Effect of Exercise on Secondary Sarcopenia: A Comprehensive Literature Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Search Strategy
3. Results and Discussions
3.1. Effect of Exercise in Patients with Sarcopenia and Cancer
3.2. Effect of Exercise in Patients with Osteosarcopenia and Osteoporosis with Sarcopenia
3.3. Effect of Exercise in Patients with Sarcopenia and Kidney Disease
3.4. Effect of Exercise in Patients with Sarcopenia and Neurological Diseases
3.5. Effect of Exercise in Patients with Sarcopenia and Lung Disease
3.6. Effect of Exercise in Patients with Sarcopenia and Cardiovascular Disease
3.7. Effect of Exercise in Patients with Sarcopenia and Liver Disease
3.8. Effect of Exercise in Patients with Sarcopenia and Type 2 Diabetes
4. Conclusions
5. Future Direction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narici, M.V.; Maffulli, N. Sarcopenia: Characteristics, mechanisms and functional significance. Br. Med. Bull. 2010, 95, 139–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.N.; Choi, K.M. Sarcopenia: Definition, Epidemiology, and Pathophysiology. J. Bone Metab. 2013, 20, 1. [Google Scholar] [CrossRef] [Green Version]
- Therakomen, V.; Petchlorlian, A.; Lakananurak, N. Prevalence and risk factors of primary sarcopenia in community-dwelling outpatient elderly: A cross-sectional study. Sci. Rep. 2020, 10, 19551. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, J.Y.; Kang, H.T.; Lee, D.C.; Lee, H.R.; Lee, Y.J. Body composition and its association with cardiometabolic risk factors in the elderly: A focus on sarcopenic obesity. Arch. Gerontol. Geriatr. 2013, 56, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Anton, S.D.; Hida, A.; Mankowski, R.; Layne, A.; Solberg, L.M.; Mainous, A.G.; Buford, T. Nutrition and Exercise in Sarcopenia. Curr. Protein Pept. Sci. 2018, 19, 649–667. [Google Scholar] [CrossRef] [PubMed]
- de Mello, R.G.B.; Dalla Corte, R.R.; Gioscia, J.; Moriguchi, E.H. Effects of Physical Exercise Programs on Sarcopenia Management, Dynapenia, and Physical Performance in the Elderly: A Systematic Review of Randomized Clinical Trials. J. Aging Res. 2019, 2019, 1959486. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Nagatsuma, Y.; Fukuda, Y.; Hirao, M.; Nishikawa, K.; Miyamoto, A.; Ikeda, M.; Nakamori, S.; Sekimoto, M.; Fujitani, K.; et al. Effectiveness of a preoperative exercise and nutritional support program for elderly sarcopenic patients with gastric cancer. Gastric Cancer 2017, 20, 913–918. [Google Scholar] [CrossRef]
- Dawson, J.K.; Dorff, T.B.; Todd Schroeder, E.; Lane, C.J.; Gross, M.E.; Dieli-Conwright, C.M. Impact of resistance training on body composition and metabolic syndrome variables during androgen deprivation therapy for prostate cancer: A pilot randomized controlled trial. BMC Cancer 2018, 18, 368. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.C.; Segal, R.J.; McKenzie, D.C.; Vallerand, J.R.; Morielli, A.R.; Mackey, J.R.; Gelmon, K.; Friedenreich, C.M.; Reid, R.D.; Courneya, K.S. Impact of resistance and aerobic exercise on sarcopenia and dynapenia in breast cancer patients receiving adjuvant chemotherapy: A multicenter randomized controlled trial. Breast Cancer Res. Treat. 2016, 158, 497–507. [Google Scholar] [CrossRef]
- Delrieu, L.; Martin, A.; Touillaud, M.; Pérol, O.; Morelle, M.; Febvey-Combes, O.; Freyssenet, D.; Friedenreich, C.; Dufresne, A.; Bachelot, T.; et al. Sarcopenia and serum biomarkers of oxidative stress after a 6-month physical activity intervention in women with metastatic breast cancer: Results from the ABLE feasibility trial. Breast Cancer Res. Treat. 2021, 188, 601–613. [Google Scholar] [CrossRef]
- Moug, S.J.; Barry, S.J.E.; Maguire, S.; Johns, N.; Dolan, D.; Steele, R.J.C.; Buchan, C.; Mackay, G.; Anderson, A.S.; Mutrie, N. Does prehabilitation modify muscle mass in patients with rectal cancer undergoing neoadjuvant therapy? A subanalysis from the REx randomised controlled trial. Tech. Coloproctol. 2020, 24, 959–964. [Google Scholar] [CrossRef]
- Stene, G.B.; Helbostad, J.L.; Balstad, T.R.; Riphagen, I.I.; Kaasa, S.; Oldervoll, L.M. Effect of physical exercise on muscle mass and strength in cancer patients during treatment—A systematic review. Crit. Rev. Oncol. Hematol. 2013, 88, 573–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, L.W.; Antonelli, J.; Masko, E.M.; Broadwater, G.; Lascola, C.D.; Fels, D.; Dewhirst, M.W.; Dyck, J.R.B.; Nagendran, J.; Flores, C.T.; et al. Exercise modulation of the host-tumor interaction in an orthotopic model of murine prostate cancer. J. Appl. Physiol. 2012, 113, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Vella, L.; Caldow, M.K.; Larsen, A.E.; Tassoni, D.; Della Gatta, P.A.; Gran, P.; Russell, A.P.; Cameron-Smith, D. Resistance exercise increases NF-κB activity in human skeletal muscle. Am. J. Physiol. Integr. Comp. Physiol. 2012, 302, R667–R673. [Google Scholar] [CrossRef]
- Ruiz-Casado, A.; Martín-Ruiz, A.; Pérez, L.M.; Provencio, M.; Fiuza-Luces, C.; Lucia, A. Exercise and the Hallmarks of Cancer. Trends Cancer 2017, 3, 423–441. [Google Scholar] [CrossRef]
- Grande, A.J.; Silva, V.; Maddocks, M. Exercise for cancer cachexia in adults: Executive summary of a Cochrane Collaboration systematic review. J. Cachexia Sarcopenia Muscle 2015, 6, 208–211. [Google Scholar] [CrossRef] [Green Version]
- Leal, L.G.; Lopes, M.A.; Peres, S.B.; Batista, M.L. Exercise Training as Therapeutic Approach in Cancer Cachexia: A Review of Potential Anti-inflammatory Effect on Muscle Wasting. Front. Physiol. 2021, 11, 570170. [Google Scholar] [CrossRef]
