Use of Continuous Positive Airway Pressure (CPAP) to Limit Diaphragm Motion—A Novel Approach for Definitive Radiation Therapy for Inoperable Pleural Mesothelioma: A Pilot Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Data Collection and Outcomes
2.3. CPAP Simulation
2.4. Treatment Planning
2.5. Post RT Evaluation
3. Results
3.1. Patients
3.1.1. Patient 1
3.1.2. Patient 2
3.1.3. Patient 3
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Graaf-Strukowska, L.; Van Der Zee, J.; Van Putten, W.; Senan, S. Factors influencing the outcome of radiotherapy in malignant mesothelioma of the pleura—A single-institution experience with 189 patients. Int. J. Radiat. Oncol. Biol. Phys. 1999, 43, 511–516. [Google Scholar] [CrossRef]
- Mansha, M.A.; Ali, N.; Ali, S.; Azam, N.; Khan, A.M.H. Malignant Pleural Mesothelioma: A Multi-Disciplinary Approach. Case Rep. Gulf J. Oncolog. 2019, 1, 76–80. [Google Scholar]
- Sinn, K.; Mosleh, B.; Hoda, M.A. Malignant pleural mesothelioma: Recent developments. Curr. Opin. Oncol. 2021, 33, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Rusch, V.W.; Piantadosi, S.; Holmes, E.C. The role of extrapleural pneumonectomy in malignant pleural mesothelioma. A Lung Cancer Study Group trial. J. Thorac. Cardiovasc. Surg. 1991, 102, 1–9. [Google Scholar] [CrossRef]
- Rusch, V.W.; Rosenzweig, K.; Venkatraman, E.; Leon, L.; Raben, A.; Harrison, L.; Bains, M.S.; Downey, R.J.; Ginsberg, R.J. A phase II trial of surgical resection and adjuvant high-dose hemithoracic radiation for malignant pleural mesothelioma. J. Thorac. Cardiovasc. Surg. 2001, 122, 788–795. [Google Scholar] [CrossRef] [Green Version]
- Rice, D.C.; Stevens, C.W.; Correa, A.M.; Vaporciyan, A.A.; Tsao, A.; Forster, K.M.; Walsh, G.L.; Swisher, S.G.; Hofstetter, W.L.; Mehran, R.J.; et al. Outcomes after Extrapleural Pneumonectomy and Intensity-Modulated Radiation Therapy for Malignant Pleural Mesothelioma. Ann. Thorac. Surg. 2007, 84, 1685–1693. [Google Scholar] [CrossRef] [PubMed]
- Donahoe, L.L.; De Perrot, M. The Role of Extrapleural Pneumonectomy in Malignant Pleural Mesothelioma. Thorac. Surg. Clin. 2020, 30, 461–471. [Google Scholar] [CrossRef]
- Rosenzweig, K.E. Malignant pleural mesothelioma: Adjuvant therapy with radiation therapy. Ann. Transl. Med. 2017, 5, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, M.; Shochat, T.; Peled, N.; Zer, A.; Kramer, M.R.; Eldan, O.; Saute, M.; Dudnik, E.; Allen, A.M. Intensity-modulated radiotherapy is a safe and effective treatment for localized malignant pleural mesothelioma. Thorac. Cancer 2018, 9, 1470–1475. [Google Scholar] [CrossRef] [PubMed]
- Frick, A.E.; Nackaerts, K.; Moons, J.; Lievens, Y.; Verbeken, E.; Lambrecht, M.; Coolen, J.; Dooms, C.; Vansteenkiste, J.; De Leyn, P.; et al. Combined modality treatment for malignant pleural mesothelioma: A single-centre long-term survival analysis using extrapleural pneumonectomy. Eur. J. Cardio-Thoracic Surg. 2018, 55, 934–941. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.C.J.; Feld, R.; Leighl, N.B.; Opitz, I.; Anraku, M.; Tsao, M.; Hwang, D.M.; Hope, A.; de Perrot, M. A Feasibility Study Evaluating Surgery for Mesothelioma after Radiation Therapy: The “SMART” Approach for Resectable Malignant Pleural Mesothelioma. J. Thorac. Oncol. 2014, 9, 397–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larose, F.; Quigley, N.; Lacasse, Y.; Martel, S.; Lang-Lazdunski, L. Malignant pleural mesothelioma: Comparison of surgery-based trimodality therapy to medical therapy at two tertiary academic institutions. Lung Cancer 2021, 156, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.C.J.; Donahoe, L.; Bradbury, P.A.; Leighl, N.; Keshavjee, S.; Hope, A.; Pal, P.; Cabanero, M.; Czarnecka, K.; McRae, K.; et al. Surgery for malignant pleural mesothelioma after radiotherapy (SMART): Final results from a single-centre, phase 2 trial. Lancet Oncol. 2021, 22, 190–197. [Google Scholar] [CrossRef]
- Pass, H.I. SMART: Logical radiotherapy and surgery beyond MARS. Lancet Oncol. 2021, 22, 156–157. [Google Scholar] [CrossRef]
- Allen, A.M.; Den, R.; Wong, J.S.; Zurakowski, D.; Soto, R.; Jänne, P.A.; Zellos, L.; Bueno, R.; Sugarbaker, D.J.; Baldini, E.H. Influence of Radiotherapy Technique and Dose on Patterns of Failure for Mesothelioma Patients after Extrapleural Pneumonectomy. Int. J. Radiat. Oncol. 2007, 68, 1366–1374. [Google Scholar] [CrossRef] [PubMed]
- Rice, D.C.; Smythe, W.R.; Liao, Z.; Guerrero, T.; Chang, J.Y.; McAleer, M.F.; Jeter, M.D.; Correa, A.; Vaporciyan, A.A.; Liu, H.H.; et al. Dose-Dependent Pulmonary Toxicity after Postoperative Intensity-Modulated Radiotherapy for Malignant Pleural Mesothelioma. Int. J. Radiat. Oncol. 2007, 69, 350–357. [Google Scholar] [CrossRef]
- Pan, H.Y.; Jiang, S.; Sutton, J.; Liao, Z.; Chance, W.W.; Frank, S.J.; Zhu, X.R.; Li, H.; Fontanilla, H.P.; Zhang, X.; et al. Early experience with intensity modulated proton therapy for lung-intact mesothelioma: A case series. Pract. Radiat. Oncol. 2015, 5, e345–e353. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.M.; Schofield, D.; Hacker, F.; Court, L.E.; Czerminska, M. Restricted Field IMRT Dramatically Enhances IMRT Planning for Mesothelioma. Int. J. Radiat. Oncol. 2007, 69, 1587–1592. [Google Scholar] [CrossRef] [PubMed]
- Di Perri, D.; Colot, A.; Delor, A.; Ghoul, R.; Janssens, G.; Lacroix, V.; Matte, P.; Robert, A.; Souris, K.; Geets, X. Effect of continuous positive airway pressure administration during lung stereotactic ablative radiotherapy: A comparative planning study. Strahlenther. Onkol. 2018, 194, 591–599. [Google Scholar] [CrossRef]
- Goldstein, J.D.; Lawrence, Y.R.; Appel, S.; Landau, E.; Ben-David, M.A.; Rabin, T.; Benayun, M.; Dubinski, S.; Weizman, N.; Alezra, D.; et al. Continuous Positive Airway Pressure for Motion Management in Stereotactic Body Radiation Therapy to the Lung: A Controlled Pilot Study. Int. J. Radiat. Oncol. 2015, 93, 391–399. [Google Scholar] [CrossRef]
- Allen, A.M.; Ceder, Y.K.; Shochat, T.; Fenig, E.; Popovtzer, A.; Bragilofsky, D.; Alfassy, A.; Allon, H. CPAP (Continuous Positive Airway Pressure) is an effective and stable solution for heart sparing radiotherapy of left sided breast cancer. Radiat. Oncol. 2020, 15, 1–6. [Google Scholar] [CrossRef] [Green Version]
- MacLeod, N.; Chalmers, A.; O’Rourke, N.; Moore, K.; Sheridan, J.; McMahon, L.; Bray, C.; Stobo, J.; Price, A.; Fallon, M.; et al. Is Radiotherapy Useful for Treating Pain in Mesothelioma?: A Phase II Trial. J. Thorac. Oncol. 2015, 10, 944–950. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, P.; Milliner, R.; Salmon, C. Re-evaluating the role of palliative radiotherapy in malignant pleural mesothelioma. Eur. J. Cancer 2011, 47, 2143–2149. [Google Scholar] [CrossRef] [PubMed]
