Neuromuscular Fatigue and Metabolic Stress during the 15 Minutes of Rest after Carrying Out a Bench Press Exercise Protocol
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.3.1. One-Repetition Maximum (1RM) Test
2.3.2. 3 × Maximum Number of Repetitions (MNR) Exercise Protocol
2.3.3. Blood Lactate Concentrations
2.3.4. Mechanical Fatigue Test
2.3.5. Measurement Equipment
2.3.6. Analysed Variables
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The importance of muscular strength in athletic performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Badillo, J.J.; Sánchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Maté-Muñoz, J.L.; Garnacho-Castaño, M.V.; Hernández-Lougedo, J.; Maicas-Pérez, L.; Notario-Alonso, R.; Da Silva-Grigoletto, M.E.; García-Fernández, P.; Heredia-Elvar, J.R. Analysis of the Use and Applicability of Different Variables for the Prescription of Relative Intensity in Bench Press Exercise. Biology 2022, 11, 336. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Ratamess, R.A. Fundamentals of resistance training: Progression and exercise prescription. Med. Sci. Sports Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Rodiles-Guerrero, L.; Pareja-Blanco, F.; León-Prados, J.A. Effect of Velocity Loss on Strength Performance in Bench Press Using a Weight Stack Machine. Int. J. Sports Med. 2020, 41, 921–928. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Adams, K.; Cafarelli, E.; Dudley, G.A.; Dooly, C.; Feigenbaum, M.S.; Fleck, S.; Franklin, B.; Fry, A.C.; Hoffman, J.R.; et al. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar]
- Pereira, M.I.; Gomes, P.S. Movement velocity in resistance training. Sports Med. 2003, 33, 427–438. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; González-Badillo, J.J.; Pérez, C.E.; Pallarés, J.G. Velocity and power load relationships of the bench pull vs. bench press exercises. Int. J. Sports Med. 2014, 35, 209–216. [Google Scholar] [CrossRef]
- Sánchez-Moreno, M.; Rodríguez-Rosell, D.; Pareja-Blanco, F.; Mora-Custodio, R.; González-Badillo, J.J. Movement velocity as indicator of relative intensity and level of effort attained during the set in pull-up exercise. Int. J. Sports Physiol. Perform. 2017, 12, 1378–1384. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; González-Badillo, J.J. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med. Sci. Sports Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Sánchez-Medina, L.; Suárez-Arrones, L.; González-Badillo, J.J. Effects of velocity loss during resistance training on performance in professional soccer players. Int. J. Sports Physiol. Perform. 2017, 12, 512–519. [Google Scholar] [CrossRef] [PubMed]
- González-Badillo, J.J.; Yáñez-García, J.M.; Mora-Custodio, R.; Rodríguez-Rosell, D. Velocity loss as a variable for monitoring resistance exercise. Int. J. Sports Med. 2017, 38, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Heredia-Elvar, J.R.; Hernández-Lougedo, J.; Maicas-Pérez, L.; Notario-Alonso, R.; Garnacho-Castaño, M.V.; García-Fernández, P.; Maté-Muñoz, J.L. Reproducibility and Applicability of Traditional Strength Training Prescription Recommendations. Biology 2022, 11, 851. [Google Scholar] [CrossRef] [PubMed]
