Year-Long Assessment of Soil Nematode Diversity and Root Inhibition-Indicator Nematode Genera in Rice Fields
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling Methods
2.2. Measurement of Soil pH and Moisture Content
2.3. Determination of Soil Nitrogen and Carbon Content
2.4. Nematode Extraction from the Soil Samples
2.5. Nematode Extraction from the Root Samples
2.6. Identification of Nematode Genera
2.7. Nematode Community and Diversity Indices
2.8. Statistical Analysis
3. Results
3.1. Soil pH, Moisture, Nitrogen, and Carbon Content in Different Seasons
3.2. Abundance of Soil Nematodes in Different Seasons
3.3. Trophic Nematode Structure in Different Seasons
3.4. Variation of Soil Nematode Frequency and Density in Different Seasons
3.5. Shift of PPNs during Different Seasons in the Rice Fields
3.6. PV and RPV of Nematode Genera in the Rice Fields
3.7. Principal Component Analysis of Soil Nematodes
3.8. Nematode Genera Inhibited Rice Roots
3.9. Community and Diversity Indices of Soil Nematodes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blake, R.O. Sustainable and increased food production. Agriculture 1992, 40, 7–19. [Google Scholar] [CrossRef]
- Waweru, B.; Turoop, L.; Kahangi, E.; Coyne, D.; Dubois, T. Non-pathogenic Fusarium oxysporum endophytes provide field control of nematodes, improving yield of banana (Musa sp.). Biol. Control 2014, 74, 82–88. [Google Scholar] [CrossRef]
- Singh, S.; Singh, B.; Singh, A.P. Nematodes: A threat to sustainability of agriculture. Procedia Environ. Sci. 2015, 29, 215–216. [Google Scholar] [CrossRef] [Green Version]
- Gerber, K.; Smart, G.C., Jr. Effect of Hirschmanniella caudacrena on the Submersed Aquatic Plants Ceratophyllum demersum and Hydrilla verticillata. J. Nematol. 1987, 19, 447. [Google Scholar]
- Bridge, J.; Plowright, R.A.; Peng, D. Nematode Parasites of Rice. Plant Parasitic Nematodes in Subtropical and Tropical Agriculture, 2nd ed.; CABInternational: Wallingford, UK, 2005; pp. 87–130. [Google Scholar]
- Kyndt, T.; Fernandez, D.; Gheysen, G. Plant-parasitic nematode infections in rice: Molecular and cellular insights. Annu. Rev. Phytopathol. 2014, 52, 135–153. [Google Scholar] [CrossRef]
- Trudgill, D.L.; Blok, V.C. Apomictic, polyphagous root-knot nematodes: Exceptionally successful and damaging biotrophic root pathogens. Annu. Rev. Phytopathol. 2001, 39, 53–77. [Google Scholar] [CrossRef]
- Jairajpuri, M.S. Nematode Pests of Rice; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Bardgett, R.D.; Van Der Putten, W.H. Belowground biodiversity and ecosystem functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef]
- Resch, M.C.; Schütz, M.; Graf, U.; Wagenaar, R.; van der Putten, W.H.; Risch, A.C. Does topsoil removal in grassland restoration benefit both soil nematode and plant communities? J. Appl. Ecol. 2019, 56, 1782–1793. [Google Scholar] [CrossRef]
- Siebert, J.; Ciobanu, M.; Schädler, M.; Eisenhauer, N. Climate change and land use induce functional shifts in soil nematode communities. Oecologia 2019, 192, 281–294. [Google Scholar] [CrossRef]
- Kumar, K.; Goh, K.M. Crop residues and management practices: Effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. Adv. Agron. 1999, 68, 197–319. [Google Scholar]
- Bongers, T.; Ferris, H. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 1999, 14, 224–228. [Google Scholar] [CrossRef]
- Ferris, H.; Bongers, T.; De Goede, R.G.M. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Appl. Soil Ecol. 2001, 18, 13–29. [Google Scholar] [CrossRef]
- