The Association between Circadian Clock Gene Polymorphisms and Metabolic Syndrome: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Literature Search
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Statistical Analyses
3. Results
3.1. Characteristics of Eligible Studies
3.2. Characteristics of the Circadian Rhythm Gene Polymorphism
3.3. Quantitative Data Synthesis
3.4. Sensitivity Analysis
3.5. Publication Bias
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Shao, J.; Chen, D.; Zou, P.; Cui, N.; Tang, L.; Wang, D.; Ye, Z. Reporting and Methods in Developing Prognostic Prediction Models for Metabolic Syndrome: A Systematic Review and Critical Appraisal. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 4981–4992. [Google Scholar] [CrossRef] [PubMed]
- Regufe, V.M.G.; Pinto, C.M.C.B.; Perez, P.M.V.H.C. Metabolic syndrome in type 2 diabetic patients: A review of current evidence. Porto Biomed. J. 2020, 5, e101. [Google Scholar] [CrossRef]
- Maury, E.; Ramsey, K.M.; Bass, J. Circadian Rhythms and Metabolic Syndrome. Circ. Res. 2010, 106, 447–462. [Google Scholar] [CrossRef] [Green Version]
- Zimmet, P.; Alberti, K.G.M.M.; Stern, N.; Bilu, C.; El-Osta, A.; Einat, H.; Kronfeld-Schor, N. The Circadian Syndrome: Is the Metabolic Syndrome and much more! J. Intern. Med. 2019, 286, 181. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, A.; Hlinomaz, O.; Agodi, A.; Barchitta, M.; Kunzova, S.; Bauerova, H.; Sochor, O.; Medina-Inojosa, J.R.; Lopez-Jimenez, F.; Vinciguerra, M.; et al. Is Drinking Alcohol Really Linked to Cardiovascular Health? Evidence from the Kardiovize 2030 Project. Nutrients 2020, 12, 2848. [Google Scholar] [CrossRef] [PubMed]
- Kunzova, S.; Maugeri, A.; Medina-Inojosa, J.; Lopez-Jimenez, F.; Vinciguerra, M.; Marques-Vidal, P. Determinants of Metabolic Health Across Body Mass Index Categories in Central Europe: A Comparison Between Swiss and Czech Populations. Front. Public Health 2020, 8, 108. [Google Scholar] [CrossRef]
- Serin, Y.; Acar Tek, N. Effect of Circadian Rhythm on Metabolic Processes and the Regulation of Energy Balance. Ann. Nutr. Metab. 2019, 74, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Škrlec, I.; Milić, J.; Heffer, M.; Wagner, J.; Peterlin, B. Circadian clock genes and circadian phenotypes in patients with myocardial infarction. Adv. Med. Sci. 2019, 64, 224–229. [Google Scholar] [CrossRef]
- Shimizu, I.; Yoshida, Y.; Minamino, T. A role for circadian clock in metabolic disease. Hypertens. Res. 2016, 39, 483–491. [Google Scholar] [CrossRef]
- Kim, K.J. The Role of Circadian Clocks in Metabolism. Chronobiol. Med. 2019, 1, 107–110. [Google Scholar] [CrossRef]
