathogenicity and thermotolerance of entomopathogenic fungi for the control of the scab mite, Psoroptes ovis. Exp. Appl. Acarol. 2008, 46, 95–104. [Google Scholar] [CrossRef]
- Parker, B.L.; Skinner, M.L.; Costa, S.D.; Gouli, S.; Reid, W.; El Bouhssini, M. Entomopathogenic fungi of Eurygaster integriceps Puton (Hemiptera: Scutelleridae): Collection and characterization for development. Biol. Control. 2003, 27, 260–272. [Google Scholar] [CrossRef]
- Hiromori, H.; Yaginuma, D.; Kajino, K.; Hatsukade, M. The effects of temperature on the insecticidal activity of Beauveria amorpha to Heptophylla picea. Appl. Entomol. Zool. 2004, 39, 389–392. [Google Scholar] [CrossRef]
- Abolins, S.; Thind, B.; Jackson, V.; Luke, B.; Moore, D.; Wall, R.; Taylor, M. Control of the sheep scab mite Psoroptes ovis in vivo and in vitro using fungal pathogens. Vet. Parasitol. 2007, 148, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Brooks, A.; Wall, R. Infection of Psoroptes mites with the fungus Metarhizium anisopliae. Exp. Appl. Acarol. 2001, 25, 869–880. [Google Scholar] [CrossRef] [PubMed]
- Brooks, A.J.; De Muro, M.A.; Burree, E.; Moore, D.; Taylor, M.; Wall, R. Growth and pathogenicity of isolates of the fungus Metarhizium anisopliae against the parasitic mite, Psoroptes ovis: Effects of temperature and formulation. Pest. Manag. Sci. 2004, 60, 1043–1049. [Google Scholar] [CrossRef]
- Hallsworth, J.E.; Magan, N. Water and Temperature Relations of Growth of the Entomogenous Fungi Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus. J. Invertebr. Pathol. 1999, 74, 261–266. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, N.; Xie, Y.; Zheng, Y.; Chen, Y.; Zhou, X.; Li, X.; Zhong, Z.; He, R.; Yang, G. Metarhizium anisopliae CQMa128 regulates antioxidant/detoxification enzymes and exerts acaricidal activity against Psoroptes ovis var. cuniculi in rabbits: A preliminary study. Vet. Parasitol. 2020, 279, 109059. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Denis, M.; Gené, J.; Sutton, D.; Cano-Lira, J.; De Hoog, G.; Decock, C.; Wiederhold, N.; Guarro, J. Redefining Microascus, Scopulariopsis and allied genera. Persoonia 2016, 36, 1–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunstand-Guzmán, E.; Peña-Chora, G.; Hallal-Calleros, C.; Pérez-Martínez, M.; Hernández-Velazquez, V.M.; Morales-Montor, J.; Flores-Pérez, F.I. Acaricidal effect and histological damage induced by Bacillus thuringiensis protein extracts on the mite Psoroptes cuniculi. Parasites Vectors 2015, 8, 285. [Google Scholar] [CrossRef] [Green Version]
- Sobotnik, J.; Kudlikova-Krizkova, I.; Vancova, M.; Munzbergova, Z.; Hubert, J. Chitin in the peritrophic membrane of Acarus siro (Acari: Acaridae) as a target for novel acaricides. J. Econ. Entomol. 2008, 101, 1028–1033. [Google Scholar] [CrossRef]
- Casique-Arroyo, G.; Bideshi, D.K.; Salcedo-Hernández, R.; Barboza-Corona, J.E. Development of a recombinant strain of Bacillus thuringiensis subsp. kurstaki HD-73 that produces the endochitinase ChiA74. Antonie Leeuwenhoek 2006, 92, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Lee, H.S. Acaricidal activity and function of mite indicator using plumbagin and its derivatives isolated from Diospyros kaki Thunb. roots (Ebenaceae). J. Microbiol. Biotechnol. 2008, 18, 314–321. [Google Scholar] [PubMed]