- Banitalebi, E.; Ghahfarrokhi, M.M.; Dehghan, M. Effect of 12-weeks elastic band resistance training on MyomiRs and osteoporosis markers in elderly women with Osteosarcopenic obesity: A randomized controlled trial. BMC Geriatr. 2021, 21, 433. [Google Scholar] [CrossRef] [PubMed]
- Kemmler, W.; Kohl, M.; Fröhlich, M.; Jakob, F.; Engelke, K.; Stengel, S.; Schoene, D. Effects of High-Intensity Resistance Training on Osteopenia and Sarcopenia Parameters in Older Men with Osteosarcopenia—One-Year Results of the Randomized Controlled Franconian Osteopenia and Sarcopenia Trial (FrOST). J. Bone Miner. Res. 2020, 35, 1634–1644. [Google Scholar] [CrossRef]
- Ghasemikaram, M.; Chaudry, O.; Nagel, A.M.; Uder, M.; Jakob, F.; Kemmler, W.; Kohl, M.; Engelke, K. Effects of 16 months of high intensity resistance training on thigh muscle fat infiltration in elderly men with osteosarcopenia. GeroScience 2021, 43, 607–617. [Google Scholar] [CrossRef]
- Kemmler, W.; Kohl, M.; Fröhlich, M.; Schoene, D.; von Stengel, S. Detraining effects after 18 months of high intensity resistance training on osteosarcopenia in older men-Six-month follow-up of the randomized controlled Franconian Osteopenia and Sarcopenia Trial (FrOST). Bone 2021, 142, 115772. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Lee, P.-H.; Lin, L.-F.; Liao, C.-D.; Liou, T.-H.; Huang, S.-W. Effects of progressive elastic band resistance exercise for aged osteosarcopenic adiposity women. Exp. Gerontol. 2021, 147, 111272. [Google Scholar] [CrossRef] [PubMed]
- Kemmler, W.; Schoene, D.; Kohl, M.; von Stengel, S. Changes in Body Composition and Cardiometabolic Health After Detraining in Older Men with Osteosarcopenia: 6-Month Follow-Up of the Randomized Controlled Franconian Osteopenia and Sarcopenia Trial (FrOST) Study. Clin. Interv. Aging 2021, 16, 571–582. [Google Scholar] [CrossRef]
- Lichtenberg, T.; von Stengel, S.; Sieber, C.; Kemmler, W. The Favorable Effects of a High-Intensity Resistance Training on Sarcopenia in Older Community-Dwelling Men with Osteosarcopenia: The Randomized Controlled FrOST Study. Clin. Interv. Aging 2019, 14, 2173–2186. [Google Scholar] [CrossRef] [Green Version]
- Cunha, P.M.; Ribeiro, A.S.; Tomeleri, C.M.; Schoenfeld, B.J.; Silva, A.M.; Souza, M.F.; Nascimento, M.A.; Sardinha, L.B.; Cyrino, E.S. The effects of resistance training volume on osteosarcopenic obesity in older women. J. Sports Sci. 2018, 36, 1564–1571. [Google Scholar] [CrossRef]
- Kemmler, W.; Kohl, M.; Fröhlich, M.; Engelke, K.; von Stengel, S.; Schoene, D. Effects of High-Intensity Resistance Training on Fitness and Fatness in Older Men With Osteosarcopenia. Front. Physiol. 2020, 11, 1014. [Google Scholar] [CrossRef] [PubMed]
- Dent, E.; Morley, J.E.; Cruz-Jentoft, A.J.; Arai, H.; Kritchevsky, S.B.; Guralnik, J.; Bauer, J.M.; Pahor, M.; Clark, B.C.; Cesari, M.; et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management. J. Nutr. Health Aging 2018, 22, 1148–1161. [Google Scholar] [CrossRef] [PubMed]
- Kemmler, W.; Häberle, L.; von Stengel, S. Effects of exercise on fracture reduction in older adults. Osteoporos. Int. 2013, 24, 1937–1950. [Google Scholar] [CrossRef] [PubMed]
- Kemmler, W.; Shojaa, M.; Kohl, M.; von Stengel, S. Exercise effects on bone mineral density in older men: A systematic review with special emphasis on study interventions. Osteoporos. Int. 2018, 29, 1493–1504. [Google Scholar] [CrossRef] [PubMed]
- Ghasemikaram, M.; Engelke, K.; Kohl, M.; von Stengel, S.; Kemmler, W. Detraining Effects on Muscle Quality in Older Men with Osteosarcopenia. Follow-Up of the Randomized Controlled Franconian Osteopenia and Sarcopenia Trial (FrOST). Nutrients 2021, 13, 1528. [Google Scholar] [CrossRef] [PubMed]
- Carlson, S.A.; Fulton, J.E.; Schoenborn, C.A.; Loustalot, F. Trend and Prevalence Estimates Based on the 2008 Physical Activity Guidelines for Americans. Am. J. Prev. Med. 2010, 39, 305–313. [Google Scholar] [CrossRef]
- Moreira, L.D.F.; de Oliveira, M.L.; Lirani-Galvão, A.P.; Marin-Mio, R.V.; dos Santos, R.N.; Lazaretti-Castro, M. Physical exercise and osteoporosis: Effects of different types of exercises on bone and physical function of postmenopausal women. Arq. Bras. Endocrinol. Metabol. 2014, 58, 514–522. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Wu, L.; He, Z. Effects of walking on the preservation of bone mineral density in perimenopausal and postmenopausal women. Menopause 2013, 20, 1216–1226. [Google Scholar] [CrossRef]
- Xu, J.; Lombardi, G.; Jiao, W.; Banfi, G. Effects of Exercise on Bone Status in Female Subjects, from Young Girls to Postmenopausal Women: An Overview of Systematic Reviews and Meta-Analyses. Sport. Med. 2016, 46, 1165–1182. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Latham, N.K. Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst. Rev. 2009. [Google Scholar] [CrossRef] [Green Version]
- Vlietstra, L.; Hendrickx, W.; Waters, D.L. Exercise interventions in healthy older adults with sarcopenia: A systematic review and meta-analysis. Australas. J. Ageing 2018, 37, 169–183. [Google Scholar] [CrossRef]
- Sardeli, A.; Komatsu, T.; Mori, M.; Gáspari, A.; Chacon-Mikahil, M. Resistance Training Prevents Muscle Loss Induced by Caloric Restriction in Obese Elderly Individuals: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 423. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, M.; Roskovensky, G.; Emery, K.; Manno, C.; Valek, K.; Cook, C. Effect of Resistance Exercises on Function in Older Adults with Osteoporosis or Osteopenia: A Systematic Review. Physiother. Canada 2012, 64, 386–394. [Google Scholar] [CrossRef] [Green Version]