- Ohri, N.; Taioli, E.; Ehsani, M.; Wolf, A.; Gomez, J.; Flores, R.; Rosenzweig, K. Definitive Radiation Therapy Is Associated With Improved Survival in Non-Metastatic Malignant Pleural Mesothelioma. Int. J. Radiat. Oncol. 2016, 96, S132–S133. [Google Scholar] [CrossRef]
- Trovo, M.; Relevant, A.; Polesel, J.; Muraro, E.; Barresi, L.; Drigo, A.; Baresic, T.; Bearz, A.; Fanetti, G.; Del Conte, A.; et al. Radical Hemithoracic Radiotherapy Versus Palliative Radiotherapy in Non-metastatic Malignant Pleural Mesothelioma: Results from a Phase 3 Randomized Clinical Trial. Int. J. Radiat. Oncol. 2021, 109, 1368–1376. [Google Scholar] [CrossRef]
- Miles, E.F.; Larrier, N.A.; Kelsey, C.; Hubbs, J.L.; Ma, J.; Yoo, S.; Marks, L.B. Intensity-Modulated Radiotherapy for Resected Mesothelioma: The Duke Experience. Int. J. Radiat. Oncol. 2008, 71, 1143–1150. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.M.; Czerminska, M.; Jänne, P.A.; Sugarbaker, D.J.; Bueno, R.; Harris, J.R.; Court, L.; Baldini, E.H. Fatal pneumonitis associated with intensity-modulated radiation therapy for mesothelioma. Int. J. Radiat. Oncol. 2006, 65, 640–645. [Google Scholar] [CrossRef]
- Zeng, J.; Badiyan, S.N.; Garces, Y.I.; Wong, T.; Zhang, X.; Simone, C.B.; Chang, J.Y.; Knopf, A.C.; Mori, S.; Iwata, H.; et al. Consensus Statement on Proton Therapy in Mesothelioma. Pract. Radiat. Oncol. 2021, 11, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Zeng, J.; Bowen, S.R.; Rengan, R. Proton Therapy for Malignant Pleural Mesothelioma: A Three Case Series Describing the Clinical and Dosimetric Advantages of Proton-Based Therapy. Cureus 2017, 9, e1705. [Google Scholar] [CrossRef] [Green Version]
- Lazarev, S.; Rosenzweig, K.; Samstein, R.; Salgado, L.R.; Hasan, S.; Press, R.H.; Sharma, S.; Powell, C.A.; Hirsch, F.R.; Simone, C.B. Where are we with proton beam therapy for thoracic malignancies? Current status and future perspectives. Lung Cancer 2021, 152, 157–164. [Google Scholar] [CrossRef]
- Botticella, A.; Defraene, G.; Nackaerts, K.; Deroose, C.; Coolen, J.; Nafteux, P.; Vanstraelen, B.; Joosten, S.; Michiels, L.A.W.; Peeters, S.; et al. Does selective pleural irradiation of malignant pleural mesothelioma allow radiation dose escalation? Strahlenther. Onkol. 2017, 193, 285–294. [Google Scholar] [CrossRef]
- Ashton, M.; O’Rourke, N.; MacLeod, N.; Laird, B.; Stobo, J.; Kelly, C.; Alexander, L.; Franks, K.; Moore, K.; Currie, S.; et al. SYSTEMS-2: A randomised phase II study of radiotherapy dose escalation for pain control in malignant pleural mesothelioma. Clin. Transl. Radiat. Oncol. 2018, 8, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Ko, H.; Chang, J.S.; Moon, J.Y.; Lee, W.H.; Shah, C.; Shim, J.S. (Andy); Han, M.C.; Baek, J.G.; Park, R.H.; Kim, Y.B.; et al. Dosimetric Comparison of Radiation Techniques for Comprehensive Regional Nodal Radiation Therapy for Left-Sided Breast Cancer: A Treatment Planning Study. Front. Oncol. 2021, 11. [Google Scholar] [CrossRef]
- Kil, W.J.; Pham, T.; Kim, K. Heart sparing breast cancer radiotherapy using continuous positive airway pressure (CPAP) and conventional supine tangential fields: An alternative method for patients with limited accessibility to advanced radiotherapy techniques. Acta Oncol. 2018, 58, 105–109. [Google Scholar] [CrossRef] [Green Version]
Organ | Constraints |
---|---|
Lung | Mean dose < 18 Gy V5 < 60% V20 < 35% |
Spinal Cord | Max dose < 50 Gy |
Esophagus | Mean dose < 55 Gy |
Heart | Mean dose < 15 Gy |
Items | Patient 1 | Patient 2 | Patient 3 |