- Gonzalez-Ceron, L.; Santillan, F.; Rodriguez, M.H.; Mendez, D.; Hernandez-Avila, J.E. Bacteria in mid-guts of field collected Anopheles albimanus block Plasmodium vivax sporogonic development. J. Med. Entomol. 2003, 40, 371–374. [Google Scholar] [CrossRef] [Green Version]
- Perrucci, S.; Rossi, G.; Fichi, G.; O’Brien, D.J. Relationship between Psoroptes cuniculi and the Internal Bacterium Serratia marcescens. Exp. Appl. Acarol. 2005, 36, 199–206. [Google Scholar] [CrossRef]
- Nolan, K.S. Delaplane Distance between honeybee Apis mellifera colonies regulates populations of Varroa destructor at a landscape scale. Apidologie 2017, 48, 8–16. [Google Scholar] [CrossRef] [Green Version]
- De Jong, D.; De Jong, P.H.; Goncales, L.S. Weight loss and other damage to developing worker honey bees from infestation with Varroa jacobsoni. J. Apic. Res. 1982, 21, 165–167. [Google Scholar] [CrossRef]
- Noël, A.; Le Conte, Y.; Mondet, F. Varroa destructor: How does it harm Apis mellifera honey bees and what can be done about it? Emerg. Top. Life Sci. 2020, 4, 45–57. [Google Scholar] [CrossRef]
- Traynor, K.S.; Mondet, F.; de Miranda, J.R.; Techer, M.; Kowallik, V.; Oddie, M.A.; Chantawannakul, P.; McAfee, A. Varroa destructor: A Complex Parasite, Crippling Honey Bees Worldwide. Trends Parasitol. 2020, 36, 592–606. [Google Scholar] [CrossRef]
- Xie, X.; Huang, Z.Y.; Zeng, Z. Why do Varroa mites prefer nurse bees? Sci. Rep. 2016, 6, 28228. [Google Scholar] [CrossRef] [Green Version]
- Le Conte, Y.; Huang, Z.Y.; Roux, M.; Zeng, Z.J.; Christidès, J.-P.; Bagnères, A.-G. Varroa destructor changes its cuticular hydrocarbons to mimic new hosts. Biol. Lett. 2015, 11, 20150233. [Google Scholar] [CrossRef] [Green Version]
- Shaw, K.E.; Davidson, G.; Clark, S.J.; Ball, B.V.; Pell, J.K.; Chandler, D.; Sunderland, K.D. Laboratory bioassays to assess the pathogenicity of mitosporic fungi to Varroa destructor (Acari: Mesostigmata), an ectoparasitic mite of the honeybee, Apis mellifera. Biol. Control. 2002, 24, 266–276. [Google Scholar] [CrossRef]
- Peng, C.Y.S.; Zhou, X.; Kaya, H.K. Virulence and site of infection of the fungus, Hirsutella thompsonii, to the honey bee ectoparasitic mite, Varroa destructor. J. Invertebr. Pathol. 2002, 81, 185–195. [Google Scholar] [CrossRef]
- Kanga, L.; James, R.; Boucias, D. Hirsutella thompsonii and Metarhizium anisopliae as potential microbial control agents of Varroa destructor, a honey bee parasite. J. Invertebr. Pathol. 2002, 81, 175–184. [Google Scholar] [CrossRef]