- Marín-Cascales, E.; Alcaraz, P.E.; Ramos-Campo, D.J.; Martinez-Rodriguez, A.; Chung, L.H.; Rubio-Arias, J.Á. Whole-body vibration training and bone health in postmenopausal women. Medicine (Baltimore) 2018, 97, e11918. [Google Scholar] [CrossRef]
- Lopes, L.C.C.; Mota, J.F.; Prestes, J.; Schincaglia, R.M.; Silva, D.M.; Queiroz, N.P.; de Souza Freitas, A.T.V.; Lira, F.S.; Peixoto, M.D.R.G. Intradialytic Resistance Training Improves Functional Capacity and Lean Mass Gain in Individuals on Hemodialysis: A Randomized Pilot Trial. Arch. Phys. Med. Rehabil. 2019, 100, 2151–2158. [Google Scholar] [CrossRef]
- Zhou, Y.; Hellberg, M.; Hellmark, T.; Höglund, P.; Clyne, N. Muscle mass and plasma myostatin after exercise training: A substudy of Renal Exercise (RENEXC)—A randomized controlled trial. Nephrol. Dial. Transplant. 2021, 36, 95–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadelha, A.B.; Cesari, M.; Corrêa, H.L.; Neves, R.V.P.; Sousa, C.V.; Deus, L.A.; Souza, M.K.; Reis, A.L.; Moraes, M.R.; Prestes, J.; et al. Effects of pre-dialysis resistance training on sarcopenia, inflammatory profile, and anemia biomarkers in older community-dwelling patients with chronic kidney disease: A randomized controlled trial. Int. Urol. Nephrol. 2021, 53, 2137–2147. [Google Scholar] [CrossRef]
- Nakamura, K.; Sasaki, T.; Yamamoto, S.; Hayashi, H.; Ako, S.; Tanaka, Y. Effects of exercise on kidney and physical function in patients with non-dialysis chronic kidney disease: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 18195. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, Y.; Lu, Q. Effects of Exercise on Muscle Fitness in Dialysis Patients: A Systematic Review and Meta-Analysis. Am. J. Nephrol. 2019, 50, 291–302. [Google Scholar] [CrossRef]
- Boone, T. Introduction to exercise Physiology, 1st ed.; Burlington, Jones & Bartlett Learning, LLC, an Ascend learning Company: Burlington, MA, USA, 2014; ISBN 9781449698188. [Google Scholar]
- Landi, F.; Marzetti, E.; Martone, A.M.; Bernabei, R.; Onder, G. Exercise as a remedy for sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 2013, 17, 25–31. [Google Scholar] [CrossRef]
- Konopka, A.R.; Harber, M.P. Skeletal Muscle Hypertrophy After Aerobic Exercise Training. Exerc. Sport Sci. Rev. 2014, 42, 53–61. [Google Scholar] [CrossRef]
- Ozaki, H.; Loenneke, J.; Thiebaud, R.; Abe, T. Cycle training induces muscle hypertrophy and strength gain: Strategies and mechanisms. Acta Physiol. Hung. 2015, 102, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.C.; Lee, A.Y.; Kwak, S.; Kwak, S.G. Effect of Resistance Exercise on Depression in Mild Alzheimer Disease Patients With Sarcopenia. Am. J. Geriatr. Psychiatry 2020, 28, 587–589. [Google Scholar] [CrossRef]
- Schiffer, T.; Schulte, S.; Hollmann, W.; Bloch, W.; Strüder, H. Effects of Strength and Endurance Training on Brain-derived Neurotrophic Factor and Insulin-like Growth Factor 1 in Humans. Horm. Metab. Res. 2009, 41, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Steves, C.J.; Mehta, M.M.; Jackson, S.H.D.; Spector, T.D. Kicking Back Cognitive Ageing: Leg Power Predicts Cognitive Ageing after Ten Years in Older Female Twins. Gerontology 2016, 62, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Pentikäinen, H.; Savonen, K.; Komulainen, P.; Kiviniemi, V.; Paajanen, T.; Kivipelto, M.; Soininen, H.; Rauramaa, R. Muscle strength and cognition in ageing men and women: The DR’s EXTRA study. Eur. Geriatr. Med. 2017, 8, 275–277. [Google Scholar] [CrossRef]
- van Dam, R.; Van Ancum, J.M.; Verlaan, S.; Scheerman, K.; Meskers, C.G.M.; Maier, A.B. Lower Cognitive Function in Older Patients with Lower Muscle Strength and Muscle Mass. Dement. Geriatr. Cogn. Disord. 2018, 45, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Firth, J.; Firth, J.A.; Stubbs, B.; Vancampfort, D.; Schuch, F.B.; Hallgren, M.; Veronese, N.; Yung, A.R.; Sarris, J. Association Between Muscular Strength and Cognition in People With Major Depression or Bipolar Disorder and Healthy Controls. JAMA Psychiatry 2018, 75, 740. [Google Scholar] [CrossRef]
- Firth, J.; Stubbs, B.; Vancampfort, D.; Firth, J.A.; Large, M.; Rosenbaum, S.; Hallgren, M.; Ward, P.B.; Sarris, J.; Yung, A.R. Grip Strength Is Associated With Cognitive Performance in Schizophrenia and the General Population: A UK Biobank Study of 476559 Participants. Schizophr. Bull. 2018, 44, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Sternäng, O.; Reynolds, C.A.; Finkel, D.; Ernsth-Bravell, M.; Pedersen, N.L.; Dahl Aslan, A.K. Grip Strength and Cognitive Abilities: Associations in Old Age. J. Gerontol. Ser. B 2016, 71, 841–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavros, Y.; Gates, N.; Wilson, G.C.; Jain, N.; Meiklejohn, J.; Brodaty, H.; Wen, W.; Singh, N.; Baune, B.T.; Suo, C.; et al. Mediation of Cognitive Function Improvements by Strength Gains After Resistance Training in Older Adults with Mild Cognitive Impairment: Outcomes of the Study of Mental and Resistance Training. J. Am. Geriatr. Soc. 2017, 65, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Forte, R.; Boreham, C.A.; Leite, J.C.; De Vito, G.; Brennan, L.; Gibney, E.R.; Pesce, C. Enhancing cognitive functioning in the elderly: Multicomponent vs resistance training. Clin. Interv. Aging 2013, 8, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Kilgour, A.H.; Todd, O.M.; Starr, J.M. A systematic review of the evidence that brain structure is related to muscle structure and their relationship to brain and muscle function in humans over the lifecourse. BMC Geriatr. 2014, 14, 85. [Google Scholar] [CrossRef] [Green Version]
