Assessing the Impact of Village Development on the Habitat Quality of Yunnan Snub-Nosed Monkeys Using the INVEST Model
Abstract
:Simple Summary
Abstract
1. Introduction
- (1)
- Analyze and categorize the development status of villages;
- (2)
- Analyze the spatial distribution of habitat quality in Yunnan snub-nosed monkey distribution area;
- (3)
- With the results of those analyses, determine the impact of village development on the habitat quality of the Yunnan snub-nosed monkey population.
2. Materials and Methods
2.1. Study Area
2.2. Land Use and Land Cover
2.3. Villages and Rural Roads
2.4. Principal Component Analysis
2.5. Plots
- i is the evaluation index (1, 2, and 3 for types I, II, and III, respectively);
- Xi is the type score value of each evaluation index;
- Wi is the weight of each evaluation index.
2.6. Habitat Quality Evaluation and Spatial Analysis
2.7. Impact of Village Development on Habitat Quality
3. Results
3.1. Analysis the Development of Villages
3.2. Analysis of the Impact of Village Development on Habitat Quality
3.3. Analysis of the Habitat Quality of the Yunnan Snub-Nosed Monkey
4. Discussion
4.1. Impacts of Village Development on Habitat Quality
4.2. Impacts of Village Development on Yunnan Snub-Nosed Monkeys
4.3. Implications for Conservation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baoping, R.; Ming, L.; Yongcheng, L.; Fuwen, W. Influence of day length, ambient temperature, and seasonality on daily travel distance in the Yunnan snub-nosed monkey at Jinsichang, Yunnan, China. Am. J. Primatol. 2008, 71, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ren, B.; Wu, R.; Zhao, L.; Hao, Y.; Wang, B.; Wei, F.; Long, Y.; Li, M. The effect of landscape features on population genetic structure in Yunnan snub-nosed monkeys (Rhinopithecus bieti) implies an anthropogenic genetic discontinuity. Mol. Ecol. 2009, 18, 3831–3846. [Google Scholar] [CrossRef] [PubMed]
- Clauzel, C.; Xiqing, D.; Gongsheng, W.; Giraudoux, P.; Li, L. Assessing the impact of road developments on connectivity across multiple scales: Application to Yunnan snub-nosed monkey conservation. Biol. Conserv. 2015, 192, 207–217. [Google Scholar] [CrossRef]
- Li, W.; Clauzel, C.; Dai, Y.; Wu, G.; Giraudoux, P.; Li, L. Improving landscape connectivity for the Yunnan snub-nosed monkey through cropland reforestation using graph theory. J. Nat. Conserv. 2018, 38, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Xue, Y.; Wu, G.; Li, D.; Giraudoux, P. Potential habitat corridors and restoration areas for the black-and-white snub-nosed monkey Rhinopithecus bieti in Yunnan, China. Oryx 2014, 49, 719–726. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Ren, B.; Li, D.; Xiang, Z.; Garber, P.A.; Li, M. Effects of habitat fragmentation and human disturbance on the population dynamics of the Yunnan snub-nosed monkey from 1994 to 2016. PeerJ 2019, 7, e6633. [Google Scholar] [CrossRef] [Green Version]
- Quan, R.-C.; Huang, Y.; Warren, M.W.; Zhao, Q.-K.; Ren, G.-P.; Huo, S.; Long, Y.; Zhu, J. How Human Household Size Affects the Habitat of Black-and-White Snub-Nosed Monkeys (Rhinopithecus bieti) in Hongla Snow Mountain Nature Reserve in Tibet, China. Int. J. Primatol. 2011, 32, 1190–1202. [Google Scholar] [CrossRef]
- Zhao, X.; Ren, B.; Garber, P.A.; Li, X.; Li, M. Impacts of human activity and climate change on the distribution of snub-nosed monkeys in China during the past 2000 years. Divers. Distrib. 2017, 24, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Nüchel, J.; Bøcher, P.K.; Xiao, W.; Zhu, A.-X.; Svenning, J.-C. Snub-nosed monkeys (Rhinopithecus): Potential distribution and its implication for conservation. Biodivers. Conserv. 2018, 27, 1517–1538. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.-F.; Huo, S.; Wang, L.; Cui, L.-W.; Xiao, W.; Quan, R.-C.; Tai, Z. Distribution, status and conservation of the black-and-white snub-nosed monkey Rhinopithecus bieti in Tibet. Oryx 2007, 41, 525–531. [Google Scholar] [CrossRef]