- González-Badillo, J.J.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Ribas, J.; López-López, C.; Mora-Custodio, R.; Yañez-García, J.M.; Pareja-Blanco, F. Short-term Recovery Following Resistance Exercise Leading or not to Failure. Int. J. Sports Med. 2016, 37, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Ribas-Serna, J.; López-López, C.; Mora-Custodio, R.; Yáñez-García, J.M.; González-Badillo, J.J. Acute and delayed response to resistance exercise leading or not leading to muscle failure. Clin. Physiol. Funct. Imaging 2017, 37, 630–639. [Google Scholar] [CrossRef]
- Morán-Navarro, R.; Pérez, C.E.; Mora-Rodríguez, R.; de la Cruz-Sánchez, E.; González-Badillo, J.J.; Sánchez-Medina, L.; Pallarés, J.G. Time course of recovery following resistance training leading or not to failure. Eur. J. Appl. Physiol. 2017, 117, 2387–2399. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Alcazar, J.; Cornejo-Daza, P.J.; Sánchez-Valdepeñas, J.; Rodríguez-López, C.; Hidalgo-de Mora, J.; Sánchez-Moreno, M.; Bachero-Mena, B.; Alegre, L.M.; Ortega-Becerra, M. Effects of velocity loss in the bench press exercise on strength gains, neuromuscular adaptations, and muscle hypertrophy. Scand. J. Med. Sci. Sports 2020, 30, 2154–2166. [Google Scholar] [CrossRef] [PubMed]
- Maté-Muñoz, J.L.; Budurin, M.; González-Lozano, S.; Heredia-Elvar, J.R.; Cañuelo-Márquez, A.M.; Barba-Ruiz, M.; Muriarte, D.; Garnacho-Castaño, M.V.; Hernández-Lougedo, J.; García-Fernández, P. Physiological Responses at 15 Minutes of Recovery after a Session of Functional Fitness Training in Well-Trained Athletes. Int. J. Environ. Res. Public Health 2022, 19, 8864. [Google Scholar] [CrossRef]
- Patti, A.; Giustino, V.; Hirose, N.; Messina, G.; Cataldi, S.; Grigoli, G.; Marchese, A.; Muleè, G.; Drid, P.; Palma, A.; et al. Effects of an experimental short-time high-intensity warm-up on explosive muscle strength performance in soccer players: A pilot study. Front. Physiol. 2022, 13, 984305. [Google Scholar] [CrossRef]
- Wilson, J.M.; Duncan, N.M.; Marin, P.J.; Brown, L.E.; Loenneke, J.P.; Wilson, S.M.; Jo, E.; Lowery, R.P.; Ugrinowitsch, C. Meta-analysis of postactivation potentiation and power: Effects of conditioning activity, volume, gender, rest periods, and training status. J. Strength Cond. Res. 2013, 27, 854–859. [Google Scholar] [CrossRef]
- Pallarés, J.G.; López-Samanes, A.; Fernández-Elías, V.E.; Aguado-Jiménez, R.; Ortega, J.F.; Gómez, C.; Ventura, R.; Segura, J.; Mora-Rodríguez, R. Pseudoephedrine and circadian rhythm interaction on neuromuscular performance. Scand. J. Med. Sci. Sport 2015, 25, e603–e612. [Google Scholar] [CrossRef] [PubMed]
- Association, W.M. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar]