- Herold, F.; Törpel, A.; Schega, L.; Müller, N.G. Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements—A systematic review. Eur. Rev. Aging Phys. Act. 2019, 16, 10. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, J.; Millet, G.P.; Place, N.; Kayser, B.; Zanou, N. The Muscle-Brain Axis and Neurodegenerative Diseases: The Key Role of Mitochondria in Exercise-Induced Neuroprotection. Int. J. Mol. Sci. 2021, 22, 6479. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.N.; Yoon, S.S. Sarcopenia: Neurological Point of View. J. Bone Metab. 2017, 24, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagamatsu, L.S. Resistance Training Promotes Cognitive and Functional Brain Plasticity in Seniors With Probable Mild Cognitive Impairment. Arch. Intern. Med. 2012, 172, 666. [Google Scholar] [CrossRef]
- Bai, F.; Watson, D.R.; Yu, H.; Shi, Y.; Yuan, Y.; Zhang, Z. Abnormal resting-state functional connectivity of posterior cingulate cortex in amnestic type mild cognitive impairment. Brain Res. 2009, 1302, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.; Liao, Z.; Mao, D.; Zhang, Q.; Ji, G.; Li, Y.; Ding, Z. Directed Functional Connectivity of Posterior Cingulate Cortex and Whole Brain in Alzheimer’s Disease and Mild Cognitive Impairment. Curr. Alzheimer Res. 2017, 14, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liang, P.; Jia, X.; Qi, Z.; Yu, L.; Yang, Y.; Zhou, W.; Lu, J.; Li, K. Baseline and longitudinal patterns of hippocampal connectivity in mild cognitive impairment: Evidence from resting state fMRI. J. Neurol. Sci. 2011, 309, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Suo, C.; Singh, M.F.; Gates, N.; Wen, W.; Sachdev, P.; Brodaty, H.; Saigal, N.; Wilson, G.C.; Meiklejohn, J.; Singh, N.; et al. Therapeutically relevant structural and functional mechanisms triggered by physical and cognitive exercise. Mol. Psychiatry 2016, 21, 1633–1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cebron Lipovec, N.; Schols, A.M.W.J.; van den Borst, B.; Beijers, R.J.H.C.G.; Kosten, T.; Omersa, D.; Lainscak, M. Sarcopenia in Advanced COPD Affects Cardiometabolic Risk Reduction by Short-Term High-intensity Pulmonary Rehabilitation. J. Am. Med. Dir. Assoc. 2016, 17, 814–820. [Google Scholar] [CrossRef]
- Spruit, M.A.; Burtin, C.; De Boever, P.; Langer, D.; Vogiatzis, I.; Wouters, E.F.M.; Franssen, F.M.E. COPD and exercise: Does it make a difference? Breathe 2016, 12, e38–e49. [Google Scholar] [CrossRef] [PubMed]
- Maltais, F.; LeBlanc, P.; Jobin, J.; Bérubé, C.; Bruneau, J.; Carrier, L.; Breton, M.J.; Falardeau, G.; Belleau, R. Intensity of training and physiologic adaptation in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1997, 155, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Casaburi, R.; Patessio, A.; Ioli, F.; Zanaboni, S.; Donner, C.F.; Wasserman, K. Reductions in Exercise Lactic Acidosis and Ventilation as a Result of Exercise Training in Patients with Obstructive Lung Disease. Am. Rev. Respir. Dis. 1991, 143, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Maltais, F.; LeBlanc, P.; Simard, C.; Jobin, J.; Bérubé, C.; Bruneau, J.; Carrier, L.; Belleau, R. Skeletal muscle adaptation to endurance training in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1996, 154, 442–447. [Google Scholar] [CrossRef]
- Ries, A.L. Effects of Pulmonary Rehabilitation on Physiologic and Psychosocial Outcomes in Patients with Chronic Obstructive Pulmonary Disease. Ann. Intern. Med. 1995, 122, 823. [Google Scholar] [CrossRef] [PubMed]
- Vogiatzis, I. Strategies of muscle training in very severe COPD patients. Eur. Respir. J. 2011, 38, 971–975. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, H.; Nakajima, T.; Shibasaki, I.; Nasuno, T.; Kaneda, H.; Katayanagi, S.; Ishizaka, H.; Mizushima, Y.; Uematsu, A.; Yasuda, T.; et al. Low-Intensity Resistance Training with Moderate Blood Flow Restriction Appears Safe and Increases Skeletal Muscle Strength and Size in Cardiovascular Surgery Patients: A Pilot Study. J. Clin. Med. 2021, 10, 547. [Google Scholar] [CrossRef] [PubMed]
- Doyle, M.P.; Indraratna, P.; Tardo, D.T.; Peeceeyen, S.C.; Peoples, G.E. Safety and efficacy of aerobic exercise commenced early after cardiac surgery: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2019, 26, 36–45. [Google Scholar] [CrossRef] [PubMed]
- JCS Guidelines Guidelines for Rehabilitation in Patients With Cardiovascular Disease (JCS 2012). Circ. J. 2014, 78, 2022–2093. [CrossRef] [PubMed] [Green Version]
- Williams, M.A.; Haskell, W.L.; Ades, P.A.; Amsterdam, E.A.; Bittner, V.; Franklin, B.A.; Gulanick, M.; Laing, S.T.; Stewart, K.J. Resistance Exercise in Individuals With and Without Cardiovascular Disease: 2007 Update. Circulation 2007, 116, 572–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leon, A.S.; Franklin, B.A.; Costa, F.; Balady, G.J.; Berra, K.A.; Stewart, K.J.; Thompson, P.D.; Williams, M.A.; Lauer, M.S. Cardiac Rehabilitation and Secondary Prevention of Coronary Heart Disease. Circulation 2005, 111, 369–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, M.L.; Franklin, B.A.; Balady, G.J.; Chaitman, B.L.; Fleg, J.L.; Fletcher, B.; Limacher, M.; Piña, I.L.; Stein, R.A.; Williams, M.; et al. Resistance Exercise in Individuals With and Without Cardiovascular Disease. Circulation 2000, 101, 828–833. [Google Scholar] [CrossRef] [PubMed]