- Škrlec, I.; Milić, J.; Heffer, M.; Peterlin, B.; Wagner, J. Genetic variations in circadian rhythm genes and susceptibility for myocardial infarction. Genet. Mol. Biol. 2018, 41, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Valladares, M.; Obregón, A.; Chaput, J. Association between genetic variants of the clock gene and obesity and sleep duration. J. Physiol. Biochem. 2015, 71, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Škrlec, I.; Milić, J.; Cilenšek, I.; Petrovič, D.; Wagner, J.; Peterlin, B. Circadian clock genes and myocardial infarction in patients with type 2 diabetes mellitus. Gene 2019, 701, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Hernández-García, J.; Navas-Carrillo, D.; Orenes-Piñero, E. Alterations of circadian rhythms and their impact on obesity, metabolic syndrome and cardiovascular diseases. Crit. Rev. Food Sci. Nutr. 2019, 60, 1038–1047. [Google Scholar] [CrossRef]
- Škrlec, I.; Milić, J.; Steiner, R. The Impact of the Circadian Genes CLOCK and ARNTL on Myocardial Infarction. J. Clin. Med. 2020, 9, 484. [Google Scholar] [CrossRef] [Green Version]
- Lin, E.; Kuo, P.H.; Liu, Y.L.; Yang, A.C.; Kao, C.F.; Tsai, S.J. Effects of circadian clock genes and healthrelated behavior on metabolic syndrome in a Taiwanese population: Evidence from association and interaction analysis. PLoS ONE 2017, 12, e173861. [Google Scholar] [CrossRef]
- Škrlec, I. Circadian rhythm and myocardial infarction. Med. Flum. 2019, 55, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.; Zhao, X.; Hatori, M.; Yu, R.T.; Barish, G.D.; Lam, M.T.; Chong, L.W.; Ditacchio, L.; Atkins, A.R.; Glass, C.K.; et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 2012, 485, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Solt, L.; Wang, Y.; Banerjee, S.; Hughes, T.; Kojetin, D.; Lundasen, T.; Shin, Y.; Liu, J.; Cameron, M.; Noel, R.; et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 2012, 485, 62–68. [Google Scholar] [CrossRef]
- Lo, C.K.L.; Mertz, D.; Loeb, M. Newcastle-Ottawa Scale: Comparing reviewers’ to authors’ assessments. BMC Med. Res. Methodol. 2014, 14, 45. [Google Scholar] [CrossRef] [Green Version]
- Monteleone, P.; Tortorella, A.; Docimo, L.; Maldonato, M.N.; Canestrelli, B.; De Luca, L.; Maj, M. Investigation of 3111T/C polymorphism of the CLOCK gene in obese individuals with or without binge eating disorder: Association with higher body mass index. Neurosci. Lett. 2008, 435, 30–33. [Google Scholar] [CrossRef]
- Sookoian, S.; Gemma, C.; Gianotti, T.F.; Burgueño, A.; Castaño, G.; Pirola, C.J. Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity. Am. J. Clin. Nutr. 2008, 87, 1606–1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, C.; Zhang, R.; Wang, C.; Wang, J.; Ma, X.; Hou, X.; Lu, J.; Yu, W.; Jiang, F.; Bao, Y.; et al. Variants from GIPR, TCF7L2, DGKB, MADD, CRY2, GLIS3, PROX1, SLC30A8 and IGF1 Are Associated with Glucose Metabolism in the Chinese. PLoS ONE 2010, 5, e15542. [Google Scholar] [CrossRef]
