Tail Wags Dog’s SINE: Retropositional Mechanisms of Can SINE Depend on Its A-Tail Structure
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bioinformatics Methods
2.2. Experimental Methods
3. Results and Discussion
3.1. General Description of Can SINE Family
3.2. Analysis of Retrotranspositional Activity of Can Subfamilies
3.3. Analysis of Pol III Terminators and Poly(A) Tails
3.4. Analysis of Individual Active Can Copies
3.5. Additional Considerations of A-Tails
3.6. Identification of Can Regions Significant for Polyadenylation of Its Pol III Transcripts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kramerov, D.A.; Vassetzky, N.S. SINEs. Wiley Interdiscip. Rev. RNA 2011, 2, 772–786. [Google Scholar] [CrossRef] [PubMed]
- Batzer, M.A.; Deininger, P.L. Alu repeats and human genomic diversity. Nat. Rev. Genet. 2002, 3, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Deininger, P. Alu elements: Know the SINEs. Genome Biol. 2011, 12, 236. [Google Scholar] [CrossRef] [PubMed]
- Vassetzky, N.S.; Ten, O.A.; Kramerov, D.A. B1 and related SINEs in mammalian genomes. Gene 2003, 319, 149–160. [Google Scholar] [CrossRef]
- Veniaminova, N.A.; Vassetzky, N.S.; Kramerov, D.A. B1 SINEs in different rodent families. Genomics 2007, 89, 678–686. [Google Scholar] [CrossRef]
- Nishihara, H.; Terai, Y.; Okada, N. Characterization of novel Alu- and tRNA-related SINEs from the tree shrew and evolutionary implications of their origins. Mol. Biol. Evol. 2002, 19, 1964–1972. [Google Scholar] [CrossRef]
- Kriegs, J.O.; Churakov, G.; Jurka, J.; Brosius, J.; Schmitz, J. Evolutionary history of 7SL RNA-derived SINEs in Supraprimates. Trends Genet. 2007, 23, 158–161. [Google Scholar] [CrossRef]
- Kojima, K.K. Hagfish genome reveals parallel evolution of 7SL RNA-derived SINEs. Mob. DNA 2020, 11, 18. [Google Scholar] [CrossRef]
- Kapitonov, V.V.; Jurka, J. A novel class of SINE elements derived from 5S rRNA. Mol. Biol. Evol. 2003, 20, 694–702. [Google Scholar] [CrossRef]
- Gogolevsky, K.P.; Vassetzky, N.S.; Kramerov, D.A. 5S rRNA-derived and tRNA-derived SINEs in fruit bats. Genomics 2009, 93, 494–500. [Google Scholar] [CrossRef]
- Wang, J.; Wang, A.; Han, Z.; Zhang, Z.; Li, F.; Li, X. Characterization of three novel SINE families with unusual features in Helicoverpa armigera. PLoS ONE 2012, 7, e31355. [Google Scholar] [CrossRef]
- Nishihara, H.; Smit, A.F.; Okada, N. Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res. 2006, 16, 864–874. [Google Scholar] [CrossRef]
- Vassetzky, N.S.; Kramerov, D.A. SINEBase: A database and tool for SINE analysis. Nucl. Acids Res. 2013, 41, D83–D89. [Google Scholar] [CrossRef]
- Okada, N. SINEs: Short interspersed repeated elements of the eukaryotic genome. Trends Ecol. Evol. 1991, 6, 358–361. [Google Scholar] [CrossRef]
- Ohshima, K.; Okada, N. SINEs and LINEs: Symbionts of eukaryotic genomes with a common tail. Cytogenet. Genome Res. 2005, 110, 475–490. [Google Scholar] [CrossRef]
- Kajikawa, M.; Okada, N. LINEs mobilize SINEs in the eel through a shared 3’ sequence. Cell 2002, 111, 433–444. [Google Scholar] [CrossRef]
- Moran, J.V.; Holmes, S.E.; Naas, T.P.; DeBerardinis, R.J.; Boeke, J.D.; Kazazian, H.H., Jr. High frequency retrotransposition in cultured mammalian cells. Cell 1996, 87, 917–927. [Google Scholar] [CrossRef]
- Dewannieux, M.; Esnault, C.; Heidmann, T. LINE-mediated retrotransposition of marked Alu sequences. Nat. Genet. 2003, 35, 41–48. [Google Scholar] [CrossRef]
- Comeaux, M.S.; Roy-Engel, A.M.; Hedges, D.J.; Deininger, P.L. Diverse cis factors controlling Alu retrotransposition: What causes Alu elements to die? Genome Res. 2009, 19, 545–555. [Google Scholar] [CrossRef]
- Shedlock, A.M.; Okada, N. SINE insertions: Powerful tools for molecular systematics. Bioessays 2000, 22, 148–160. [Google Scholar] [CrossRef]
- Kramerov, D.A.; Vasetskii, N.S. Short interspersed repetitive sequences (SINEs) and their use as a phylogenetic tool. Mol. Biol. 2009, 43, 795–806. [Google Scholar] [CrossRef]
- Nikaido, M.; Nishihara, H.; Okada, N. SINEs as Credible Signs to Prove Common Ancestry in the Tree of Life: A Brief Review of Pioneering Case Studies in Retroposon Systematics. Genes 2022, 13, 989. [Google Scholar] [CrossRef] [PubMed]
- Makalowski, W. SINEs as a genomic scrap yard: An essay on genomic evolution. In The Impact of Short Interspersed Elements (SINEs) on the Host Genome; R.G. Landes: Austin, TX, USA, 1995; pp. 81–104. [Google Scholar]
- Schmitz, J. SINEs as driving forces in genome evolution. Genome Dyn. 2012, 7, 92–107. [Google Scholar] [PubMed]
- Nishihara, H. Retrotransposons spread potential cis-regulatory elements during mammary gland evolution. Nucl. Acids Res. 2019, 47, 11551–11562. [Google Scholar] [CrossRef]
- Chen, J.M.; Ferec, C.; Cooper, D.N. LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease: Mutation detection bias and multiple mechanisms of target gene disruption. J. Biomed. Biotechnol. 2006, 2006, 56182. [Google Scholar] [CrossRef]
- Varshney, D.; Vavrova-Anderson, J.; Oler, A.J.; Cairns, B.R.; White, R.J. Selective repression of SINE transcription by RNA polymerase III. Mob. Genet. Elem. 2015, 5, 86–91. [Google Scholar] [CrossRef]
- Servant, G.; Streva, V.A.; Derbes, R.S.; Wijetunge, M.I.; Neeland, M.; White, T.B.; Belancio, V.P.; Roy-Engel, A.M.; Deininger, P.L. The Nucleotide Excision Repair Pathway Limits L1 Retrotransposition. Genetics 2017, 205, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Ferrigno, O.; Virolle, T.; Djabari, Z.; Ortonne, J.P.; White, R.J.; Aberdam, D. Transposable B2 SINE elements can provide mobile RNA polymerase II promoters. Nat. Genet. 2001, 28, 77–81. [Google Scholar] [CrossRef]
- Su, M.; Han, D.; Boyd-Kirkup, J.; Yu, X.; Han, J.J. Evolution of Alu elements toward enhancers. Cell Rep. 2014, 7, 376–385. [Google Scholar] [CrossRef]
- Policarpi, C.; Crepaldi, L.; Brookes, E.; Nitarska, J.; French, S.M.; Coatti, A.; Riccio, A. Enhancer SINEs Link Pol III to Pol II Transcription in Neurons. Cell Rep. 2017, 21, 2879–2894. [Google Scholar] [CrossRef] [Green Version]
- Krull, M.; Brosius, J.; Schmitz, J. Alu-SINE exonization: En route to protein-coding function. Mol. Biol. Evol. 2005, 22, 1702–1711. [Google Scholar] [CrossRef]
- Wang, W.; Kirkness, E.F. Short interspersed elements (SINEs) are a major source of canine genomic diversity. Genome Res. 2005, 15, 1798–1808. [Google Scholar] [CrossRef]
- Ryskov, A.P.; Ivanov, P.L.; Kramerov, D.A.; Georgiev, G.P. Mouse ubiquitous B2 repeat in polysomal and cytoplasmic poly(A)+RNAs: Uniderectional orientation and 3’-end localization. Nucl. Acids Res. 1983, 11, 6541–6558. [Google Scholar] [CrossRef]
- Kress, M.; Barra, Y.; Seidman, J.G.; Khoury, G.; Jay, G. Functional insertion of an Alu type 2 (B2 SINE) repetitive sequence in murine class I genes. Science 1984, 226, 974–977. [Google Scholar] [CrossRef]
- Krane, D.E.; Hardison, R.C. Short interspersed repeats in rabbit DNA can provide functional polyadenylation signals. Mol. Biol. Evol. 1990, 7, 1–8. [Google Scholar]
- Roy-Engel, A.M.; El-Sawy, M.; Farooq, L.; Odom, G.L.; Perepelitsa-Belancio, V.; Bruch, H.; Oyeniran, O.O.; Deininger, P.L. Human retroelements may introduce intragenic polyadenylation signals. Cytogenet. Genome Res. 2005, 110, 365–371. [Google Scholar] [CrossRef]
- Chen, C.; Ara, T.; Gautheret, D. Using Alu elements as polyadenylation sites: A case of retroposon exaptation. Mol. Biol. Evol. 2009, 26, 327–334. [Google Scholar] [CrossRef]
- Choi, J.D.; Del Pinto, L.A.; Sutter, N.B. SINE Retrotransposons Import Polyadenylation Signals to 3′UTRs in Dog (Canis familiaris). BioRxiv 2020. [Google Scholar] [CrossRef]