- William, J.K.; Kent, A.; Enzo, P.D. Progression Models in Resistance Training for Healthy Adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef]
- Takarada, Y.; Takazawa, H.; Sato, Y.; Takebayashi, S.; Tanaka, Y.; Ishii, N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J. Appl. Physiol. 2000, 88, 2097–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, B.S.; Stannard, M.S.; Duren, D.L.; Cook, J.L.; Stannard, J.P. Does Blood Flow Restriction Therapy in Patients Older Than Age 50 Result in Muscle Hypertrophy, Increased Strength, or Greater Physical Function? A Systematic Review. Clin. Orthop. Relat. Res. 2020, 478, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T.; Brechue, W.F.; Fujita, T.; Shirakawa, J.; Sato, Y.; Abe, T. Muscle activation during low-intensity muscle contractions with restricted blood flow. J. Sports Sci. 2009, 27, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Ishizaka, H.; Uematsu, A.; Mizushima, Y.; Nozawa, N.; Katayanagi, S.; Matsumoto, K.; Nishikawa, K.; Takahashi, R.; Arakawa, T.; Sawaguchi, T.; et al. Blood Flow Restriction Increases the Neural Activation of the Knee Extensors During Very Low-Intensity Leg Extension Exercise in Cardiovascular Patients: A Pilot Study. J. Clin. Med. 2019, 8, 1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakajima, T.; Kurano, M.; Iida, H.; Takano, H.; Oonuma, H.; Morita, T.; Meguro, K.; Sato, Y.; Nagata, T. KAATSU Training Group Use and safety of KAATSU training: Results of a national survey. Int. J. KAATSU Train. Res. 2006, 2, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Patel, B.H.; Kym, C.; Nwachukwu, B.U.; Beletksy, A.; Forsythe, B.; Chahla, J. Perioperative Blood Flow Restriction Rehabilitation in Patients Undergoing ACL Reconstruction: A Systematic Review. Orthop. J. Sports Med. 2020, 8, 232596712090682. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T.; Kurano, M.; Sakagami, F.; Iida, H.; Fukumura, K.; Fukuda, T.; Takano, H.; Madarame, H.; Yasuda, T.; Nagata, T.; et al. Effects of low-intensity KAATSU resistance training on skeletal muscle size/strength and endurance capacity in patients with ischemic heart disease. Int. J. KAATSU Train. Res. 2010, 6, 1–7. [Google Scholar] [CrossRef]
- Park, J.; Kwon, Y.; Park, H. Effects of 24-Week Aerobic and Resistance Training on Carotid Artery Intima-Media Thickness and Flow Velocity in Elderly Women with Sarcopenic Obesity. J. Atheroscler. Thromb. 2017, 24, 1117–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pu, C.T.; Johnson, M.T.; Forman, D.E.; Hausdorff, J.M.; Roubenoff, R.; Foldvari, M.; Fielding, R.A.; Singh, M.A.F. Randomized trial of progressive resistance training to counteract the myopathy of chronic heart failure. J. Appl. Physiol. 2001, 90, 2341–2350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, V.; Linke, A. Impact of exercise training on cardiovascular disease and risk. Biochim. Biophys. Acta—Mol. Basis Dis. 2019, 1865, 728–734. [Google Scholar] [CrossRef]
- Adamopoulos, S. Physical training reduces peripheral markers of inflammation in patients with chronic heart failure. Eur. Heart J. 2001, 22, 791–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smart, N.A.; Larsen, A.I.; Le Maitre, J.P.; Ferraz, A.S. Effect of Exercise Training on Interleukin-6, Tumour Necrosis Factor Alpha and Functional Capacity in Heart Failure. Cardiol. Res. Pract. 2011, 2011, 532620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gielen, S.; Adams, V.; Möbius-Winkler, S.; Linke, A.; Erbs, S.; Yu, J.; Kempf, W.; Schubert, A.; Schuler, G.; Hambrecht, R. Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J. Am. Coll. Cardiol. 2003, 42, 861–868. [Google Scholar] [CrossRef]
- Batista, M., Jr.; Rosa, J.C.; Lopes, R.D.; Lira, F.S.; Martins, E., Jr.; Yamashita, A.S.; Brum, P.C.; Lancha, A.H., Jr.; Lopes, A.C.; Seelaender, M. Exercise training changes IL-10/TNF-α ratio in the skeletal muscle of post-MI rats. Cytokine 2010, 49, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Cunha, T.F.; Bacurau, A.V.N.; Moreira, J.B.N.; Paixão, N.A.; Campos, J.C.; Ferreira, J.C.B.; Leal, M.L.; Negrão, C.E.; Moriscot, A.S.; Wisløff, U.; et al. Exercise Training Prevents Oxidative Stress and Ubiquitin-Proteasome System Overactivity and Reverse Skeletal Muscle Atrophy in Heart Failure. PLoS ONE 2012, 7, e41701. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.W.A.; Piedade, W.P.; Soares, L.C.; Souza, P.A.T.; Aguiar, A.F.; Vechetti-Júnior, I.J.; Campos, D.H.S.; Fernandes, A.A.H.; Okoshi, K.; Carvalho, R.F.; et al. Aerobic Exercise Training Prevents Heart Failure-Induced Skeletal Muscle Atrophy by Anti-Catabolic, but Not Anabolic Actions. PLoS ONE 2014, 9, e110020. [Google Scholar] [CrossRef] [Green Version]
- Gielen, S.; Sandri, M.; Kozarez, I.; Kratzsch, J.; Teupser, D.; Thiery, J.; Erbs, S.; Mangner, N.; Lenk, K.; Hambrecht, R.; et al. Exercise Training Attenuates MuRF-1 Expression in the Skeletal Muscle of Patients With Chronic Heart Failure Independent of Age. Circulation 2012, 125, 2716–2727. [Google Scholar] [CrossRef] [Green Version]
- Langley, B.; Thomas, M.; Bishop, A.; Sharma, M.; Gilmour, S.; Kambadur, R. Myostatin Inhibits Myoblast Differentiation by Down-regulating MyoD Expression. J. Biol. Chem. 2002, 277, 49831–49840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heineke, J.; Auger-Messier, M.; Xu, J.; Sargent, M.; York, A.; Welle, S.; Molkentin, J.D. Genetic Deletion of Myostatin From the Heart Prevents Skeletal Muscle Atrophy in Heart Failure. Circulation 2010, 121, 419–425. [Google Scholar] [CrossRef]