- Meikle, W.G.; Mercadier, G.; Holst, N.; Girod, V. Impact of two treatments of a formulation of Beauveria bassiana (Deuteromycota: Hyphomycetes) conidia on Varroa mites (Acari: Varroidae) and on honeybee (Hymenoptera: Apidae) colony health. Exp. Appl. Acarol. 2008, 46, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Kanga, L.H.B.; Jones, W.A.; James, R.R. Field Trials Using the Fungal Pathogen, Metarhizium anisopliae (Deuteromycetes: Hyphomycetes) to Control the Ectoparasitic Mite, Varroa destructor (Acari: Varroidae) in Honey Bee, Apis mellifera (Hymenoptera: Apidae) Colonies. J. Econ. Entomol. 2003, 96, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Kanga, L.H.B.; Adamczyk, J.; Patt, J.; Gracia, C.; Cascino, J. Development of a user-friendly delivery method for the fungus Metarhizium anisopliae to control the ectoparasitic mite Varroa destructor in honey bee, Apis mellifera, colonies. Exp. Appl. Acarol. 2010, 52, 327–342. [Google Scholar] [CrossRef]
- Sun, Z.-B.; Li, S.-D.; Ren, Q.; Xu, J.-L.; Lu, X.; Sun, M.-H. Biology and applications of Clonostachys rosea. J. Appl. Microbiol. 2020, 129, 486–495. [Google Scholar] [CrossRef] [Green Version]
- Hamiduzzaman, M.M.; Sinia, A.; Guzman-Novoa, E.; Goodwin, P.H. Entomopathogenic fungi as potential biocontrol agents of the ecto-parasitic mite, Varroa destructor, and their effect on the immune response of honey bees (Apis mellifera L.). J. Invertebr. Pathol. 2012, 111, 237–243. [Google Scholar] [CrossRef]
- Alquisira-Ramírez, E.V.; Paredes-Gonzalez, J.R.; Hernández-Velázquez, V.M.; Ramírez-Trujillo, J.A.; Peña-Chora, G. In vitro susceptibility of Varroa destructor and Apis mellifera to native strains of Bacillus thuringiensis. Apidologie 2014, 45, 707–718. [Google Scholar] [CrossRef] [Green Version]
- Alquisira-Ramírez, E.V.; Peña-Chora, G.; Hernández-Velázquez, V.M.; Alvear-García, A.; Arenas-Sosa, I.; Suarez-Rodríguez, R. Effects of Bacillus thuringiensis strains virulent to Varroa destructor on larvae and adults of Apis mellifera. Ecotoxicol. Environ. Saf. 2017, 142, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Nourrisson, C.; Dupont, D.; Lavergne, R.-A.; Dorin, J.; Forouzanfar, F.; Denis, J.; Weeks, K.; Joubert, R.; Chiambaretta, F.; Bourcier, T.; et al. Species of Metarhizium anisopliae complex implicated in human infections: Retrospective sequencing study. Clin. Microbiol. Infect. 2017, 23, 994–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodman, A.L.; Lockhart, S.R.; Lysen, C.B.; Westblade, L.F.; Burnham, C.-A.D.; Burd, E.M. Two cases of fungal keratitis caused by Metarhizium anisopliae. Med. Mycol. Case Rep. 2018, 21, 8–11. [Google Scholar] [CrossRef]
- Oya, T.; Obata, H.; Miyata, K.; Tsuru, T.; Miyauchi, S. Quantitative analyses of glycosaminoglycans in tear fluids in normal human eyes and eyes with corneal epithelial disorders. Nippon Ganka Gakkai Zasshi 1995, 99, 302–307. [Google Scholar]
- Helgason, E.; Caugant, D.A.; Olsen, I.; Kolstø, A.-B. Genetic Structure of Population of Bacillus cereus and B. thuringiensis Isolates Associated with Periodontitis and Other Human Infections. J. Clin. Microbiol. 2000, 38, 1615–1622. [Google Scholar] [CrossRef] [Green Version]
- Kotiranta, A.; Lounatmaa, K.; Haapasalo, M. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect. 2000, 2, 189–198. [Google Scholar] [CrossRef]
- Ghelardi, E.; Celandroni, F.; Salvetti, S.; Fiscarelli, E.; Senesi, S. Bacillus thuringiensis pulmonary infection: Critical role for bacterial membrane-damaging toxins and host neutrophils. Microbes Infect. 2007, 9, 591–598. [Google Scholar] [CrossRef] [PubMed]
Tick Species | EPFs | References |
---|---|---|
Amblyomma americanum | Beauveria bassiana | [149] |
Amblyomma parvum | Metarhizium anisopliae | [136] |
Amblyomma variegatum | Beauveria bassiana | [152] |
Amblyomma variegatum | Metarhizium anisopliae | [152] |
Amblyomma variegatum | M. anisopliae + B. bassiana | [153] |
Boophilus microplus | Beauveria bassiana | [186] |
Boophilus microplus | Metarhizium anisopliae | [130,131,186,187,188,189] |
Boophilus sp. | Fusarium sp. Metarhizium anisopliae | [3] |
Dermacentor albipictus | Beauveria bassiana | [138] |
Dermacentor albipictus | Metarhizium anisopliae | [138] |
Dermacentor albipictus | Metarhizium brunneum | [138] |
Dermacentor marginatus | Aspergillus fumigatus | [190] |
Dermacentor marginatus | Trichothecium roseum | [191] |
Dermacentor reticulatus | Isaria fumosorosea | [139] |
Dermacentor reticulatus | Beauveria bassiana | [139] |
Dermacentor reticulatus | Metarhizium anisopliae | [139] |
Dermacentor reticulatus | Metarhizium robertsii | [139] |
Dermacentor sp. | Beauveria bassiana | [107] |
Dermacentor variabilis | Metarhizium anisopliae | [116] |
Dermacentor variabilis | Beauveria bassiana | [116] |
Dermacentor variabilis | Scopulariopsis brevicaulis | [167] |
Haemaphysalis longicornis | Beauveria bassiana | [142] |
Haemaphysalis qinghaiensis | Metarhizium anisopliae | [137] |
Haemaphysalis qinghaiensis | Beauveria bassiana | [137] |
Hyalomma anatolicum | Beauveria bassiana | [140] |
Hyalomma anatolicum | Metarhizium anisopliae | [140] |
Hyalomma anatolicum | Paecilomyces lilacinus | [140] |
Hyalomma lusitanicum | Beauveria bassiana | [147,148] |
Hyalomma scupense | Aspergillus fumigatus | [190] |
Ixodes dammini | Aspergillus ochraceus | [3] |
Ixodes dammini | Metarhizium anisopliae | [192] |
Ixodes ricinus | Conidiobolus coronatus | [108] |
Ixodes ricinus | Aspergillus flavus | [106] |
Ixodes ricinus | Aspergillus fumigatus | [106] |
Ixodes ricinus | Aspergillus niger | [107] |
Ixodes ricinus | Aspergillus parasiticus | [107] |
Ixodes ricinus | Beauveria bassiana | [3,139] |
Ixodes ricinus | Beauveria brognardi | [108] |
Ixodes ricinus | Paecilomyces farinosus | [108] |
Ixodes ricinus | Paecilomyces fumosoroseus | [107,108] |
Ixodes ricinus | Penicillium insectivorum | [106] |
Ixodes ricinus | Trichothecium roseum | [191] |
Ixodes ricinus | Verticillium aranearum | [108] |
Ixodes ricinus | Verticillium lecanii | [107,108] |
Ixodes ricinus | Metarhizium anisopliae | [139] |
Ixodes ricinus | Metarhizium robertsii | [139] |
Ixodes ricinus | Isaria fumosorosea | [139] |
Ixodes scapularis | Metarhizium brunneum | [116,117,118,143] |
Ixodes scapularis | Metarhizium anisopliae | [116] |
Ixodes scapularis | Beauveria bassiana | [116] |
Rhipicephalus annulatus | Metarhizium brunneum | [144] |
Rhipicephalus appendiculatus | Aspergillus sp. | [193] |
Rhipicephalus appendiculatus | Fusarium sp. | [193] |
