Novel Assessment of Collagen and Its Crosslink Content in the Humerus from Primiparous Dairy Cows with Spontaneous Humeral Fractures Due to Osteoporosis from New Zealand
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Collection
2.2. Preparation of Bone Samples
2.3. Collagen and Collagen Crosslink Analysis of Cow Bone
2.3.1. Materials
2.3.2. Bone Powder Preparation
2.3.3. Crosslink Separation and Quantification
2.3.4. Determination of Total Collagen Content in Cortical Bone
2.3.5. Determination of the Copper Concentration (in Bone, the Liver and Serum) and the Liver Concentration of Copper and Copper Antagonists (Cadmium, Iron, Molybdenum, and Zinc)
2.3.6. Data Analysis
3. Results
3.1. Copper Concentration
3.2. Collagen Content
3.3. Collagen Crosslinks Concentration
3.4. Copper Antagonists
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weston, J.; Thompson, K.; Dittmer, K.; Rashid, Z. Humeral fractures in dairy heifers. In Proceedings of the Dairy Cattle Veterinarians of the New Zealand Veterinary Association, Hamilton, New Zealand, 19–24 June 2012. [Google Scholar]
- Dittmer, K.; Hitchcock, B.; McDougall, S.; Hunnam, J. Pathophysiology of humeral fractures in a sample of dairy heifers. N. Z. Vet. J. 2016, 64, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Gibson, M.; Dittmer, K.; Hickson, R.; Back, P.; Wehrle-Martinez, A.; Rogers, C. The Mid-Diaphysis Is a Poor Predictor of Humeral Fracture Risk Indicating That Predisposing Factors Are Recent. Ruminants 2021, 1, 23–30. [Google Scholar] [CrossRef]
- Wehrle-Martinez, A.; Lawrence, K.; Back, P.; Rogers, C.; Gibson, M.; Dittmer, K. Osteoporosis is the cause of spontaneous humeral fracture in dairy cows from New Zealand. Vet. Pathol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Weston, J. An Outbreak of Humeral Fractures among Dairy Heifers; Society of Dairy Cattle Veterinarians of the New Zealand Veterinary Association: Wellington, New Zealand, 2008; pp. 241–243. [Google Scholar]
- Hill, G.; Shannon, M. Copper and zinc nutritional issues for agricultural animal production. Biol. Trace Elem. Res. 2019, 188, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Constable, P.; Hinchcliff, K.; Done, S.; Grünberg, W. Diseases of the Musculoskeletal System. In Veterinary Medicine: A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats, 11th ed.; Elsevier Health Sciences: St. Louis, MO, USA, 2016; pp. 1372–1534. [Google Scholar]
- Ensley, S. Evaluating Mineral Status in Ruminant Livestock. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 525–546. [Google Scholar] [CrossRef]
- Tessman, R.; Lakritz, J.; Tyler, J.; Casteel, S.; Williams, J.; Dew, R. Sensitivity and specificity of serum copper determination for detection of copper deficiency in feeder calves. J. Am. Vet. Med. Assoc. 2001, 218, 756–760. [Google Scholar] [CrossRef]
- Garnero, P. The contribution of collagen crosslinks to bone strength. BoneKey Rep. 2012, 1, 182. [Google Scholar] [CrossRef]
- Saito, M.; Marumo, K. Collagen cross-links as a determinant of bone quality: A possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos. Int. 2010, 21, 195–214. [Google Scholar] [CrossRef]
- Viguet-Carrin, S.; Garnero, P.; Delmas, P. The role of collagen in bone strength. Osteoporos. Int. 2006, 17, 319–336. [Google Scholar] [CrossRef]
- Saito, M.; Marumo, K. Effects of collagen crosslinking on bone material properties in health and disease. Calcif. Tissue Int. 2015, 97, 242–261. [Google Scholar] [CrossRef]