- Galbete, C.; Contreras, R.; Martínez, J.A.; Martínez-González, M.Á.; Guillén-Grima, F.; Marti, A. Physical activity and sex modulate obesity risk linked to 3111T/C gene variant of the clock gene in an elderly population: The sun project. Chronobiol. Int. 2012, 29, 1397–1404. [Google Scholar] [CrossRef]
- Kelly, M.A.; Rees, S.D.; Hydriem, Z.L.; Shera, A.S.; Bellary, S.; O’Hare, J.P.; Kumar, S.; Taheri, S.; Basit, A.; Barnett, A.H. Circadian gene variants and susceptibility to type 2 diabetes: A pilot study. PLoS ONE 2012, 7, e32670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karthikeyan, R.; Marimuthu, G.; Sooriyakumar, M.; BaHammam, A.S.; Spence, D.W.; Pandi-Perumal, S.R.; Brown, G.M.; Cardinali, D.P. Per3 length polymorphism in patients with type 2 diabetes mellitus. Horm. Mol. Biol. Clin. Investig. 2014, 18, 145–149. [Google Scholar] [CrossRef]
- Kolomeichuk, S.N.; Kurbatova, I.V.; Topchieva, L.V.; Korneva, V.A.; Poltorak, A.N.; Chambers, T.C.; Nemova, N.N. Association between CLOCK genetic variants and individual susceptibility to essential hypertension and coronary artery disease in Russian population. Exp. Clin. Cardiol. 2014, 20, 1798–1813. [Google Scholar]
- Ruano, E.G.; Canivell, S.; Vieira, E. REV-ERB ALPHA polymorphism is associated with obesity in the Spanish obese male population. PLoS ONE 2014, 9, e104065. [Google Scholar] [CrossRef] [Green Version]
- Ye, D.; Cai, S.; Jiang, X.; Ding, Y.; Chen, K.; Fan, C.; Jin, M. Associations of polymorphisms in circadian genes with abdominal obesity in Chinese adult population. Obes. Res. Clin. Pract. 2016, 10, S133–S141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Liu, Y.; Zhang, Y.; Su, Z. Genetic variants of retinoic acid receptor-related orphan receptor alpha determine susceptibility to type 2 diabetes mellitus in Han Chinese. Genes 2016, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Li, G.Y.; Wang, H.; Chen, H. Association of insulin resistance with polymorphic variants of Clock and Bmal1 genes: A case–control study. Clin. Exp. Hypertens. 2020, 42, 371–375. [Google Scholar] [CrossRef]
- Tokat, B.; Kanca-Demirci, D.; Gul, N.; Satman, I.; Ozturk, O.; Ozder, A.; Kucukhuseyin, O.; Yilmaz-Aydogan, H. Determination of genetic changes of Rev-erb beta and Rev-erb alpha genes in Type 2 diabetes mellitus by next-generation sequencing. Gene 2020, 763, 145058. [Google Scholar] [CrossRef]
- de Azevedo, P.G.; Miranda, L.R.; Nicolau, E.S.; Alves, R.B.; Bicalho, M.A.C.; Couto, P.P.; Ramos, A.V.; de Souza, R.P.; Longhi, R.; Friedman, E.; et al. Genetic association of the PERIOD3 (PER3) Clock gene with extreme obesity. Obes. Res. Clin. Pract. 2021, 15, 334–338. [Google Scholar] [CrossRef]
- Zhang, L.; Ptáček, L.J.; Fu, Y.-H. Diversity of Human Clock Genotypes and Consequences. Prog. Mol. Biol. Transl. Sci. 2013, 119, 51. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.P.; Sun, L.; Li, X.H.; Che, F.G.; Zhu, X.Q.; Yang, F.; Han, J.; Jia, C.Y.; Yang, Z. Association of Adiponectin Polymorphism with Metabolic Syndrome Risk and Adiponectin Level with Stroke Risk: A Meta-Analysis. Sci. Rep. 2016, 6, 31945. [Google Scholar] [CrossRef] [Green Version]