- Schuelke, M.; Wagner, K.R.; Stolz, L.E.; Hübner, C.; Riebel, T.; Kömen, W.; Braun, T.; Tobin, J.F.; Lee, S.-J. Myostatin Mutation Associated with Gross Muscle Hypertrophy in a Child. N. Engl. J. Med. 2004, 350, 2682–2688. [Google Scholar] [CrossRef] [Green Version]
- Lenk, K.; Erbs, S.; Höllriegel, R.; Beck, E.; Linke, A.; Gielen, S.; Winkler, S.M.; Sandri, M.; Hambrecht, R.; Schuler, G.; et al. Exercise training leads to a reduction of elevated myostatin levels in patients with chronic heart failure. Eur. J. Prev. Cardiol. 2012, 19, 404–411. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, E.; Veksler, V.; Bigard, X.; Mateo, P.; Ventura-Clapier, R. Heart Failure Affects Mitochondrial but Not Myofibrillar Intrinsic Properties of Skeletal Muscle. Circulation 2000, 102, 1847–1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quigley, A.F.; Kapsa, R.M.I.; Esmore, D.; Hale, G.; Byrne, E. Mitochondrial respiratory chain activity in idiopathic dilated cardiomyopathy. J. Card. Fail. 2000, 6, 47–55. [Google Scholar] [CrossRef]
- Flück, M.; Hoppeler, H. Molecular basis of skeletal muscle plasticity-from gene to form and function. In Reviews of Physiology, Biochemistry and Pharmacology; Springer: Berlin/Heidelberg, Germany, 2003; pp. 159–216. [Google Scholar]
- Lin, J.; Wu, H.; Tarr, P.T.; Zhang, C.-Y.; Wu, Z.; Boss, O.; Michael, L.F.; Puigserver, P.; Isotani, E.; Olson, E.N.; et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 2002, 418, 797–801. [Google Scholar] [CrossRef]
- Venturaclapier, R.; Mettauer, B.; Bigard, X. Beneficial effects of endurance training on cardiac and skeletal muscle energy metabolism in heart failure. Cardiovasc. Res. 2007, 73, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Russell, A.P.; Foletta, V.C.; Snow, R.J.; Wadley, G.D. Skeletal muscle mitochondria: A major player in exercise, health and disease. Biochim. Biophys. Acta—Gen. Subj. 2014, 1840, 1276–1284. [Google Scholar] [CrossRef]
- Hambrecht, R.; Fiehn, E.; Yu, J.; Niebauer, J.; Weigl, C.; Hilbrich, L.; Adams, V.; Riede, U.; Schuler, G. Effects of Endurance Training on Mitochondrial Ultrastructure and Fiber Type Distribution in Skeletal Muscle of Patients With Stable Chronic Heart Failure. J. Am. Coll. Cardiol. 1997, 29, 1067–1073. [Google Scholar] [CrossRef] [Green Version]
- Williams, F.R.; Berzigotti, A.; Lord, J.M.; Lai, J.C.; Armstrong, M.J. Review article: Impact of exercise on physical frailty in patients with chronic liver disease. Aliment. Pharmacol. Ther. 2019, 50, 988–1000. [Google Scholar] [CrossRef]
- Trovato, F.; Aiello, F.; Larocca, L.; Taylor-Robinson, S. The Role of Physical Activity and Nutrition in the Sarcopenia of Cirrhosis. J. Funct. Morphol. Kinesiol. 2016, 1, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Berzigotti, A.; Saran, U.; Dufour, J.-F. Physical activity and liver diseases. Hepatology 2016, 63, 1026–1040. [Google Scholar] [CrossRef] [PubMed]
- Díaz, E.G.; Ramírez, J.A.; Fernández, N.H.; Gallego, C.P.; Hernández, D.D.G.P. Effect of strength exercise with elastic bands and aerobic exercise in the treatment of frailty of the elderly patient with type 2 diabetes mellitus. Endocrinol. Diabetes Nutr. (Engl. Ed.) 2019, 66, 563–570. [Google Scholar] [CrossRef]
- Sampath, K.A.; Maiya, A.G.; Shastry, B.A.; Vaishali, K.; Ravishankar, N.; Hazari, A.; Gundmi, S.; Jadhav, R. Exercise and insulin resistance in type 2 diabetes mellitus: A systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2019, 62, 98–103. [Google Scholar] [CrossRef]
- Zhao, X.; He, Q.; Zeng, Y.; Cheng, L. Effectiveness of combined exercise in people with type 2 diabetes and concurrent overweight/obesity: A systematic review and meta-analysis. BMJ Open 2021, 11, e046252. [Google Scholar] [CrossRef]
- Boulé, N.G.; Haddad, E.; Kenny, G.P.; Wells, G.A.; Sigal, R.J. Effects of Exercise on Glycemic Control and Body Mass in Type 2 Diabetes Mellitus. JAMA 2001, 286, 1218. [Google Scholar] [CrossRef]
S.No | Authors, Year | Place, N | Subjects with (Baseline Sarcopenia) | Mean Age ± SD (Years), Sex | Exercise Intervention and Number of Groups | Measured Outcomes | Results | |
---|---|---|---|---|---|---|---|---|
1 | Dawson et al., 2018 | Los angeles, 37 | Prostate cancer patients on ADT (43.8% of participants were sarcopenic) | 67.4 ± 8.8, M | Resistance training for 12 weeks 4 groups: TRAINPRO, TRAIN, PRO, STRETCH | -body composition, MetS, QoL, physical fitness, Muscular strength | EXE compared to Non EXE | |
lean mass | ||||||||
sarcopenia prevalence | ||||||||
body fat % | ||||||||
strength | ||||||||
prostate cancer-specific QoL | ||||||||
2 | Adams et al., 2016 | Ottawa, vacuover; 200 | Breast Cancer patients (25.5 % were sarcopenic and 54.5 % were dynapenic) | 48.8 ± 13.3, F | resistance and aerobic exercise 3 times/week during chemotherapy 3 groups: UC, AET, RET | -QoL, physical function Fatigue, LBM, percent body fat, bone mineral content, muscular strength. | RET compared UC | |
SMI | ||||||||
RET, compared to UC/AET combined | ||||||||
Prevalence sarcopenia and dynapenia | ||||||||
RET during adjuvant chemotherapy | ||||||||
QoL | ||||||||
3 | Delrieu et al., 2021 | Lyon France; 49 | metastatic breast cancer patients (53% were sarcopenic and 75% had poor muscle quality.) | 55.0 ± 10.4, F | unsupervised, personalized, 6-month physical activity intervention with activity tracker - Single group | -SMI, muscle quality, Oxidative markers including plasma antioxidant enzymes, prooxidant enzymes and oxidative stress damage markers | Sarcopenic compared to non-sarcopenic | |