- Opsahl, W.; Zeronian, H.; Ellison, M.; Lewis, D.; Rucker, R.; Riggins, R. Role of copper in collagen cross-linking and its influence on selected mechanical properties of chick bone and tendon. J. Nutr. 1982, 112, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Rucker, R.; Parker, H.; Rogler, J. Effect of copper deficiency on chick bone collagen and selected bone enzymes. J. Nutr. 1969, 98, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Naffa, R.; Maidment, C.; Ahn, M.; Ingham, B.; Hinkley, S.; Norris, G. Molecular and structural insights into skin collagen reveals several factors that influence its architecture. Int. J. Biol. Macromol. 2019, 128, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Naffa, R.; Holmes, G.; Ahn, M.; Harding, D.; Norris, G. Liquid chromatography-electrospray ionization mass spectrometry for the simultaneous quantitation of collagen and elastin crosslinks. J. Chromatogr. A 2016, 1478, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.; Enwemeka, C. A simplified method for the analysis of hydroxyproline in biological tissues. Clin. Biochem. 1996, 29, 225–229. [Google Scholar] [CrossRef]
- Neuman, R.; Logan, M. The determination of hydroxyproline. J. Biol. Chem. 1950, 184, 299–306. [Google Scholar] [CrossRef]
- Grace, N.; Knowles, S. Copper. In Managing Mineral Deficiencies in Grazing Livestock; Grace, N., Knowles, S., Sykes, A., Eds.; New Zealand Society of Animal Production: Palmerston North, New Zealand, 2010; Volume 15. [Google Scholar]
- Bursac, Z.; Gauss, C.; Williams, D.; Hosmer, D. Purposeful selection of variables in logistic regression. Source Code Biol. Med. 2008, 3, 1–8. [Google Scholar] [CrossRef]
- Medeiros, D. Copper, iron, and selenium dietary deficiencies negatively impact skeletal integrity: A review. Exp. Biol. Med. 2016, 241, 1316–1322. [Google Scholar] [CrossRef]
- Smith, B.; Fisher, G.; Poulos, P.; Irwin, M. Abnormal bone development and lameness associated with secondary copper deficiency in young cattle. J. Am. Vet. Med. Assoc. 1975, 166, 682–688. [Google Scholar]
- Mills, C.; Dalgarno, A.; Wenham, G. Biochemical and pathological changes in tissues of Friesian cattle during the experimental induction of copper deficiency. Br. J. Nutr. 1976, 35, 309–331. [Google Scholar] [CrossRef]
- Suttle, N.; Angus, K. Effects of experimental copper deficiency on the skeleton of the calf. J. Comp. Pathol. 1978, 88, 137–148. [Google Scholar] [CrossRef]
- Gaar, J.; Naffa, R.; Brimble, M. Enzymatic and non-enzymatic crosslinks found in collagen and elastin and their chemical synthesis. Org. Chem. Front. 2020, 7, 2789–2814. [Google Scholar] [CrossRef]
- Anonymous. Quarterly Review of Diagnostic Cases: October to December 2011; Ministry for Primary Industries: Wellington, New Zealand, 2012; pp. 14–22.
- Anonymous. Quarterly Report of Diagnostic Cases: October to December 2013; Ministry for Primary Industries: Wellington, New Zealand, 2014; pp. 24–33.
- Anonymous. Quarterly Review of Diagnostic Cases: October to December 2017; Ministry for Primary Industries: Wellington, New Zealand, 2018; pp. 5–14.
- Anonymous. Quarterly Report of Diagnostic Cases: July to September 2019; Ministry for Primary Industries: Wellington, New Zealand, 2019; pp. 5–16.
- Knott, L.; Whitehead, C.; Fleming, R.; Bailey, A. Biochemical changes in the collagenous matrix of osteoporotic avian bone. Biochem. J. 1995, 310, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Osterhoff, G.; Morgan, E.; Shefelbine, S.; Karim, L.; McNamara, L.; Augat, P. Bone mechanical properties and changes with osteoporosis. Injury 2016, 47, S11–S20. [Google Scholar] [CrossRef]
- Abdel-Wahab, A.; Maligno, A.; Silberschmidt, V. Micro-scale modelling of bovine cortical bone fracture: Analysis of crack propagation and microstructure using X-FEM. Comput. Mater. Sci. 2012, 52, 128–135. [Google Scholar] [CrossRef]
- Hill, K.E.; Davidson, J.M. Induction of increased collagen and elastin biosynthesis in copper-deficient pig aorta. Arteriosclerosis 1986, 6, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Agenäs, S.; Heath, M.; Nixon, R.; Wilkinson, J.; Phillips, C. Indicators of undernutrition in cattle. Anim. Welf. 2006, 15, 149–160. [Google Scholar]
- Wehrle-Martinez, A.; Dittmer, K.; Back, P.; Rogers, C.; Lawrence, K. Biochemical profile of heifers with spontaneous humeral fractures suggest that protein-calorie malnutrition could be an important factor in the pathogenesis of this disease. N. Z. Vet. J. 2022; in press. [Google Scholar]