- Pallarés, J.G.; Sánchez-Medina, L.; Pérez, C.E.; de la Cruz-Sánchez, E.; Mora-Rodríguez, R. Imposing a pause between the eccentric and concentric phases increases the reliability of isoinertial strength assessments. J. Sports Sci. 2014, 32, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Sáchez-Medina, L.; Pérez, C.E.; González-Badillo, J.J. Importance of the propulsive phase in strength assessment. Int. J. Sports Med. 2010, 31, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Peña García-Orea, G.; Belando-Pedreño, N.; Merino-Barrero, J.A.; Heredia-Elvar, J.R. Validation of an opto-electronic instrument for the measurement of execution velocity in squat exercise. Sports Biomech. 2021, 6, 706–719. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, L.R.; Thompson, D.; Philips, G.; Backx, K.; Crickmore, L. A comparison of the Lactate Pro, Accusport, Analox GM7 and Kodak Ektachem lactate analysers in normal, hot and humid conditions. Int. J. Sports Med. 2002, 23, 130–135. [Google Scholar] [CrossRef]
- McLean, S.R.; Norris, S.R.; Smith, D.J. Comparison of the Lactate Pro and the YSI 1500 Sport Blood Lactate analyzers. Int. J. Appl. Sports Sci. 2004, 16, 22–30. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 4th ed.; Sage: London, UK, 2013; pp. 473–474. [Google Scholar]
- García-Fernández, P.; Cimadevilla, E.; Guodemar-Pérez, J.; Cañuelo-Márquez, A.M.; Heredia-Elvar, J.R.; Fernández-Rodríguez, T.; Lozano-Estevan, M.d.C.; Hervás-Pérez, J.P.; Sánchez-Calabuig, M.A.; Garnacho-Castaño, M.V.; et al. Muscle Recovery after a Single Bout of Functional Fitness Training. Int. J. Environ. Res. Public Health 2021, 18, 6634. [Google Scholar] [CrossRef]
- Bigland-Ritchie, B.; Woods, J.J. Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve 1984, 7, 691–699. [Google Scholar] [CrossRef]
- Twomey, R.; Aboodarda, S.J.; Kruger, R.; Culos-Reed, S.N.; Temesi, J.; Millet, G.Y. Neuromuscular fatigue during exercise: Methodological considerations, etiology and potential role in chronic fatigue. Neurophysiol. Clin. 2017, 47, 95–110. [Google Scholar] [CrossRef]
- Di Domenico, F.; Raiola, G. Effects of training fatigue on performance. J. Hum. Sport Exerc. 2021, 16, S769–S780. [Google Scholar]
- Gandevia, S.C. Spinal and supraspinal factors in human muscle fatigue. Physiol. Rev. 2001, 81, 1725–1789. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.L.; Amann, M.; Duchateau, J.; Meeusen, R.; Rice, C.L. Neural Contributions to Muscle Fatigue: From the Brain to the Muscle and Back Again. Med. Sci. Sports Exerc. 2016, 48, 2294–2306. [Google Scholar] [CrossRef] [PubMed]
- Smilios, I.; Hakkinen, K.; Tokmakidis, S.P. ; Power Output and Electromyographic Activity during and after a Moderate Load Muscular Endurance Session. J. Strength Cond. Res. 2010, 24, 2122–2131. [Google Scholar] [CrossRef] [PubMed]
- Maté-Muñoz, J.L.; Lougedo, J.H.; Barba, M.; García-Fernández, P.; Garnacho-Castaño, M.V.; Domínguez, R. Muscular fatigue in response to different modalities of CrossFit sessions. PLoS ONE 2017, 12, e0181855. [Google Scholar]
- Gollnick, P.D.; Bayly, W.M. Biochemical training adaptations and maximal power. In Human Muscle Power; Jones, N.L., McCartney, N., McComas, A.J., Eds.; Human Kinetics: Champaign, IL, USA, 1986; pp. 255–267. [Google Scholar]
- Westerblad, H.; Allen, D.G.; Lännergren, J. Muscle fatigue: Lactic acid or inorganic phosphate the major cause? News Physiol. Sci. 2002, 17, 17–21. [Google Scholar] [CrossRef]
- Steele, D.S.; Duke, A.M. Metabolic factors contributing to altered Ca2+ regulation in skeletal muscle fatigue. Acta Physiol. Scand. 2003, 179, 39–48. [Google Scholar] [CrossRef] [Green Version]