- Uemura, H.; Katsuura-Kamano, S.; Yamaguchi, M.; Arisawa, K.; Hamajima, N.; Hishida, A.; Kawai, S.; Oze, I.; Shinchi, K.; Takashima, N.; et al. Variant of the clock circadian regulator (CLOCK) gene and related haplotypes are associated with the prevalence of type 2 diabetes in the Japanese population. J. Diabetes 2016, 8, 667–676. [Google Scholar] [CrossRef]
- Salazar, P.; Konda, S.; Sridhar, A.; Arbieva, Z.; Daviglus, M.; Darbar, D.; Rehman, J. Common genetic variation in circadian clock genes are associated with cardiovascular risk factors in an African American and Hispanic/Latino cohort. IJC Hear. Vasc. 2021, 34, 100808. [Google Scholar] [CrossRef]
- Gorokhova, S.G.; Generozov, E.V.; Yu, A.O.; Muraseeva, E.V.; Naumov, V.A.; Babikova, E.A.; Zaharczevskaya, N.B.; Prigorovskaya, T.S. Different association of CRY1 and CLOCK circadian genes with coronary atherosclerosis. J. Clin. Exp. Cardiol. 2014, 5, 2. [Google Scholar] [CrossRef]
- Li, X.; Quon, G.; Lipshitz, H.D.; Morris, Q. Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure. RNA 2010, 16, 1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozburn, A.R.; Purohit, K.; Parekh, P.K.; Kaplan, G.N.; Falcon, E.; Mukherjee, S.; Cates, H.M.; McClung, C.A. Functional Implications of the CLOCK 3111T/C Single-Nucleotide Polymorphism. Front. Psychiatry 2016, 7, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappa, K.I.; Gazouli, M.; Anastasiou, E.; Iliodromiti, Z.; Antsaklis, A.; Anagnou, N.P. The major circadian pacemaker ARNT-like protein-1 (BMAL1) is associated with susceptibility to gestational diabetes mellitus. Diabetes Res. Clin. Pract. 2013, 99, 151–157. [Google Scholar] [CrossRef]
- Woon, P.Y.; Kaisaki, P.J.; Bragança, J.; Bihoreau, M.; Levy, J.C.; Farrall, M.; Gauguier, D. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc. Natl. Acad. Sci. USA 2007, 104, 14412–14417. [Google Scholar] [CrossRef] [Green Version]
- Kovanen, L.; Donner, K.; Kaunisto, M.; Partonen, T. CRY1, CRY2 and PRKCDBP genetic variants in metabolic syndrome. Hypertens. Res. 2015, 38, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.L.; Jin, Y. Effects of MTNR1B genetic variants on the risk of type 2 diabetes mellitus: A meta-analysis. Mol. Genet. Genomic Med. 2019, 7, e611. [Google Scholar] [CrossRef] [Green Version]
- Patel, R.; Rathwa, N.; Palit, S.P.; Ramachandran, A.V.; Begum, R. Association of melatonin & MTNR1B variants with type 2 diabetes in Gujarat population. Biomed. Pharmacother. 2018, 103, 429–434. [Google Scholar] [CrossRef] [PubMed]
- de Luis, D.A.; Izaola, O.; Primo, D.; Aller, R. A circadian rhythm-related MTNR1B genetic variant (rs10830963) modulate body weight change and insulin resistance after 9 months of a high protein/low carbohydrate vs a standard hypocaloric diet. J. Diabetes Complicat. 2020, 34, 107534. [Google Scholar] [CrossRef]