- Shiromoto, Y.; Sakurai, M.; Qu, H.; Kossenkov, A.V.; Nishikura, K. Processing of Alu small RNAs by DICER/ADAR1 complexes and their RNAi targets. RNA 2020, 26, 1801–1814. [Google Scholar] [CrossRef]
- Zovoilis, A.; Cifuentes-Rojas, C.; Chu, H.P.; Hernandez, A.J.; Lee, J.T. Destabilization of B2 RNA by EZH2 Activates the Stress Response. Cell 2016, 167, 1788–1802.e13. [Google Scholar] [CrossRef]
- Borodulina, O.R.; Kramerov, D.A. Short interspersed elements (SINEs) from insectivores. Two classes of mammalian SINEs distinguished by A-rich tail structure. Mamm. Genome 2001, 12, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Ustyantsev, I.G.; Borodulina, O.R.; Kramerov, D.A. Identification of nucleotide sequences and some proteins involved in polyadenylation of RNA transcribed by Pol III from SINEs. RNA Biol. 2021, 18, 1475–1488. [Google Scholar] [CrossRef] [PubMed]
- Borodulina, O.R.; Kramerov, D.A. Transcripts synthesized by RNA polymerase III can be polyadenylated in an AAUAAA-dependent manner. RNA 2008, 14, 1865–1873. [Google Scholar] [CrossRef] [PubMed]
- Borodulina, O.R.; Golubchikova, J.S.; Ustyantsev, I.G.; Kramerov, D.A. Polyadenylation of RNA transcribed from mammalian SINEs by RNA polymerase III: Complex requirements for nucleotide sequences. Biochim. Biophys. Acta 2016, 1859, 355–365. [Google Scholar] [CrossRef]
- Dewannieux, M.; Heidmann, T. Role of poly(A) tail length in Alu retrotransposition. Genomics 2005, 86, 378–381. [Google Scholar] [CrossRef]
- Roy-Engel, A.M.; Salem, A.H.; Oyeniran, O.O.; Deininger, L.; Hedges, D.J.; Kilroy, G.E.; Batzer, M.A.; Deininger, P.L. Active Alu element “A-tails”: Size does matter. Genome Res. 2002, 12, 1333–1344. [Google Scholar] [CrossRef]
- Wagstaff, B.J.; Hedges, D.J.; Derbes, R.S.; Campos Sanchez, R.; Chiaromonte, F.; Makova, K.D.; Roy-Engel, A.M. Rescuing Alu: Recovery of new inserts shows LINE-1 preserves Alu activity through A-tail expansion. PLoS Genet. 2012, 8, e1002842. [Google Scholar] [CrossRef]
- Roy-Engel, A.M. LINEs, SINEs and other retroelements: Do birds of a feather flock together? Front. Biosci. 2012, 17, 1345–1361. [Google Scholar] [CrossRef]
- Vassetzky, N.S.; Borodulina, O.R.; Ustyantsev, I.G.; Kosushkin, S.A.; Kramerov, D.A. Analysis of SINE Families B2, Dip, and Ves with Special Reference to Polyadenylation Signals and Transcription Terminators. Int. J. Mol. Sci. 2021, 22, 9897. [Google Scholar]
- Lavrent’eva, M.V.; Rivkin, M.I.; Shilov, A.G.; Kobets, M.L.; Rogozin, I.B.; Serov, O.L. B2-like repetitive sequence in the genome of the American mink. Dokl. Akad. Nauk. SSSR 1989, 307, 226–228. [Google Scholar]
- Minnick, M.F.; Stillwell, L.C.; Heineman, J.M.; Stiegler, G.L. A highly repetitive DNA sequence possibly unique to canids. Gene 1992, 110, 235–238. [Google Scholar] [CrossRef]
- Coltman, D.W.; Wright, J.M. Can SINEs: A family of tRNA-derived retroposons specific to the superfamily Canoidea. Nucl. Acids Res. 1994, 22, 2726–2730. [Google Scholar] [CrossRef]
- Bentolila, S.; Bach, J.M.; Kessler, J.L.; Bordelais, I.; Cruaud, C.; Weissenbach, J.; Panthier, J.J. Analysis of major repetitive DNA sequences in the dog (Canis familiaris) genome. Mamm. Genome 1999, 10, 699–705. [Google Scholar] [CrossRef]
- Das, M.; Chu, L.L.; Ghahremani, M.; Abrams-Ogg, T.; Roy, M.S.; Housman, D.; Pelletier, J. Characterization of an abundant short interspersed nuclear element (SINE) present in Canis familiaris. Mamm. Genome 1998, 9, 64–69. [Google Scholar] [CrossRef]
- Zehr, S.M.; Nedbal, M.A.; Flynn, J.J. Tempo and mode of evolution in an orthologous Can SINE. Mamm. Genome 2001, 12, 38–44. [Google Scholar] [CrossRef]
- Vassetzky, N.S.; Kramerov, D.A. CAN—A pan-carnivore SINE family. Mamm. Genome 2002, 13, 50–57. [Google Scholar] [CrossRef]
- Walters-Conte, K.B.; Johnson, D.L.; Allard, M.W.; Pecon-Slattery, J. Carnivore-specific SINEs (Can-SINEs): Distribution, evolution, and genomic impact. J. Hered. 2011, 102 (Suppl. S1), S2–S10. [Google Scholar] [CrossRef]
- van der Vlugt, H.H.; Lenstra, J.A. SINE elements of carnivores. Mamm. Genome 1995, 6, 49–51. [Google Scholar] [CrossRef]
- Pecon Slattery, J.; Sanner-Wachter, L.; O’Brien, S.J. Novel gene conversion between X-Y homologues located in the nonrecombining region of the Y chromosome in Felidae (Mammalia). Proc. Natl. Acad. Sci. USA 2000, 97, 5307–5312. [Google Scholar] [CrossRef]
- Kalla, S.E.; Moghadam, H.K.; Tomlinson, M.; Seebald, A.; Allen, J.J.; Whitney, J.; Choi, J.D.; Sutter, N.B. Polymorphic SINEC_Cf Retrotransposons in the Genome of the Dog (Canis familiaris). BioRxiv 2020. [Google Scholar] [CrossRef]
- Yamada, K.D.; Tomii, K.; Katoh, K. Application of the MAFFT sequence alignment program to large data-reexamination of the usefulness of chained guide trees. Bioinformatics 2016, 32, 3246–3251. [Google Scholar] [CrossRef]
- Smith, T.F.; Waterman, M.S. Identification of common molecular subsequences. J. Mol. Biol. 1981, 147, 195–197. [Google Scholar] [CrossRef]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997v2 [q-bio.GN]. [Google Scholar]
- Shen, W.; Le, S.; Li, Y.; Hu, F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS ONE 2016, 11, e0163962. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef]
- Kent, W.J. BLAT—The BLAST-like alignment tool. Genome Res. 2002, 12, 656–664. [Google Scholar]
- Chomczynski, P.; Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: Twenty-something years on. Nat. Protoc. 2006, 1, 581–585. [Google Scholar] [CrossRef]
- Halo, J.V.; Pendleton, A.L.; Shen, F.; Doucet, A.J.; Derrien, T.; Hitte, C.; Kirby, L.E.; Myers, B.; Sliwerska, E.; Emery, S.; et al. Long-read assembly of a Great Dane genome highlights the contribution of GC-rich sequence and mobile elements to canine genomes. Proc. Natl. Acad. Sci. USA 2021, 118, e2016274118. [Google Scholar] [CrossRef]
- Freedman, A.H.; Wayne, R.K. Deciphering the Origin of Dogs: From Fossils to Genomes. Annu. Rev. Anim. Biosci. 2017, 5, 281–307. [Google Scholar] [CrossRef]
- Konkel, M.K.; Batzer, M.A. A mobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome. Semin. Cancer Biol. 2010, 20, 211–221. [Google Scholar] [CrossRef]
- Kemp, J.R.; Longworth, M.S. Crossing the LINE Toward Genomic Instability: LINE-1 Retrotransposition in Cancer. Front. Chem. 2015, 3, 68. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Waminal, N.E.; Choi, H.I.; Perumal, S.; Lee, S.C.; Nguyen, V.B.; Jang, W.; Kim, N.H.; Gao, L.Z.; Yang, T.J. Rapid amplification of four retrotransposon families promoted speciation and genome size expansion in the genus Panax. Sci. Rep. 2017, 7, 9045. [Google Scholar] [CrossRef] [PubMed]
- Auvinet, J.; Graca, P.; Belkadi, L.; Petit, L.; Bonnivard, E.; Dettai, A.; Detrich, W.H., 3rd; Ozouf-Costaz, C.; Higuet, D. Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: The case for the Antarctic teleost genus Trematomus. BMC Genom. 2018, 19, 339. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.A.; Grimshaw, J.R.; Halsey, M.K.; Korstian, J.M.; Osmanski, A.B.; Sullivan, K.A.M.; Wolf, K.A.; Reddy, H.; Foley, N.; Stevens, R.D.; et al. Simultaneous TE Analysis of 19 Heliconiine Butterflies Yields Novel Insights into Rapid TE-Based Genome Diversification and Multiple SINE Births and Deaths. Genome Biol. Evol. 2019, 11, 2162–2177. [Google Scholar] [CrossRef] [PubMed]
- Barton, N.H.; Charlesworth, B. Genetic revolutions, founder effects, and speciation. Annu. Rev. Ecol. Evol. Syst. 1984, 15, 133–164. [Google Scholar] [CrossRef]
- Bergstrom, A.; Frantz, L.; Schmidt, R.; Ersmark, E.; Lebrasseur, O.; Girdland-Flink, L.; Lin, A.T.; Stora, J.; Sjogren, K.G.; Anthony, D.; et al. Origins and genetic legacy of prehistoric dogs. Science 2020, 370, 557–564. [Google Scholar] [CrossRef]
- Vonholdt, B.M.; Pollinger, J.P.; Lohmueller, K.E.; Han, E.; Parker, H.G.; Quignon, P.; Degenhardt, J.D.; Boyko, A.R.; Earl, D.A.; Auton, A.; et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 2010, 464, 898–902. [Google Scholar] [CrossRef]
- Loog, L.; Thalmann, O.; Sinding, M.S.; Schuenemann, V.J.; Perri, A.; Germonpre, M.; Bocherens, H.; Witt, K.E.; Samaniego Castruita, J.A.; Velasco, M.S.; et al. Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia. Mol. Ecol. 2020, 29, 1596–1610. [Google Scholar] [CrossRef]
- Hedges, D.J.; Callinan, P.A.; Cordaux, R.; Xing, J.; Barnes, E.; Batzer, M.A. Differential Alu mobilization and polymorphism among the human and chimpanzee lineages. Genome Res. 2004, 14, 1068–1075. [Google Scholar] [CrossRef]
- Kehl, A.; Haaland, A.H.; Langbein-Detsch, I.; Mueller, E. A SINE Insertion in F8 Gene Leads to Severe Form of Hemophilia A in a Family of Rhodesian Ridgebacks. Genes 2021, 12, 134. [Google Scholar] [CrossRef]
- Mischke, R.; Kuehnlein, P.; Kehl, A.; Jahn, M.; Ertl, R.; Klein, D.; Cecil, A.; Dandekar, T.; Mueller, E. Genetic analysis of haemophilic Havanese dogs. Vet. Clin. Pathol. 2011, 40, 569. [Google Scholar]
- Dreger, D.L.; Schmutz, S.M. A SINE insertion causes the black-and-tan and saddle tan phenotypes in domestic dogs. J. Hered. 2011, 102 (Suppl. 1), S11–S18. [Google Scholar] [CrossRef]
- Mauri, N.; Kleiter, M.; Dietschi, E.; Leschnik, M.; Hogler, S.; Wiedmer, M.; Dietrich, J.; Henke, D.; Steffen, F.; Schuller, S.; et al. A SINE Insertion in ATP1B2 in Belgian Shepherd Dogs Affected by Spongy Degeneration with Cerebellar Ataxia (SDCA2). G3 2017, 7, 2729–2737. [Google Scholar] [CrossRef]
- Downs, L.M.; Mellersh, C.S. An Intronic SINE insertion in FAM161A that causes exon-skipping is associated with progressive retinal atrophy in Tibetan Spaniels and Tibetan Terriers. PLoS ONE 2014, 9, e93990. [Google Scholar] [CrossRef]
- Pele, M.; Tiret, L.; Kessler, J.L.; Blot, S.; Panthier, J.J. SINE exonic insertion in the PTPLA gene leads to multiple splicing defects and segregates with the autosomal recessive centronuclear myopathy in dogs. Hum. Mol. Genet. 2005, 14, 1417–1427. [Google Scholar]
- Wiedmer, M.; Oevermann, A.; Borer-Germann, S.E.; Gorgas, D.; Shelton, G.D.; Drogemuller, M.; Jagannathan, V.; Henke, D.; Leeb, T. A RAB3GAP1 SINE Insertion in Alaskan Huskies with Polyneuropathy, Ocular Abnormalities, and Neuronal Vacuolation (POANV) Resembling Human Warburg Micro Syndrome 1 (WARBM1). G3 2015, 6, 255–262. [Google Scholar] [CrossRef]
- Clark, L.A.; Wahl, J.M.; Rees, C.A.; Murphy, K.E. Retrotransposon insertion in SILV is responsible for merle patterning of the domestic dog. Proc. Natl. Acad. Sci. USA 2006, 103, 1376–1381. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, O.; Kukekova, A.V.; Aguirre, G.D.; Acland, G.M. Exonic SINE insertion in STK38L causes canine early retinal degeneration (erd). Genomics 2010, 96, 362–368. [Google Scholar] [CrossRef]
- Viguera, E.; Canceill, D.; Ehrlich, S.D. Replication slippage involves DNA polymerase pausing and dissociation. EMBO J. 2001, 20, 2587–2595. [Google Scholar] [CrossRef]
- Abdelhak, S.; Kalatzis, V.; Heilig, R.; Compain, S.; Samson, D.; Vincent, C.; Levi-Acobas, F.; Cruaud, C.; Le Merrer, M.; Mathieu, M.; et al. Clustering of mutations responsible for branchio-oto-renal (BOR) syndrome in the eyes absent homologous region (eyaHR) of EYA1. Hum. Mol. Genet. 1997, 6, 2247–2255. [Google Scholar] [CrossRef]
- Apoil, P.A.; Kuhlein, E.; Robert, A.; Rubie, H.; Blancher, A. HIGM syndrome caused by insertion of an AluYb8 element in exon 1 of the CD40LG gene. Immunogenetics 2006, 59, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Bochukova, E.G.; Roscioli, T.; Hedges, D.J.; Taylor, I.B.; Johnson, D.; David, D.J.; Deininger, P.L.; Wilkie, A.O. Rare mutations ofFGFR2causing apert syndrome: Identification of the first partial gene deletion, and anAluelement insertion from a new subfamily. Hum. Mutat. 2009, 30, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Bouchet, C.; Vuillaumier-Barrot, S.; Gonzales, M.; Boukari, S.; Le Bizec, C.; Fallet, C.; Delezoide, A.-L.; Moirot, H.; Laquerriere, A.; Encha-Razavi, F.; et al. Detection of an Alu insertion in the POMT1 gene from three French Walker Warburg syndrome families. Mol. Genet. Metab. 2007, 90, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-M.; Masson, E.; Macek, M.; Raguénès, O.; Piskackova, T.; Fercot, B.; Fila, L.; Cooper, D.N.; Audrézet, M.-P.; Férec, C. Detection of two Alu insertions in the CFTR gene. J. Cyst. Fibros. 2008, 7, 37–43. [Google Scholar] [CrossRef]
- Claverie-Martin, F.; González-Acosta, H.; Flores, C.; Antón-Gamero, M.; García-Nieto, V. De novo insertion of an Alu sequence in the coding region of the CLCN5 gene results in Dent's disease. Hum. Genet. 2003, 113, 480–485. [Google Scholar] [CrossRef]
- Conley, M.E.; Partain, J.D.; Norland, S.M.; Shurtleff, S.A.; Kazazian, H.H. Two independent retrotransposon insertions at the same site within the coding region of BTK. Hum. Mutat. 2005, 25, 324–325. [Google Scholar] [CrossRef]
- Crivelli, L.; Bubien, V.; Jones, N.; Chiron, J.; Bonnet, F.; Barouk-Simonet, E.; Couzigou, P.; Sevenet, N.; Caux, F.; Longy, M. Insertion of Alu elements at a PTEN hotspot in Cowden syndrome. Eur. J. Hum. Genet. 2017, 25, 1087–1091. [Google Scholar] [CrossRef] [Green Version]
- Hollander, A.I.D.; Brink, J.B.T.; De Kok, Y.J.; Van Soest, S.; Born, L.I.V.D.; Van Driel, M.A.; Van De Pol, D.J.; Payne, A.; Bhattacharya, S.S.; Kellner, U.; et al. Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12). Nat. Genet. 1999, 23, 217–221. [Google Scholar] [CrossRef]
- Gallus, G.N.; Cardaioli, E.; Rufa, A.; Da Pozzo, P.; Bianchi, S.; D'Eramo, C.; Collura, M.; Tumino, M.; Pavone, L.; Federico, A. Alu-element insertion in an OPA1 intron sequence associated with autosomal dominant optic atrophy. Mol. Vis. 2010, 16, 178–183. [Google Scholar]
- Gu, Y.; Kodama, H.; Watanabe, S.; Kikuchi, N.; Ishitsuka, I.; Ozawa, H.; Fujisawa, C.; Shiga, K. The first reported case of Menkes disease caused by an Alu insertion mutation. Brain Dev. 2007, 29, 105–108. [Google Scholar] [CrossRef]
- Halling, K.C.; Lazzaro, C.R.; Honchel, R.; Bufill, J.A.; Powell, S.M.; Arndt, C.A.; Lindor, N.M. Hereditary Desmoid Disease in a Family with a Germline Alu I Repeat Mutation of the APC Gene. Hum. Hered. 1999, 49, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Janicic, N.; Pausova, Z.; Cole, D.E.; Hendy, G.N. Insertion of an Alu sequence in the Ca(2+)-sensing receptor gene in familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Am. J. Hum. Genet. 1995, 56, 880–886. [Google Scholar] [PubMed]
- Lesmana, H.; Dyer, L.; Li, X.; Denton, J.; Griffiths, J.; Chonat, S.; Seu, K.G.; Heeney, M.M.; Zhang, K.; Hopkin, R.J.; et al. Alu element insertion inPKLRgene as a novel cause of pyruvate kinase deficiency in Middle Eastern patients. Hum. Mutat. 2018, 39, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Scaringe, W.A.; Hill, K.; Roberts, S.; Mengos, A.; Careri, D.; Pinto, M.T.; Kasper, C.K.; Sommer, S.S. Frequency of recent retrotransposition events in the human factor IX gene. Hum. Mutat. 2001, 17, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Miki, Y.; Katagiri, T.; Kasumi, F.; Yoshimoto, T.; Nakamura, Y. Mutation analysis in the BRCA2 gene in primary breast cancers. Nat. Genet. 1996, 13, 245–247. [Google Scholar] [CrossRef]
- Muratani, K.; Hada, T.; Yamamoto, Y.; Kaneko, T.; Shigeto, Y.; Ohue, T.; Furuyama, J.; Higashino, K. Inactivation of the cholinesterase gene by Alu insertion: Possible mechanism for human gene transposition. Proc. Natl. Acad. Sci. 1991, 88, 11315–11319. [Google Scholar] [CrossRef]
- Mustajoki, S.; Ahola, H.; Mustajoki, P.; Kauppinen, R. Insertion of Alu element responsible for acute intermittent porphyria. Hum. Mutat. 1999, 13, 431–438. [Google Scholar] [CrossRef]
- Okubo, M.; Horinishi, A.; Saito, M.; Ebara, T.; Endo, Y.; Kaku, K.; Murase, T.; Eto, M. A novel complex deletion–insertion mutation mediated by Alu repetitive elements leads to lipoprotein lipase deficiency. Mol. Genet. Metab. 2007, 92, 229–233. [Google Scholar] [CrossRef]
- Oldridge, M.; Zackai, E.H.; McDonald-McGinn, D.M.; Iseki, S.; Morriss-Kay, G.M.; Twigg, S.R.; Johnson, D.; Wall, S.A.; Jiang, W.; Theda, C.; et al. De Novo Alu-Element Insertions in FGFR2 Identify a Distinct Pathological Basis for Apert Syndrome. Am. J. Hum. Genet. 1999, 64, 446–461. [Google Scholar] [CrossRef]
- Ramakrishna, S.H.; Patil, S.J.; Jagadish, A.A.; Sapare, A.K.; Sagar, H.; Kannan, S. Fructose-1,6-bisphosphatase deficiency caused by a novel homozygous Alu element insertion in the FBP1 gene and delayed diagnosis. J. Pediatr. Endocrinol. Metab. 2017, 30, 703–706. [Google Scholar] [CrossRef]
- Sobrier, M.-L.; Netchine, I.; Heinrichs, C.; Thibaud, N.; Vié-Luton, M.-P.; Van Vliet, G.; Amselem, S. Alu-element insertion in the homeodomain ofHESX1and aplasia of the anterior pituitary. Hum. Mutat. 2005, 25, 503. [Google Scholar] [CrossRef] [PubMed]
- Stoppa-Lyonnet, D.; E Carter, P.; Meo, T.; Tosi, M. Clusters of intragenic Alu repeats predispose the human C1 inhibitor locus to deleterious rearrangements. Proc. Natl. Acad. Sci. 1990, 87, 1551–1555. [Google Scholar] [CrossRef] [PubMed]
- Sukarova, E.; Dimovski, A.; Tchacarova, P.; Petkov, G.; Efremov, G. An Alu Insert as the Cause of a Severe Form of Hemophilia A. Acta Haematol. 2001, 106, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Tappino, B.; Regis, S.; Corsolini, F.; Filocamo, M. An Alu insertion in compound heterozygosity with a microduplication in GNPTAB gene underlies Mucolipidosis II. Mol. Genet. Metab. 2008, 93, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Tighe, P.J.; E Stevens, S.; Dempsey, S.; Le Deist, F.; Rieux-Laucat, F.; Edgar, J.D.M. Inactivation of the Fas gene by Alu insertion: Retrotransposition in an intron causing splicing variation and autoimmune lymphoproliferative syndrome. Genes Immun. 2002, 3, S66–S70. [Google Scholar] [CrossRef] [PubMed]
- Wallace, M.R.; Andersen, L.B.; Saulino, A.M.; Gregory, P.E.; Glover, T.W.; Collins, F.S. A de novo Alu insertion results in neurofibromatosis type 1. Nature 1991, 353, 864–866. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Dipple, K.M.; Vilain, E.; Huang, B.L.; Finlayson, G.; Therrell, B.L.; Worley, K.; Deininger, P.; McCabe, E.R. AluY insertion (IVS4-52ins316alu) in the glycerol kinase gene from an individual with benign glycerol kinase deficiency. Hum. Mutat. 2000, 15, 316–323. [Google Scholar] [CrossRef]
Species | Total Number of Can Copies | Subfamilies: Proportion, % | Mean Similarity of Copies to Consensus | Proportion of Copies with TSD | ||
---|---|---|---|---|---|---|
Canini | gray wolf | 676,669 | Can_a: 34% | 64% | 74% | |
Canis lupus | a1: 20% | 69% | 74% | |||
a2: 14% | 64% | 70% | ||||
Can_b: 66% | 79% | 90% | ||||
b1: 48% | 77% | 87% | ||||
b2: 18% | 91% | 96% | ||||
boxer | 646,211 | Can_a: 33% | 64% | 72% | ||
Canis lupus familiaris | a1: 18% | 69% | 74% | |||
a2: 15% | 64% | 71% | ||||
Can_b: 67% | 78% | 86% | ||||
b1: 50% | 78% | 85% | ||||
b2: 17% | 90% | 93% | ||||
basenji | 658,945 | Can_a: 34% | 63% | 74% | ||
Canis lupus familiaris | a1: 19% | 69% | 73% | |||
a2: 15% | 64% | 72% | ||||
Can_b: 66% | 79% | 86% | ||||
b1: 49% | 78% | 84% | ||||
b2: 17% | 90% | 93% | ||||
African wild dog | 640,065 | Can_a: 35% | 64% | 69% | ||
Lycaon pictus | a1: 20% | 68% | 73% | |||
a2: 15% | 64% | 67% | ||||
Can_b: 65% | 78% | 89% | ||||
b1: 49% | 78% | 84% | ||||
b2: 16% | 90% | 95% | ||||
Vulpini | raccoon dog | 668,821 | Can_a: 32% | 64% | 69% | |
Nyctereutes procyonoides | a1: 18% | 69% | 72% | |||
a2: 14% | 64% | 67% | ||||
Can_b: 68% | 78% | 88% | ||||
b1: 48% | 78% | 85% | ||||
b2: 20% | 90% | 92% | ||||
bat-eared fox | 771,391 | Can_a: 35% | 63% | 70% | ||
Otocyon megalotis | a1: 20% | 55% | 72% | |||
a2: 15% | 63% | 70% | ||||
Can_b: 65% | 78% | 90% | ||||
b1: 49% | 77% | 83% | ||||
b2: 16% | 90% | 92% | ||||
Arctic fox | 667,350 | Can_a: 33% | 63% | 76% | ||
Vulpes lagopus | a1: 19% | 67% | 79% | |||
a2: 14% | 63% | 71% | ||||
Can_b: 67% | 79% | 88% | ||||
b1: 47% | 78% | 82% | ||||
b2: 20% | 91% | 93% |
Compared Genomes (Divergence Time) | Number of Genome-Specific Copies * | Mean Rate of Copies Emergence (Copies/My) | ||
---|---|---|---|---|
Genome 1 | Genome 2 | Genome 1 | Genome 2 | |
German Shepherd vs. Great Dane (0.001 Mya) ** | 12,074 | 5508 | 1.2 × 107 | 5.5 × 106 |
German Shepherd vs. Boxer (0.001 Mya) ** | 10.818 | 4775 | 1.1 × 107 | 4.8 × 106 |
Boxer vs. Great Dane (0.001 Mya) ** | 5494 | 6270 | 5.5 × 106 | 6.3 × 106 |
German Shepherd vs. Wolf (0.02 Mya) | 12,917 | 11,763 | 6.5 × 105 | 5.9 × 105 |
Great Dane vs. wolf (0.02 Mya) | 9370 | 14,109 | 4.7 × 105 | 7.0 × 105 |
Boxer vs. wolf (0.02 Mya) | 7856 | 11,898 | 3.9 × 105 | 5.9 × 105 |
African wild dog vs. wolf (7.5 Mya) | 19,176 | 28,691 | 2.6 × 103 | 3.8 × 103 |
Red fox vs. Arctic fox (3.6 Mya) | 20,106 | 33,146 | 5.6 × 103 | 9.2 × 103 |
Giant panda vs. polar bear (17 Mya) | 66,876 | 58,018 | 3.9 × 103 | 3.4 × 103 |
Mutated Gene | Breed (Reference) | Tail of the Inserted Can Copy | Tail of Probable Parental Can Copy * | T+ Way | T— Way |
---|---|---|---|---|---|
F8 (insertion 1) | Rhodesian Ridgeback [81] | GTTA25TTA4 | GTTA10TTTA29 | unlikely | highly likely |
GTTA9TTTA13 | |||||
F8 (insertion 2) | Havanese dog [82] | TATTTA32 | TATTTA8–32 | highly likely | likely |
(GenBank acc. number HE574814) | TATTTTA7 | ||||
ASIP | Doberman Pinscher and some other breeds [83] | TGA14GGA36 | TGA13TGA19 | unlikely | highly likely |
TGA19TGA13 | |||||
TGA15GA22 | |||||
ATP1B2 | Belgian Shepherd Dog [84] | TCTTTA34 | TCTTTA13 | highly likely | unlikely |
FAM161A | Tibetan Spaniel and Tibetan Terrier [85] | TA35–50TA11 | TA5TTTTA9TTA9 | likely | likely |
TA5TTTTA7 | |||||
TA5TTTTTTA8 | |||||
TA5TTTTTA6 | |||||
TTTTA8 | |||||
TA5TTTTTA7 | |||||
TA5TTTA33 | |||||
TA13CA7 | |||||
PTPLA | Labrador [86] | TTA12TTTA11TTTA16 | TTA9TTTTTTTA3 | highly likely | unlikely |
RAB3GAP1 | Alaskan Husky [87] | TATTA25 | TATTTA11 | highly likely | unlikely |
TATTTTTA7 | |||||
TATTTTTA28 | |||||
SILV | Shetland Sheepdog [88] | TTTA100 | TTTTA9 | likely | likely |
TTTA28 | |||||
STK38L | Norwegian elkhound [89] | TTTTA25 | TTTTA8 | highly likely | unlikely |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosushkin, S.A.; Ustyantsev, I.G.; Borodulina, O.R.; Vassetzky, N.S.; Kramerov, D.A. Tail Wags Dog’s SINE: Retropositional Mechanisms of Can SINE Depend on Its A-Tail Structure. Biology 2022, 11, 1403. https://doi.org/10.3390/biology11101403
Kosushkin SA, Ustyantsev IG, Borodulina OR, Vassetzky NS, Kramerov DA. Tail Wags Dog’s SINE: Retropositional Mechanisms of Can SINE Depend on Its A-Tail Structure. Biology. 2022; 11(10):1403. https://doi.org/10.3390/biology11101403
Chicago/Turabian StyleKosushkin, Sergei A., Ilia G. Ustyantsev, Olga R. Borodulina, Nikita S. Vassetzky, and Dmitri A. Kramerov. 2022. "Tail Wags Dog’s SINE: Retropositional Mechanisms of Can SINE Depend on Its A-Tail Structure" Biology 11, no. 10: 1403. https://doi.org/10.3390/biology11101403
APA StyleKosushkin, S. A., Ustyantsev, I. G., Borodulina, O. R., Vassetzky, N. S., & Kramerov, D. A. (2022). Tail Wags Dog’s SINE: Retropositional Mechanisms of Can SINE Depend on Its A-Tail Structure. Biology, 11(10), 1403. https://doi.org/10.3390/biology11101403