Muscle cross sectional area | ||||||||
skeletal muscle radiodensity | ||||||||
lean body mass | ||||||||
MDA | ||||||||
4 | Yamamoto et al., 2017 | Japan, 22 | gastric cancer patients with a diagnosis of sarcopenia (EWGS) | 72.7 ± 4.5, M:F = 5:6 | preoperative exercise program consisted of handgrip training, walking, and resistance training - Single group | -4-m gait speed testing, handgrip strength testing, SMI | Handgrip strength | |
sarcopenia prevalence | ||||||||
5 | Moug et al., 2020 | West of Scotland; 44 | Rectal cancer patients (14% were sarcopenic) | 66.8 ± 9.6, M:F = 7:4 | 13–17-week telephone-guided graduated walking programme -2 groups: Intervention, control group | -baseline physical assessment, psoas muscle mass measurement | Intervention compared to control group | |
muscle mass |
S.No | Authors, Year | Place, N | Subjects | Mean Age ± SD (Years), Sex | Exercise Intervention | Measured Outcomes | Results | |
---|---|---|---|---|---|---|---|---|
1 | Banitalebi et al., 2021 | Iran, 63 | Osteosarcopenic | 64.1 ± 3.6, F | RET via elastic bands 3 times/ week for 12-weeks. -2 group: Intervention, control | -Fracture Risk Assessment Tool score, bone mineral content, bone mineral density, vitamin D, alkaline phosphatase, C-terminal telopeptides of type I collagen, expression of miR-206 and miR-133 | No change | |
2 | Ghasemikaram et al., 2021b | Germany, 43 | Osteosarcopenia | 78 ± 4, M | The HIRT scheduled a periodized single set protocol 2 times/weekly. After the intervention, the men were subjected to 6 months of detraining -2 groups: HIRT, Control | MQ, maximum isokinetic hip/leg extensor strength per unit of mid-thigh intra-fascia volume | Detraining effect | |
MQ | ||||||||
3 | Kemmler et al., 2020b | Germany, 43 | Sedentary community dwelling subjects with osteopenia/osteoporosis and SMI-based sarcopenia | 78.5 ± 4.3, M | HIRT for 12 months -2 groups: HIRT, Control * HIRT provided a progressive, periodized single-set DRT on machines with high intensity, effort, and velocity twice a week, * CG: maintain lifestyle * Both groups: supplemented with whey protein, vitamin D, and calcium | -BMD, SMI | EG compared to CG | |
LS-BMD | Maintained | |||||||
SMI | ||||||||
Total hip BMD | No change | |||||||
4 | Kemmler et al., 2021a | Germany, 43 | Community-dwelling men with osteosarcopenia | 78.5 ± 4.3, M | HIRT for 18 months -2 groups: HIRT, Control * After intervention of 18 months stopped HIT-RT for 6 months, but continued their habitual physical activity | -SMI, BMD at the lumbar-spine and total-hip -maximum hip/leg-extensor strength, HGS, gait velocity. | Detraining in the HIT-RT compared to CG | |
SMI | ||||||||
hip-/leg-extensor strength | ||||||||
total-hip BMD | ||||||||
HGS | No change | |||||||
gait velocity | No change | |||||||
5 | Lee et al., 2021 | Taiwan, 27 | Osteosarcopenic | 71.1 ± 4.9, F | RET 12 weeks -2 Groups: experimental (RET) control groups (no exercise) | -Lean mass, physical capacity assessments | RET compared to CG | |
physical function | ||||||||
6 | Ghasemikaram et al., 2021a | Germany, 43 | Sedentary community dwelling subjects with osteopenia/osteoporosis and SMI-based sarcopenia | 78.5 ± 4.3, M | HIRT for 16 months -2 groups: HIRT, Control * HIRT provided a progressive, periodized single-set DRT on machines with high intensity, effort, and velocity twice a week, * CG: maintained lifestyle. * Both groups: supplemented with whey protein, vitamin D, and calcium | -muscle, adipose tissue volume, fat fraction of the thigh. | EG compared to CG | |
IMAT volume | ||||||||
fat fraction within the deep fascia of the thigh | ||||||||
7 | Kemmler et al., 2020c | Germany, 43 | Osteosarcopenia | 78.5 ± 4.3, M | The HIRT scheduled a periodized single set protocol 2 times/ week. After the intervention, the men were subjected to six months of detraining -2 groups: HIRT, Control | -LBM, total and abdominal body fat rate, MetSZ | HIT-RT compared to CG | |
LBM | ||||||||
total and abdominal body fat rate | ||||||||
MetSZ | ||||||||
8 | Kemmler et al., 2021b | Germany, 43 | Sedentary community dwelling subjects with osteopenia/osteoporosis and SMI-based sarcopenia | 78.5 ± 4.3, M | HIT-DR for 16 months -2 groups: HIT-DRT, Control * HIT-DRT: Supervised HIT-RT twice/week and whey protein 1.5–1.6 g/kg/body supplementation * CG: maintained lifestyle and whey protein1.2 g/kg/body mass/d * Both groups were supplied with calcium and vitamin D | -BMD, sarcopenia Z-score. | HIT-DRT compared to CG | |
sarcopenia Z-score | ||||||||
-total hip | ||||||||
-BMD at lumbar spine | ||||||||
9 | Lichtenberg et al., 2019 | Germany, 43 | Sedentary community dwelling subjects with osteopenia/osteoporosis and SMI-based sarcopenia | 78.5 ± 4.2, M | HIT-DRT for 23 weeks -2 groups: HIT-DRT, Control * HIT-DRT: Supervised HIT-RT twice/week and whey protein 1.5–1.6 g/kg/body supplementation * CG: maintained lifestyle and whey protein1.2 g/kg/body mass/d * Both groups were supplied with calcium and vitamin D | -Sarcopenia Z-score, physiological parameters, SMI, HGS, gait velocity. | HIT-DRT compared to CG | |
sarcopenia Z-score | ||||||||
SMI | ||||||||
HGS | ||||||||
10 | Cunha et al., 2018 | Brazil, 62 | osteosarcopenic | 68.0 ± 4.3, F | RET with 1 or 3 sets for 12 weeks -3 groups: G1S(1 set), G3S(3 sets), Control (no) | -Body composition, BMD, SMI | G3S compared to G1S | |
body fat | ||||||||
G1S and G3S compared to CG | ||||||||
SMI | ||||||||