Variable | Level of Strength | Pre-Exercise (M ± SD, 95% CI, CV) | 0 min Post Exercise (M ± SD, 95% CI, CV) | 5 min Post Exercise (M ± SD, 95% CI, CV) | 10 min Post Exercise (M ± SD, 95% CI, CV) | 15 min Post Exercise (M ± SD, 95% CI, CV) | p Time ηp2 SP | p Group ηp2 SP | p Group × Time ηp2 SP |
---|---|---|---|---|---|---|---|---|---|
MPV at 1 m·s−1 (m·s−1) | High RSR (n = 11) | 0.97 ± 0.07 † 0.92–1.01 7.2% | 0.68 ± 0.13 ‡ 0.59–0.76 19.1% | 0.87 ± 0.13 0.80–0.94 14.9% | 0.92± 0.08 0.85–0.98 8.7% | 0.91 ± 0.10 0.84–0.98 11% | <0.001 * | 0.791 | 0.503 |
Medium RSR (n = 14) | 1.00 ± 0.08 * 0.96–1.03 8% | 0.67 ± 0.15 ‡ 0.60– 0.74 22.4% | 0.85 ± 0.13 £ 0.79–0.91 15.3% | 0.92 ± 0.12 0.86–0.97 13% | 0.91 ± 0.13 0.84–0.97 14.3% | 0.793 | 0.011 | 0.042 | |
Low RSR (n = 19) | 1.00 ± 0.07 * 0.96–1.03 7% | 0.65 ± 0.12 ‡ 0.59–0.71 18.5% | 0.83 ± 0.11 # 0.77–0.88 13.3% | 0.87 ± 0.11 0.82–0.92 12.6% | 0.89 ± 0.12 0.84–0.95 13.5% | 1.000 | 0.085 | 0.362 | |
Blood lactate (mmol·L−1) | High RSR (n = 11) | 1.3 ± 0.3 * 1.1–1.6 20.6% | 8.0 ± 2.5 & ¥ 6.9–9.1 30.7% | 7.2 ± 1.7 $ 6.3–8.0 23.7% | 5.9 ± 1.4 ¶ ¥ 5.2–6.6 24% | 4.5 ± 1.0 3.8–5.2 21.4% | <0.001 * | 0.030 * | 0.008 * |
Medium RSR (n = 14) | 1.5 ± 0.6 * 1.2–1.7 39% | 7.5 ± 1.7 ‡ 6.6–8.5 22.3% | 6.5 ± 1.2 $ 5.8–7.2 17.8% | 5.7 ± 1.3 ¶ 5.01–6.3 22.7% | 4.5 ± 1.1 3.9–5.1 24.2% | 0.859 | 0.158 | 0.135 | |
Low RSR (n = 19) | 1.5 ± 0.4 * 1.3–1.7 25.5% | 6.1 ± 1.5 & 5.2–6.9 24.1% | 5.9 ± 1.3 $ 5.3–6.5 22.4% | 4.7 ± 1.0 4.2–5.3 20.8% | 4.2 ± 1.2 3.7–4.7 28.1% | 1.000 | 0.664 | 0.887 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Lougedo, J.; Heredia-Elvar, J.R.; Maicas-Pérez, L.; Cañuelo-Márquez, A.M.; Rozalén-Bustín, M.; de Jesús Franco, F.; Garnacho-Castaño, M.V.; García-Fernández, P.; Maté-Muñoz, J.L. Neuromuscular Fatigue and Metabolic Stress during the 15 Minutes of Rest after Carrying Out a Bench Press Exercise Protocol. Biology 2022, 11, 1435. https://doi.org/10.3390/biology11101435
Hernández-Lougedo J, Heredia-Elvar JR, Maicas-Pérez L, Cañuelo-Márquez AM, Rozalén-Bustín M, de Jesús Franco F, Garnacho-Castaño MV, García-Fernández P, Maté-Muñoz JL. Neuromuscular Fatigue and Metabolic Stress during the 15 Minutes of Rest after Carrying Out a Bench Press Exercise Protocol. Biology. 2022; 11(10):1435. https://doi.org/10.3390/biology11101435
Chicago/Turabian StyleHernández-Lougedo, Juan, Juan Ramón Heredia-Elvar, Luis Maicas-Pérez, Ana María Cañuelo-Márquez, Manuel Rozalén-Bustín, Fernando de Jesús Franco, Manuel Vicente Garnacho-Castaño, Pablo García-Fernández, and José Luis Maté-Muñoz. 2022. "Neuromuscular Fatigue and Metabolic Stress during the 15 Minutes of Rest after Carrying Out a Bench Press Exercise Protocol" Biology 11, no. 10: 1435. https://doi.org/10.3390/biology11101435
APA StyleHernández-Lougedo, J., Heredia-Elvar, J. R., Maicas-Pérez, L., Cañuelo-Márquez, A. M., Rozalén-Bustín, M., de Jesús Franco, F., Garnacho-Castaño, M. V., García-Fernández, P., & Maté-Muñoz, J. L. (2022). Neuromuscular Fatigue and Metabolic Stress during the 15 Minutes of Rest after Carrying Out a Bench Press Exercise Protocol. Biology, 11(10), 1435. https://doi.org/10.3390/biology11101435