- de Luis, D.A.; Izaola, O.; Primo, D.; Aller, R. Dietary-fat effect of the rs10830963 polymorphism in MTNR1B on insulin resistance in response to 3 months weight-loss diets. Endocrinol. Diabetes Nutr. 2020, 67, 43–52. [Google Scholar] [CrossRef]
- Corella, D.; Asensio, E.M.; Coltell, O.; Sorlí, J.V.; Estruch, R.; Martínez-González, M.Á.; Salas-Salvadó, J.; Castañer, O.; Arós, F.; Lapetra, J.; et al. CLOCK gene variation is associated with incidence of type-2 diabetes and cardiovascular diseases in type-2 diabetic subjects: Dietary modulation in the PREDIMED randomized trial. Cardiovasc. Diabetol. 2016, 15, 4. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Delgado, F.; Garcia-Rios, A.; Alcala-Diaz, J.F.; Rangel-Zuñiga, O.; Delgado-Lista, J.; Yubero-Serrano, E.M.; Lopez-Moreno, J.; Tinahones, F.J.; Ordovas, J.M.; Garaulet, M.; et al. Chronic consumption of a low-fat diet improves cardiometabolic risk factors according to the CLOCK gene in patients with coronary heart disease. Mol. Nutr. Food Res. 2015, 59, 2556–2564. [Google Scholar] [CrossRef] [PubMed]
First Author | Year | Country | Ethnicity | Study Type | Risk Factor | Population Type | Age Cases | Age Controls | Case | Control | Male (%) | Genotyping Method | Tested Genes | SNPs |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Monteleone et al. [21] | 2008 | Italy | Caucasian | Case-control | Obesity | general | 38.4 ± 10.9 | 26.1 ± 4.6 | 192 | 92 | 14.79% | RFLP-PCR | CLOCK | rs1801260 |
Sookoian et al. [22] | 2008 | Brazil | Hispanic | Cross-sectional | Obesity | general | 37.55 ± 0.45 | 32.66 ± 0.29 | 391 | 715 | 0.00% | PCR | CLOCK | rs1554483 rs11932595 rs4580704 rs6843722 rs6850524 rs4864548 |
Hu et al. [23] | 2010 | China | Asian | Case-control | T2DM | general | 60.33 ± 12.94 | 50.10 ± 14.27 | 3410 | 3412 | 47.42% | MassArray | CRY2 | rs11605924 |
Galbete et al. [24] | 2012 | Spain | Hispanic | Cross-sectional | Obesity | general | 70 ± 6 | 67 ± 5 | 532 | 371 | 72.76% | real-time PCR | CLOCK | rs1801260 |
Kelly et al. [25] | 2012 | UK/Pakistan | Asian | Case-control | T2DM | general | 55.94 ± 11.88 | 55.8 ± 11.28 | 1732 | 1780 | 49.32% | real-time PCR | BMAL1 CLOCK CRY1 CRY2 NPAS2 PER1 PER2 PER3 | rs11022775 rs7950226 rs11133373 rs12315175 rs2292912 rs1369481 rs17024926 rs895521 rs2289591 rs885747 rs7602358 rs1012477 |
Karthikeyan et al. [26] | 2014 | India | Asian | Case-control | T2DM | general | 50.7 ± 10.3 | 49.9 ± 9.1 | 302 | 330 | 58.23% | PCR | PER3 | 4/5–VNTR |
Kolomeichuk et al. [27] | 2014 | Russia | Caucasian | Cross-sectional | Hypertension | general | 51.9 ± 6.9 | 50.8 ± 8.1 | 434 | 435 | 48.33% | RFLP-PCR | BMAL1 CLOCK | rs6486121 rs1801260 rs4865010 rs34789226 rs3736544 |
Ruano et al. [28] | 2014 | Spain | Hispanic | Cross-sectional | Obesity | general | 64.33 ± 9.0 | 62.7 ± 8.9 | 779 | 418 | 40.10% | real-time PCR | REV-ERBα | rs939347 rs2071427 |
Ye et al. [29] | 2016 | China | Asian | Cross-sectional | Obesity | general | 52.09 ± 8.22 | 52.09 ± 8.21 | 260 | 260 | 48.85% | MassArray | CLOCK CRY1 | rs10002541 rs6850524 rs10861688 |
Zhang et al. [30] | 2016 | China | Asian | Case-control | T2DM | hospital | 57.37 ± 11.28 | 58.26 ± 10.51 | 427 | 408 | 51.26% | SNaPshot | RORα | rs17270188 rs1898413 rs11638541 rs8033552 rs10851685 rs8041381 rs340002 rs340023 rs28724570 |
Li et al. [31] | 2020 | China | Asian | Cross-sectional | Insuline resistance | general | 54 ± 13.81 | 53.10 ± 11.27 | 103 | 231 | 57.80% | sqeuncing | CLOCK BMAL1 | rs1801260 rs7950226 |
Tokat et al. [32] | 2020 | Turkey | Caucasian | Case-control | T2DM | general | 59.2 ± 1.3 | 59.0 ± 3.0 | 42 | 66 | 42.59% | NGS | REV-ERBα REV-ERBβ | chr17:38253751T > C rs72836608 rs2314339 rs2102928 chr3:24003765A > G rs924403442 |
Guimarães de Azevedo et al. [33] | 2021 | Brazil | Caucasian | Case-control | Obesity | hospital | 42.69 ± 15.85 | 54.5 ± 21.2 | 122 | 137 | 25.10% | real-time PCR | PER3 | rs707467 rs228697 rs228729 |
First Author | Tested Genes | SNPs | MAF Allele | MAF Cases | MAF CTRL | Wild Homozygote CTRL | Heterozygote CTRL | Variant Homozygote CTRL | Wild Homozygote Cases | Heterozygote Cases | Variant Homozygote Cases | HWE p-Value | Included in Meta-Analysis |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Monteleone 2008 | CLOCK | rs1801260 T > C | C | 0.291 | 0.288 | 46 | 39 | 7 | 103 | 68 | 21 | 0.75 | Yes |
Sookoian 2008 | CLOCK | rs1554483 C > G | G | 0.465 | 0.408 | 251 | 337 | 123 | 111 | 192 | 86 | 0.58 | No a |
rs11932595 A > G | G | 0.651 | 0.637 | 93 | 323 | 294 | 48 | 173 | 168 | 0.77 | No a | ||
rs4580704 C > G | G | 0.711 | 0.678 | 72 | 303 | 333 | 35 | 146 | 205 | 0.8 | No a | ||
rs6843722 A > C | C | 0.432 | 0.382 | 273 | 322 | 112 | 123 | 192 | 73 | 0.29 | No a | ||
rs6850524 G > C | C | 0.662 | 0.606 | 100 | 306 | 280 | 47 | 146 | 186 | 0.27 | Yes | ||
rs4864548 G > A | A | 0.457 | 0.404 | 248 | 336 | 121 | 111 | 191 | 83 | 0.69 | No a | ||
Hu 2010 | CRY2 | rs11605924 C > A | A | 0.245 | 0.230 | 181 | 1210 | 2021 | 205 | 1261 | 1944 | 0.99 | No a |
Galbete 2012 | CLOCK | rs1801260 T > C | C | 0.305 | 0.273 | 181 | 154 | 36 | 278 | 217 | 37 | 0.69 | Yes |
Kelly 2012 | BMAL1 | rs11022775 C > T | T | 0.19 | 0.16 | 1256 | 478 | 46 | 1136 | 533 | 63 | 0.95 | No a |
rs7950226 G > A | A | 0.5 | 0.46 | 519 | 884 | 377 | 433 | 866 | 433 | 0.99 | Yes | ||
CLOCK | rs11133373 C > G | G | 0.4 | 0.38 | 684 | 839 | 257 | 624 | 831 | 277 | 0.99 | No a | |
CRY1 | rs12315175 T > C | C | 0.06 | 0.07 | 1540 | 232 | 9 | 1530 | 195 | 6 | 0.93 | No a | |
CRY2 | rs2292912 G > C | C | 0.25 | 0.27 | 949 | 702 | 130 | 974 | 650 | 108 | 0.99 | No a | |
NPAS2 | rs1369481 C > T | T | 0.23 | 0.24 | 1028 | 649 | 103 | 1027 | 613 | 92 | 0.97 | No a | |
rs17024926 T > C | C | 0.29 | 0.32 | 823 | 775 | 182 | 873 | 713 | 146 | 0.98 | No a | ||
rs895521 C > T | T | 0.14 | 0.15 | 1286 | 454 | 40 | 1281 | 417 | 34 | 0.99 | No a | ||
PER1 | rs2289591 C > A | A | 0.17 | 0.14 | 1316 | 429 | 35 | 1193 | 489 | 50 | 0.99 | No a | |
rs885747 G > C | C | 0.23 | 0.29 | 897 | 733 | 150 | 1027 | 613 | 92 | 0.99 | No a | ||
PER2 | rs7602358 T > G | G | 0.15 | 0.16 | 1256 | 478 | 46 | 1251 | 442 | 39 | 0.95 | No a | |
PER3 | rs1012477 G > C | C | 0.05 | 0.05 | 1606 | 169 | 4 | 1563 | 165 | 4 | 0.84 | No a | |
Karthikeyan 2014 | PER3 | VNTR–4/5 | 5- | 0.43 | 0.35 | 136 | 155 | 39 | 102 | 143 | 57 | 0.61 | No a |
Kolomeichuk 2014 | BMAL1 | rs6486121 T > C | C | 0.479 | 0.451 | 135 | 204 | 96 | 117 | 217 | 100 | 0.054 | No a |
CLOCK | rs1801260 T > C | C | 0.419 | 0.310 | 209 | 187 | 39 | 143 | 213 | 78 | 0.76 | Yes | |
rs4865010 T > G | T | 0.472 | 0.629 | 187 | 170 | 78 | 139 | 139 | 156 | <0.001 | No a,b | ||
rs34789226 T > C | T | 0.41 | 0.531 | 109 | 244 | 83 | 87 | 178 | 169 | 0.01 | No a,b | ||
rs3736544 G > A | G | 0.449 | 0.409 | 109 | 139 | 187 | 126 | 135 | 174 | <0.001 | No a,b | ||
Ruano 2014 | REV-ERBα | rs939347 G > A | A | 0.207 | 0.199 | 261 | 146 | 10 | 494 | 241 | 41 | 0.045 | No a,b |
rs2071427 C > T | T | 0.237 | 0.25 | 235 | 157 | 26 | 453 | 274 | 48 | 0.97 | No a | ||
Ye 2016 | CLOCK | rs10002541 T > C | C | 0.271 | 0.335 | 117 | 112 | 31 | 134 | 104 | 17 | 0.59 | No a |
rs6850524 G > C | C | 0.268 | 0.322 | 117 | 112 | 26 | 134 | 104 | 16 | 0.92 | Yes | ||
CRY1 | rs10861688 C > T | T | 0.271 | 0.311 | 126 | 102 | 29 | 133 | 106 | 16 | 0.23 | No a | |
Zhang 2016 | RORα | rs17270188 G > A | A | 0.448 | 0.461 | 93 | 190 | 125 | 94 | 195 | 138 | 0.2 | No a |
rs1898413 G > A | A | 0.164 | 0.156 | 10 | 107 | 291 | 14 | 112 | 301 | 0.96 | No a | ||
rs11638541 T > C | C | 0.115 | 0.105 | 327 | 76 | 5 | 336 | 84 | 7 | 0.81 | No a | ||
rs8033552 G > A | A | 0.177 | 0.164 | 14 | 106 | 288 | 17 | 117 | 193 | 0.28 | No a | ||
rs10851685 A > T | T | 0.294 | 0.191 | 13 | 130 | 265 | 26 | 156 | 245 | 0.54 | No a | ||
rs8041381 A > G | G | 0.144 | 0.138 | 299 | 105 | 4 | 310 | 111 | 6 | 0.11 | No a | ||
rs340002 G > A | A | 0.358 | 0.346 | 43 | 196 | 169 | 51 | 204 | 172 | 0.21 | No a | ||
rs340023 T > C | C | 0.381 | 0.362 | 56 | 183 | 169 | 68 | 189 | 170 | 0.57 | No a | ||
rs28724570 C > T | T | 0.498 | 0.534 | 90 | 200 | 118 | 107 | 215 | 105 | 0.76 | No a | ||
Li 2020 | BMAL1 CLOCK | rs7950226 G > A rs1801260 T > C | A C | 0,45 0.108 | 0,35 0.291 | 64 186 | 126 40 | 41 5 | 45 51 | 45 44 | 14 8 | 0.12 0.12 | Yes Yes |
Tokat 2020 | REV-ERBα | chr17:38253751T > C | C | 0.31 | 0.288 | 28 | 38 | 0 | 16 | 26 | 0 | 0.001 | No a,b |
rs72836608 C > A | A | 0.321 | 0.295 | 33 | 6 | 27 | 19 | 4 | 19 | <0.001 | No a,b | ||