Rhipicephalus appendiculatus | Metarhizium anisopliae | [151,152,193] |
Rhipicephalus appendiculatus | Beauveria bassiana | [151] |
Rhipicephalus appendiculatus | M. anisopliae + B. bassiana | [152] |
Rhipicephalus decoloratus | Beauveria bassiana | [150] |
Rhipicephalus microplus | Metarhizium robertsii | [126,127,132,135] |
Rhipicephalus microplus | Beauveria bassiana | [129,132,145,146,155,158,159,160] |
Rhipicephalus microplus | Metarhizium anisopliae | [129,132,133,155,158,159,160] |
Rhipicephalus microplus | Paecilomyces lilacinus | [129] |
Rhipicephalus microplus | Isaria fumosorosea | [162] |
Rhipicephalus microplus | Isaria farinosa | [162] |
Rhipicephalus microplus | Purpurocillium lilacinus | [162] |
Rhipicephalus sanguineus | Aspergillus ochraceus | [109] |
Rhipicephalus sanguineus | Fusarium sp. | [194] |
Rhipicephalus sanguineus | Curvularia lunata | [110] |
Rhipicephalus sanguineus | Rhizopus thailandensis | [110] |
Rhipicephalus sanguineus | Rhizopus arrhizus | [110] |
Rhipicephalus sanguineus | Metarhizium anisopliae | [113,114,115,116] |
Rhipicephalus sanguineus | Metarhizium flavoviride | [114] |
Rhipicephalus sanguineus | Isaria fumosorosea | [114] |
Rhipicephalus sanguineus | Beauveria bassiana | [116] |
Mite Species | EPFs | References |
---|---|---|
Dermanyssus gallinae | Beauveria bassiana | [237,240,243,245] |
Dermanyssus gallinae | B. bassiana + Trichoderma album | [241] |
Dermanyssus gallinae | Metarhizium anisopliae | [246,247] |
Dermanyssus gallinae | Metarhizium brunneum | [248] |
Dermanyssus gallinae | Aspergillus oryzae | [249] |
Psoroptes ovis | Beauveria bassiana | [269,277] |
Psoroptes ovis | Hirsutella thompsonii | [272] |
Psoroptes ovis | Metarhizium anisopliae | [272,277] |
Psoroptes cuniculi | Scopulariopsis sp. | [164] |
Arthropod Species | EPBs | References |
---|---|---|
Argas persicus | Bacillus thuringiensis | [197] |
Dermacentor andersoni | Proteus mirabilis | [201] |
Dermacentor reticulatus | Bacillus thuringiensis | [199] |
Hyalomma dromedarii | Bacillus thuringiensis | [197,200] |
Ixodes ricinus | Bacillus thuringiensis | [199] |
Ixodes scapularis | Bacillus thuringiensis | [198] |
Rhipicephalus microplus | Bacillus thuringiensis | [195] |
Dermanyssus gallinae | Bacillus thuringiensis | [254] |
Ornithonyssus sylviarum | Bacillus thuringiensis | [255] |
Psoroptes sp. | Bacillus thuringiensis | [283] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebani, V.V.; Mancianti, F. Entomopathogenic Fungi and Bacteria in a Veterinary Perspective. Biology 2021, 10, 479. https://doi.org/10.3390/biology10060479
Ebani VV, Mancianti F. Entomopathogenic Fungi and Bacteria in a Veterinary Perspective. Biology. 2021; 10(6):479. https://doi.org/10.3390/biology10060479
Chicago/Turabian StyleEbani, Valentina Virginia, and Francesca Mancianti. 2021. "Entomopathogenic Fungi and Bacteria in a Veterinary Perspective" Biology 10, no. 6: 479. https://doi.org/10.3390/biology10060479
APA StyleEbani, V. V., & Mancianti, F. (2021). Entomopathogenic Fungi and Bacteria in a Veterinary Perspective. Biology, 10(6), 479. https://doi.org/10.3390/biology10060479