- Liu, M.; Tian, H. China’s land cover and land use change from 1700 to 2005: Estimations from high-resolution satellite data and historical archives. Glob. Biogeochem. Cycles 2010, 24, GB3003. [Google Scholar] [CrossRef]
- Mckinney, M.L. Urbanization, Biodiversity, and Conservation the impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. BioScience 2002, 52, 883–890. [Google Scholar] [CrossRef]
- Jeschke, J.M.; Genovesi, P. Do biodiversity and human impact influence the introduction or establishment of alien mammals? Oikos 2010, 120, 57–64. [Google Scholar] [CrossRef]
- Mashizi, A.K.; Escobedo, F.J. Socio-ecological assessment of threats to semi-arid rangeland habitat in Iran using spatial models and actor group opinions. J. Arid Environ. 2020, 177, 104136. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45. [Google Scholar] [CrossRef] [Green Version]
- Vögeli, M.; Serrano, D.; Pacios, F.; Tella, J.L. The relative importance of patch habitat quality and landscape attributes on a declining steppe-bird metapopulation. Biol. Conserv. 2010, 143, 1057–1067. [Google Scholar] [CrossRef] [Green Version]
- Wiegand, T.; Naves, J.; Garbulsky, M.F.; Fernández, N. Animal habitat quality and ecosystem functioning: Exploring seasonal patterns using ndvi. Ecol. Monogr. 2008, 78, 87–103. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Huang, J.; Li, C. The evaluation for the impact of land use change on habitat quality: A joint contribution of cellular automata scenario simulation and habitat quality assessment model. Ecol. Model. 2017, 366, 58–67. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.R.; Chan, K.M.A.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Vistnes, I.; Nellemann, C.; Jordhøy, P.; Strand, O. Effects of infrastructure on migration and range use of wild reindeer. J. Wildl. Manag. 2004, 68, 101–108. [Google Scholar] [CrossRef]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuña, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, J.A.; Bourn, N.; Clarke, R.T.; Stewart, K.E.; Simcox, D.J.; Pearman, G.S.; Curtis, R.; Goodger, B. The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc. R. Soc. B Boil. Sci. 2001, 268, 1791–1796. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Chen, Y.; Bu, L.; Ye, Y. Multi-Scenario Analysis of Habitat Quality in the Yellow River Delta by Coupling FLUS with InVEST Model. Int. J. Environ. Res. Public Health 2021, 18, 2389. [Google Scholar] [CrossRef]
- Nematollahi, S.; Fakheran, S.; Kienast, F.; Jafari, A. Application of InVEST habitat quality module in spatially vulnerability assessment of natural habitats (case study: Chaharmahal and Bakhtiari province, Iran). Environ. Monit. Assess. 2020, 192, 487. [Google Scholar] [CrossRef]
- Di Febbraro, M.; Sallustio, L.; Vizzarri, M.; De Rosa, D.; De Lisio, L.; Loy, A.; Eichelberger, B.; Marchetti, M. Expert-based and correlative models to map habitat quality: Which gives better support to conservation planning? Glob. Ecol. Conserv. 2018, 16, e00513. [Google Scholar] [CrossRef]
- Choudhary, A.; Deval, K.; Joshi, P.K. Study of habitat quality assessment using geospatial techniques in Keoladeo National Park, India. Environ. Sci. Pollut. Res. 2020, 28, 14105–14114. [Google Scholar] [CrossRef]
- Kija, H.K.; Ogutu, J.O.; Mangewa, L.J.; Bukombe, J.; Verones, F.; Graae, B.J.; Kideghesho, J.R.; Said, M.Y.; Nzunda, E.F. Spatio-Temporal Changes in Wildlife Habitat Quality in the Greater Serengeti Ecosystem. Sustainability 2020, 12, 2440. [Google Scholar] [CrossRef] [Green Version]
- Krauss, J.; Bommarco, R.; Guardiola, M.; Heikkinen, R.K.; Helm, A.; Kuussaari, M.; Lindborg, R.; Öckinger, E.; Pärtel, M.; Pino, J.; et al. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett. 2010, 13, 597–605. [Google Scholar] [CrossRef] [Green Version]
- Ng, C.N.; Xie, Y.J.; Yu, X.J. Measuring the spatio-temporal variation of habitat isolation due to rapid urbanization: A case study of the Shenzhen River cross-boundary catchment, China. Landsc. Urban Plan. 2011, 103, 44–54. [Google Scholar] [CrossRef]
- Nelson, E.; Polasky, S.; Lewis, D.J.; Plantinga, A.J.; Lonsdorf, E.; White, D.; Bael, D.; Lawler, J.J. Efficiency of incentives to jointly increase carbon sequestration and species conservation on a landscape. Proc. Natl. Acad. Sci. USA 2008, 105, 9471–9476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, Y.; Kirkpatrick, C.R.; Zhong, T.; Xiao, L. Report on the distribution, population, and ecology of the yunnan snub-nosed monkey (Rhinopithecus bieti). Primates 1994, 35, 241–250. [Google Scholar] [CrossRef]
- Wong, M.H.G.; Li, R.; Xu, M.; Long, Y. An integrative approach to assessing the potential impacts of climate change on the Yunnan snub-nosed monkey. Biol. Conserv. 2012, 158, 401–409. [Google Scholar] [CrossRef]
- Mokarram, M.; Pham, T.M. CA-Markov model application to predict crop yield using remote sensing indices. Ecol. Indic. 2022, 139, 108952. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Wu, L.; Sun, C.; Fan, F. Estimating the Characteristic Spatiotemporal Variation in Habitat Quality Using the InVEST Model-A Case Study from Guangdong-Hong Kong-Macao Greater Bay Area. Remote Sens. 2021, 13, 1008. [Google Scholar] [CrossRef]
- Ulak, M.; Kocatepe, A.; Ozguven, E.E.; Horner, M.W.; Spainhour, L. Geographic Information System–Based Spatial and Statistical Analysis of Severe Crash Hotspot Accessibility to Hospitals. Transp. Res. Rec. J. Transp. Res. Board 2017, 2635, 90–97. [Google Scholar] [CrossRef]
- Premo, L. Local spatial autocorrelation statistics quantify multi-scale patterns in distributional data: An example from the Maya Lowlands. J. Archaeol. Sci. 2004, 31, 855–866. [Google Scholar] [CrossRef]
- Cai, X.; Wu, Z.; Cheng, J. Using kernel density estimation to assess the spatial pattern of road density and its impact on landscape fragmentation. Int. J. Geogr. Inf. Sci. 2013, 27, 222–230. [Google Scholar] [CrossRef]
- Kang, Y.; Cho, N.; Son, S. Spatiotemporal characteristics of elderly population’s traffic accidents in Seoul using space-time cube and space-time kernel density estimation. PLoS ONE 2018, 13, e0196845. [Google Scholar] [CrossRef]
- Liu, J.; Li, D.; Matsuzawa, T.; Hirata, S. The Lisu people’s traditional natural philosophy and its potential impact on conservation planning in the Laojun Mountain region, Yunnan Province, China. Primates 2020, 62, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.C.; Chen, X.-Y.; Corlett, R.; Didham, R.K.; Ding, P.; Holt, R.D.; Holyoak, M.; Hu, G.; Hughes, A.C.; Jiang, L.; et al. Habitat fragmentation and biodiversity conservation: Key findings and future challenges. Landsc. Ecol. 2015, 31, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Donaldson, L.; Wilson, R.; Maclean, I. Old concepts, new challenges: Adapting landscape-scale conservation to the twenty-first century. Biodivers. Conserv. 2016, 26, 527–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Clauzel, C.; Li, J.; Xue, Y.; Zhang, Y.; Wu, G.; Giraudoux, P.; Li, L.; Li, D. Identifying refugia and corridors under climate change conditions for the Sichuan snub-nosed monkey (Rhinopithecus roxellana) in Hubei Province, China. Ecol. Evol. 2019, 9, 1680–1690. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Ren, B.; Li, D.; Garber, P.A.; Zhu, P.; Xiang, Z.; Grueter, C.C.; Liu, Z.; Li, M. Climate change, grazing, and collecting accelerate habitat contraction in an endangered primate. Biol. Conserv. 2019, 231, 88–97. [Google Scholar] [CrossRef]