rs2314339 C > T | T | 0.19 | 0.212 | 40 | 2 | 24 | 28 | 2 | 12 | <0.001 | No a,b | ||
rs2102928 C > T | T | 0.357 | 0.356 | 26 | 7 | 33 | 17 | 5 | 20 | <0.001 | No a,b | ||
REV-ERBβ | chr3:24003765 A > G | G | 0.143 | 0.129 | 47 | 17 | 0 | 30 | 12 | 0 | 0.22 | No a | |
rs924403442 G > T | T | 0.25 | 0.288 | 28 | 38 | 0 | 21 | 21 | 0 | 0.001 | No a,b | ||
Guimarães de Azevedo 2021 | PER3 | rs707467 A > C | C | 0.188 | 0.236 | 69 | 48 | 5 | 78 | 34 | 5 | 0.34 | No a |
rs228697 C > G | G | 0.058 | 0.041 | 115 | 8 | 1 | 107 | 14 | 0 | 0.06 | No a | ||
rs228729 C > T | T | 0.379 | 0.293 | 65 | 43 | 14 | 43 | 63 | 14 | 0.11 | No a |
Comparison | SNP | Test of Association | Test of Heterogeneity | |||
---|---|---|---|---|---|---|
OR (95% CI) | p | I2 | Q | p | ||
BMAL1 | rs7950226 | |||||
Allelic model | G vs. A | 0.79 (0.62–1.00) | 0.047 | 54% | 2.18 | 0.140 |
Dominant model | GG + GA vs. AA | 0.74 (0.54–1.02) | 0.680 | 34% | 1.512 | 0.217 |
Recessive model | GG vs. GA + AA | 0.75 (0.58–0.98) | 0.037 | 34% | 1.53 | 0.216 |
CLOCK | rs1801260 | |||||
Allelic model | T vs. C | 1.00 (0.61–1.63) | 0.506 | 94% | 48.19 | <0.001 |
Dominant model | TT + TC vs. CC | 0.99 (0.52–1.89) | 0.797 | 80% | 15.03 | 0.002 |
Recessive model | TT vs. TC + CC | 0.99 (0.52–1.83) | 0.548 | 93% | 42.35 | <0.001 |
CLOCK | rs6850524 | |||||
Allelic model | G vs. C | 1.00 (0.61–1.63) | 0.96 | 89% | 9.24 | 0.002 |
Dominant model | GG + CG vs. CC | 0.99 (0.52–1.89) | 0.96 | 74% | 3.98 | 0.046 |
Association | Begg’s Test | Egger’s Test | ||
---|---|---|---|---|
Z Value | p Value | t Value | p Value | |
CLOCK rs1801260 T > C | 1.69 | 0.089 | 2.24 | 0.154 |
Allelic model | 1.02 | 0.308 | 1.33 | 0.315 |
Dominant model | 1.02 | 0.308 | 1.45 | 0.284 |
Recessive model | 0.339 | 0.734 | 1.08 | 0.393 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Škrlec, I.; Talapko, J.; Džijan, S.; Cesar, V.; Lazić, N.; Lepeduš, H. The Association between Circadian Clock Gene Polymorphisms and Metabolic Syndrome: A Systematic Review and Meta-Analysis. Biology 2022, 11, 20. https://doi.org/10.3390/biology11010020
Škrlec I, Talapko J, Džijan S, Cesar V, Lazić N, Lepeduš H. The Association between Circadian Clock Gene Polymorphisms and Metabolic Syndrome: A Systematic Review and Meta-Analysis. Biology. 2022; 11(1):20. https://doi.org/10.3390/biology11010020
Chicago/Turabian StyleŠkrlec, Ivana, Jasminka Talapko, Snježana Džijan, Vera Cesar, Nikolina Lazić, and Hrvoje Lepeduš. 2022. "The Association between Circadian Clock Gene Polymorphisms and Metabolic Syndrome: A Systematic Review and Meta-Analysis" Biology 11, no. 1: 20. https://doi.org/10.3390/biology11010020
APA StyleŠkrlec, I., Talapko, J., Džijan, S., Cesar, V., Lazić, N., & Lepeduš, H. (2022). The Association between Circadian Clock Gene Polymorphisms and Metabolic Syndrome: A Systematic Review and Meta-Analysis. Biology, 11(1), 20. https://doi.org/10.3390/biology11010020