11 | Kemmler et al., 2020a | Germany, 43 | Osteosarcopenic | 78.5 ± 4.3, M | 18 months of periodized HIT-RT * single-blind, two-group parallel design * exercise group: supervised periodized HIT-RT on machines 2 times/week * control group: maintained their physical activity/exercise habits.* Both groups were supplied with protein, cholecalciferol, and calcium | -LBM, total and abdominal body fat, maximum hip/leg extensor strength | HIT-RT vs. CG | |
LBM | ||||||||
total body fat mass | ||||||||
abdominal body fat percentage maximum hip/leg extensor strength | |
S.No | Authors, Year | Place, N | Subjects | Mean Age ± SD (Years), Sex | Exercise Intervention, Number of Groups | Measured Outcomes | Results | |
---|---|---|---|---|---|---|---|---|
1 | Lopes et al., 2019 | Brazil, 80 | Individuals on hemodialysis (prevalence of pre-sarcopenia and sarcopenia was 5% and 30% in the CG; 50% and 25% in the MLG; and 28.6% and 21.4 % in the HLG, respectively) | 54.2 ± 12.0, Both M:F = 1:1 | The 12 weeks of intradialytic RT 3 times per week -3 groups: HLG: 8–10 repetitions, MLG: 16–18 repetitions, CG: stretching exercise | Body composition, sarcopenia prevalence, functional capacity, inflammatory markers, QoL | HLG compared to CG | |
LLM | ||||||||
pain and physical function domains | ||||||||
Both RT compared to CG | ||||||||
SMI, functional capacity | ||||||||
Prevalence | ||||||||
2 | Zhou et al., 2021 | Lund, 112 | non-dialysis-dependent patients with CKD(10% sarcopenia) | 67.0 ± 13.0, Both M:F = 2:1 | strength or balance in combination with endurance training for 12 months -2 group: Balance training, strength training | Body composition, Plasma myostatin | Balance compared to strength group | |
leg and WBLM | ||||||||
Prevalence of sarcopenia | No Change in both groups | |||||||
Plasma myostatin | ||||||||
3 | Gadelha et al., 2021 | Brazil, 107 | CKD with sarcopenia | 65.4 ± 3.7 Both (ratio not given) | Treatment groups underwent a 24-week intervention with RT before each dialysis session, three times per week. -4 groups: sarcopenic RT, non-sarcopenic RT, sarcopenic control, non-sarcopenic control | Blood sample analysis for ferritin, hepcidin, iron availability, and inflammatory profile (TNFα, IL-6, and IL-10) was conducted. All-cause mortality was recorded over 5 years | Sarcopenic RT group compared to other groups | |
sarcopenia status | ||||||||
inflammatory profile and anemia biomarkers | improved |
S.No | Authors, Year | Place | Subjects | Mean Age ± SD (Years) | Exercise Intervention | Measured Outcomes | Results | |
---|---|---|---|---|---|---|---|---|
1 | Chang et al., 2020 | Korea, 40 | mild AD and sarcopenia | 79.3 ± 5.1, F | 40-min elastic resistance exercise using Theraband -2 groups: exercise (3 training sessions in nonconsecutive days /week for 12 weeks. Each session 10-min general warm-up, 40-min elastic resistance exercise using Theraband and cool down), control group did not perform any exercise. routine | -Depression, isometric maximal voluntary contraction shoulder abduction, hip and elbow flexion, knee extension, grip strength, gait speed | Exercise compared to control group | |
depressive symptoms | controlled | |||||||
isometric muscle strength. |
S.No | Authors, Year | Place, N | Subjects | Mean Age ± SD (Years), Sex | Exercise Intervention, Number of Groups | Measured Outcomes | Results | |
---|---|---|---|---|---|---|---|---|
1 | Cebron Lipovec et al., 2016 | Slovenia, 112 | COPD patients (55% sarcopenia) | 66.0 ± 8.0, Both M:F around 2:1 | 4-week short-term high-intensity pulmonary rehabilitation program, 2 groups: rehabilitation, control | -Blood biomarkers, SMI, IR | sarcopenic compared to non sarcopenic group | |
IR | ||||||||
fat mass index | ||||||||
waist circumference | ||||||||
LDL |
S.No | Authors, Year | Place, N | Subjects | Mean Age ± SD (Years), Sex | Exercise Intervention | Measured Outcomes | Results | |
1 | Ogawa et al., 2021 | Slovenia, 21 | Cardiovascular surgery patients with sarcopenia defined by AWGS | 69.6 ± 12.6, Both (M:F = 6:1) | low-intensity resistance training (RT) with moderate blood flow restriction (KAATSU RT), 2 Groups -control -KAATSU RT group * All patients had received a standard aerobic cardiac rehabilitation program. * The KAATSU RT group additionally executed low-intensity leg extension and leg press exercises with moderate blood flow restriction twice a week for 3 months. RT-intensity and volume were increased gradually | -MTH -SMI -handgrip strength -knee extensor strength -walking speed at baseline, 5–7 days after cardiac surgery, and after 3 months | KAATSU RT compared to baseline. | |
MTH | ||||||||
SMI | ||||||||
walking speed | ||||||||
knee extensor strength |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Supriya, R.; Singh, K.P.; Gao, Y.; Gu, Y.; Baker, J.S. Effect of Exercise on Secondary Sarcopenia: A Comprehensive Literature Review. Biology 2022, 11, 51. https://doi.org/10.3390/biology11010051
Supriya R, Singh KP, Gao Y, Gu Y, Baker JS. Effect of Exercise on Secondary Sarcopenia: A Comprehensive Literature Review. Biology. 2022; 11(1):51. https://doi.org/10.3390/biology11010051
Chicago/Turabian StyleSupriya, Rashmi, Kumar Purnendu Singh, Yang Gao, Yaodong Gu, and Julien S. Baker. 2022. "Effect of Exercise on Secondary Sarcopenia: A Comprehensive Literature Review" Biology 11, no. 1: 51. https://doi.org/10.3390/biology11010051
APA StyleSupriya, R., Singh, K. P., Gao, Y., Gu, Y., & Baker, J. S. (2022). Effect of Exercise on Secondary Sarcopenia: A Comprehensive Literature Review. Biology, 11(1), 51. https://doi.org/10.3390/biology11010051