---|---|---|---|
Histology | biphasic | epitheloid | epitheloid |
Stage | T3N0M0, stage IB | T2N2M0, stage IIIB | T2N2M0, stage IIIB |
PS at RT | 1 | 1 | 1 |
Dose | 54 Gy | 54 Gy | 54 Gy |
coverage | 95% dose to 95% target volume | 90% dose to 90% target volume | 95% dose to 90% target volume |
Clinical target volume (cc) | 1852.31 | 1718.23 | 1500.00 |
Ipsilateral lung volume (cc) | 1218.07 | 691.66 | 1418.07 |
Ipsilateral lung V20 (%) | 99.7% | 85.9% | 85.9% |
Ipsilateral lung V5 (%) | 100% | 100% | 100% |
Contralateral lung volume (cc) | 2511.95 | 1692.7 | 2059.36 |
Contralateral lung V20 (%) | 0.5% | 0% | 0% |
Contralateral lung V5 (%) | 46.9% | 20.8% | 36.4% |
Both lungs volume (CC) | 3957.04 | 2375.76 | 3485.35 |
MLD | 17.051 | 11.3 | 17.06 |
Both lungs V20 (%) | 33% | 25% | 35.3% |
Both lungs V5 (%) | 64.7% | 44.1% | 62.57% |
Mean Heart Dose (Gy) | 24.29 | 15.85 | 13.98 |
Heart V30 | 40.8% | 2.3% | 9.9% |
Mean Liver Dose (Gy) | 23.36 | 5.39 | 20.4 |
Duration of response | Started—8/1/17 Completed—9/10/17 Progressed—5/23/18 (distant), 8/12/18 (local) | Started—9/25/17 Completed—10/31/17 Progressed—8/26/18 | Started—1/16/18 Completed—2/21/18 Progressed—9/26/18 |
Items | IMRT | VMAT 4 arcs |
---|---|---|
Patient 1 | ||
Max dose | 121.1% | 127.3% |
Max dose (in CTV) | 121.1% | 127.3% |
Min dose (in CTV) | 7.6% | 6.4% |
Ipsi lung V5 | 100% | 100% |
Ipsi lung V20 | 99.8% | 96.5% |
Contra lung V5 | 47.5% | 76.6% |
Contra lung V20 | 0.48% | 2.6% |
MLD | 18.9 | 17.9 |
Both lungs V5 | 65.9% | 85.1% |
Both lungs V20 | 36.4% | 36.7% |
Mean Heart Dose | 24.3 | 25.5 |
Heart V30 | 40.7% | 40.1% |
Mean Liver Dose | 23.4 | 28.1 |
Patient 2 | ||
Max dose | 153.8% | 115.5% |
Max dose (in CTV) | 147.5% | 115.5% |
Min dose (in CTV) | 34.8% | 60.7% |
Ipsi lung V5 | 100% | 100% |
Ipsi lung V20 | 94.8% | 87.2% |
Contra lung V5 | 26.7% | 38.6% |
Contra lung V20 | 0.2% | 0.1% |
MLD | 12.5 | 14.7 |
Both lungs V5 | 47.9% | 57.1% |
Both lungs V20 | 27.3% | 25.4% |
Mean Heart Dose | 17.5 | 20.4 |
Heart V30 | 5.6% | 10.9% |
Mean Liver Dose | 5.9 | 5.5 |
Patient 3 | ||
Max dose | 120.4% | 119.4% |
Max dose (in CTV) | 120.4% | 115.9% |
Min dose (in CTV) | 33.8% | 71.3% |
Ipsi lung V5 | 100% | 100% |
Ipsi lung V20 | 85.5% | 93.7% |
Contra lung V5 | 36.4% | 45.1% |
Contra lung V20 | 0% | 0.2% |
MLD | 19.6 | 21.4 |
Both lungs V5 | 65.26% | 69.5% |
Both lungs V20 | 39.7% | 43.0% |
Mean Heart Dose | 13.9 | 16.5 |
Heart V30 | 9.9% | 7.8% |
Mean Liver Dose | 32.9 | 19.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moore, A.; Kindler, M.J.; Allen, A.M. Use of Continuous Positive Airway Pressure (CPAP) to Limit Diaphragm Motion—A Novel Approach for Definitive Radiation Therapy for Inoperable Pleural Mesothelioma: A Pilot Study. Biology 2021, 10, 711. https://doi.org/10.3390/biology10080711
Moore A, Kindler MJ, Allen AM. Use of Continuous Positive Airway Pressure (CPAP) to Limit Diaphragm Motion—A Novel Approach for Definitive Radiation Therapy for Inoperable Pleural Mesothelioma: A Pilot Study. Biology. 2021; 10(8):711. https://doi.org/10.3390/biology10080711
Chicago/Turabian StyleMoore, Assaf, Marc J. Kindler, and Aaron Max Allen. 2021. "Use of Continuous Positive Airway Pressure (CPAP) to Limit Diaphragm Motion—A Novel Approach for Definitive Radiation Therapy for Inoperable Pleural Mesothelioma: A Pilot Study" Biology 10, no. 8: 711. https://doi.org/10.3390/biology10080711