- Jiao, Y.; Yeophantong, P.; Lee, T.M. Strengthening International Legal Cooperation to Combat the Illegal Wildlife Trade Between Southeast Asia and China. Front. Ecol. Evol. 2021, 9, 645427. [Google Scholar] [CrossRef]
- Thomas-Walters, L.; Hinsley, A.; Bergin, D.; Burgess, G.; Doughty, H.; Eppel, S.; MacFarlane, D.; Meijer, W.; Lee, T.M.; Phelps, J.; et al. Motivations for the use and consumption of wildlife products. Conserv. Biol. 2020, 35, 483–491. [Google Scholar] [CrossRef]
- Cuperus, R.; Kalsbeek, M.; De Haes, H.A.U.; Canters, K.J. Preparation and Implementation of Seven Ecological Compensation Plans for Dutch Highways. Environ. Manag. 2002, 29, 736–749. [Google Scholar] [CrossRef]
- Vaissière, A.-C.; Meinard, Y. A policy framework to accommodate both the analytical and normative aspects of biodiversity in ecological compensation. Biol. Conserv. 2020, 253, 108897. [Google Scholar] [CrossRef]
Category | Variable | Code | Category | Variable | Code |
---|---|---|---|---|---|
Natural resources (X1) | Area of commonly used cultivated land (km2) | X11 | Economics (X3) | Total economic income (million yuan) | X31 |
Paddy field area (km2) | X12 | Income from farming (million yuan) | X32 | ||
Dry land area (km2) | X13 | Income from graziery (million yuan) | X33 | ||
Area of cultivated land area per capita (km2) | X14 | Forestry income (million yuan) | X34 | ||
Area of economic fruit woodland (km2) | X15 | Income of secondary and tertiary industries (million yuan) | X35 | ||
Area of fruit woodland per capita (km2) | X16 | Income per capita (yuan) | X36 | ||
Population (X2) | Rural population (people) | X21 | Infrastructure (X4) | Distance to nearest station (km) | X41 |
Agricultural population (people) | X22 | Distance to nearest market (km) | X42 | ||
Labor force (people) | X23 | Cars (units) | X43 | ||
Number of people in the primary industry (people) | X24 | Agricultural transport vehicle (units) | X44 | ||
Number of people with tertiary education and above (people) | X25 | Tractors (units) | X45 | ||
Number of secondary schools (people) | X26 | Motorbike (units) | X46 | ||
Number of primary school students (people) | X27 | Energy resources (X5) | Biogas digester farmers (Households) | X51 | |
Number of people not attending school (people) | X28 | Solar farmers (Households) | X52 | ||
Education (X6) | Primary school enrollment rate (%) | X61 | |||
Secondary school enrollment rate (%) | X62 |
Comprehensive Score Range/Z | (−∞,−0.5) | (−0.5,0) | (0,0.5) | (0.5,1) | (1.1.5) | (1.5,2) | (2,+∞) |
---|---|---|---|---|---|---|---|
Scale grades of villages | I | II | III | IV | V | VI | VII |
Evaluation Index | Classification Criteria | Weight (%) | ||
---|---|---|---|---|
I | II | III | ||
Forest naturalness | 1, 2 | 3, 4 | 5 | 0.19 |
Forest community structure | 1 | 2 | 3 | 0.18 |
Tree species structure | 6, 7 | 3, 4, 5 | 1, 2 | 0.17 |
Total vegetation coverage | [70%, 100%] | [50%, 70%) | [0%, 50%) | 0.14 |
Crown density | [0.7, 1.0] | [0.4, 0.7) | [0.2, 0.4) | 0.13 |
Average tree height | [15.0, +∞) | [5.0, 15.0) | [0.9, 5.0) | 0.13 |
Litter depth grade | 1 | 2 | 3 | 0.06 |
Ecological Grade | Comprehensive Ecological Quality Score of Plots | Code |
---|---|---|
Excellent | <1.4 | 1 |
Good | 1.4–1.8 | 2 |
Medium | 1.8–2.2 | 3 |
Poor | >2.2 | 4 |
Threat Factors | Maximum Effective Distance of Threats (km) | Weight | Decay Type |
---|---|---|---|
Village I | 2 | 0.4 | Exponential |
Village II | 2 | 0.5 | Exponential |
Village III | 2 | 0.6 | Exponential |
Village IV | 2 | 0.7 | Exponential |
Village V | 2 | 0.8 | Exponential |
Village VI | 2 | 0.9 | Exponential |
Village VII | 2 | 0.95 | Exponential |
Village road | 4 | 0.7 | Linear |
Other non-forestry land | 1 | 0.6 | Exponential |
Economic forest | 1 | 0.7 | Exponential |
Cropland | 1 | 0.5 | Exponential |
Artificial construction | 3 | 0.8 | Exponential |
Land Cover Type Code | Land Cover Types | Habitat Suitability | Vil1 | Vil 2 | Vil 3 | Vil 4 | Vil 5 | Vil 6 | Vil 7 | Vr | Onfl | Ef | Cr | Ac |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | other non-forest land | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | cold coniferous forest (Alpine coniferous forests) | 0.6 | 0.7 | 0.75 | 0.8 | 0.9 | 0.9 | 0.9 | 0.9 | 0.95 | 0.4 | 0.3 | 0.4 | 0.8 |
3 | shrublands | 0.8 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.5 | 0.3 | 0.4 | 0.8 |
4 | Armand pine and hemlock | 1 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.5 | 0.4 | 0.5 | 0.9 |
5 | barren land | 0.2 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.2 | 0.1 | 0.1 | 0.2 |
6 | broad-leaved forests | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.7 | 0.7 | 0.8 | 0.9 | 0.4 | 0.3 | 0.4 | 0.8 |
7 | cropland | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | planted economic forests | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | water body | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.4 | 0.2 | 0.1 | 0.1 | 0.2 |
10 | sclerophyllous evergreen broad-leaved forest | 0.8 | 0.7 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.5 | 0.3 | 0.4 | 0.8 |
11 | fir-spruce forest | 1 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.5 | 0.4 | 0.5 | 0.9 |
12 | warm coniferous forest (Yunnan pine forest) | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.4 | 0.4 | 0.4 | 0.2 | 0.3 | 0.1 | 0.2 |
13 | coniferous broad-leaved mixed forest | 1 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.85 | 0.85 | 0.5 | 0.4 | 0.5 | 0.9 |
14 | Artificial construction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Village Grade | Quantities | Weight (%) |
---|---|---|
Grade I | 138 | 4.20 |
Grade II | 1874 | 59.84 |
Grade III | 810 | 24.49 |
Grade IV | 220 | 6.26 |
Grade V | 74 | 2.45 |
Grade VI | 57 | 2.18 |
Grade VII | 21 | 0.58 |
Habitat Quality Grade | Value Interval | Area (km2) | Area Weight (%) |
---|---|---|---|
Very poor | [0, 0.2) | 7759.39 | 51.94 |
Poor | [0.2, 0.4) | 506.31 | 3.08 |
Medium | [0.4, 0.6) | 2534.52 | 15.13 |
Good | [0.6, 0.8) | 2585.69 | 13.24 |
Excellent | [0.8, 1) | 3038.35 | 16.60 |
Code of Monkey | Habitat Quality |
---|---|
C1 | 0.8107 |
C2 | 0.7113 |
C3 | 0.5943 |
C4 | 0.7139 |
C5 | 0.7723 |
C6 | 0.4982 |
C10 | 0.8074 |
C11 | 0.9047 |
C12 | 0.7653 |
C13 | 0.8238 |
C14 | 0.6943 |
C15 | 0.7931 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Li, L.; Wu, G.; Liu, J.; Slate, T.J.; Guo, H.; Li, D. Assessing the Impact of Village Development on the Habitat Quality of Yunnan Snub-Nosed Monkeys Using the INVEST Model. Biology 2022, 11, 1487. https://doi.org/10.3390/biology11101487
Zhu S, Li L, Wu G, Liu J, Slate TJ, Guo H, Li D. Assessing the Impact of Village Development on the Habitat Quality of Yunnan Snub-Nosed Monkeys Using the INVEST Model. Biology. 2022; 11(10):1487. https://doi.org/10.3390/biology11101487
Chicago/Turabian StyleZhu, Shuxian, Li Li, Gongsheng Wu, Jialan Liu, Timothy J. Slate, Hongyan Guo, and Dayong Li. 2022. "Assessing the Impact of Village Development on the Habitat Quality of Yunnan Snub-Nosed Monkeys Using the INVEST Model" Biology 11, no. 10: 1487. https://doi.org/10.3390/biology11101487
APA StyleZhu, S., Li, L., Wu, G., Liu, J., Slate, T. J., Guo, H., & Li, D. (2022). Assessing the Impact of Village Development on the Habitat Quality of Yunnan Snub-Nosed Monkeys Using the INVEST Model. Biology, 11(10), 1487. https://doi.org/10.3390/biology11101487