- Counotte, G.; Holzhauer, M.; Carp-van Dijken, S.; Muskens, J.; Van der Merwe, D. Levels of trace elements and potential toxic elements in bovine livers: A trend analysis from 2007 to 2018. PLoS ONE 2019, 14, e0214584. [Google Scholar] [CrossRef] [Green Version]
Case | Mean ± sd | p Value | |
---|---|---|---|
Liver copper (µmol/kg ) | Affected (n = 26) Control (n = 14) | 237.6 ± 385.3 468.0 ± 285.3 | <0.001 ** |
Bone copper (mg/kg) | Affected (n = 26) Control (n = 14) | 0.69 ± 0.27 0.41 ± 0.12 | <0.001 |
Low LivCu (n = 16) Adequate LivCu (n = 24) | 0.68 ± 0.28 0.54 ± 0.24 | 0.07 |
B | SE | Wald | df | p | Odds Ratio | 95% CI for Odds Ratio | ||
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Bone Cu | 0.40 | 1.55 | 6.75 | 1 | 0.01 | 56.1 | 2.7 | 1168.9 |
LivCu | 1.17 | 0.46 | 6.33 | 1 | 0.01 | 3.2 | 1.3 | 8.1 |
Constant | 9.79 | 3.30 | 8.78 | 1 | 0.003 |
Case | Mean ± Sd | p Value | |
---|---|---|---|
Total collagen (mg) | Affected (n = 26) Control (n = 14) | 1.71 ± 0.43 2.18 ± 0.46 | 0.004 |
Low LivCu (n = 16) Adequate LivCu (n = 24) | 1.79 ± 0.44 1.93 ± 0.53 | 0.463 |
Case | Mean ± sd | p Value | |
---|---|---|---|
Total crosslink | Affected (n = 26) Control (n = 14) | 3979.07 ± 797.72 3058.71 ± 548.70 | <0.001 |
Low LivCu (n = 16) Adequate LivCu (n = 24) | 4082.32 ± 859.21 3373.36 ± 711.16 | 0.007 | |
Immature crosslink | |||
DHLNL(mg/mol) | Affected (n = 26) Control (n = 14) | 2847.23 ± 717.27 2257.38 ± 489.29 | 0.009 |
Low LivCu (n = 16) Adequate LivCu (n = 24) | 2943.09 ± 835.07 2439.25 ± 519.41 | 0.04 | |
Mature crosslinks | |||
PYD(mg/mol) | Affected (n = 26) Control (n = 14) | 1043.89 ± 403.18 724.98 ± 159.41 | 0.002 |
Low LivCu (n = 16) Adequate LivCu (n = 24) | 1049.00 ± 334.29 854.45 ± 377.64 | 0.03 | |
DPD(mg/mol) | Affected (n = 26) Control (n = 14) | 87.95 ± 25.75 76.34 ± 23.13 | 0.16 |
Low LivCu (n = 16) Adequate LivCu (n = 24) | 90.23 ± 26.07 79.65 ± 24.22 | 0.19 | |
Immature/mature crosslinks | |||
DHLNL/(PYD + DPD) (mg/mol) | Affected (n = 26) Control (n = 14) | 2.77 ± 1.02 2.92 ± 0.67 | 0.46 |
Low LivCu (n = 16) Adequate LivCu (n = 24) | 2.81 ± 1.12 2.83 ± 0.76 | 0.77 |
B | SE | Wald | df | p | Odds Ratio | 95% CI for Odds Ratio | ||
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
PYD content | 0.002 | 0.001 | 4.259 | 1 | 0.04 | 1.002 | 1.000 | 1.003 |
DHLNL content | 0.006 | 0.003 | 4.385 | 1 | 0.04 | 1.006 | 1.000 | 1.012 |
Constant | −8.314 | 3.134 | 7.038 | 1 | 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wehrle-Martinez, A.; Naffa, R.; Back, P.; Rogers, C.W.; Lawrence, K.; Loo, T.; Sutherland-Smith, A.; Dittmer, K. Novel Assessment of Collagen and Its Crosslink Content in the Humerus from Primiparous Dairy Cows with Spontaneous Humeral Fractures Due to Osteoporosis from New Zealand. Biology 2022, 11, 1387. https://doi.org/10.3390/biology11101387
Wehrle-Martinez A, Naffa R, Back P, Rogers CW, Lawrence K, Loo T, Sutherland-Smith A, Dittmer K. Novel Assessment of Collagen and Its Crosslink Content in the Humerus from Primiparous Dairy Cows with Spontaneous Humeral Fractures Due to Osteoporosis from New Zealand. Biology. 2022; 11(10):1387. https://doi.org/10.3390/biology11101387
Chicago/Turabian StyleWehrle-Martinez, Alvaro, Rafea Naffa, Penny Back, Chris W. Rogers, Kevin Lawrence, Trevor Loo, Andrew Sutherland-Smith, and Keren Dittmer. 2022. "Novel Assessment of Collagen and Its Crosslink Content in the Humerus from Primiparous Dairy Cows with Spontaneous Humeral Fractures Due to Osteoporosis from New Zealand" Biology 11, no. 10: 1387. https://doi.org/10.3390/biology11101387
APA StyleWehrle-Martinez, A., Naffa, R., Back, P., Rogers, C. W., Lawrence, K., Loo, T., Sutherland-Smith, A., & Dittmer, K. (2022). Novel Assessment of Collagen and Its Crosslink Content in the Humerus from Primiparous Dairy Cows with Spontaneous Humeral Fractures Due to Osteoporosis from New Zealand. Biology, 11(10), 1387. https://doi.org/10.3390/biology11101387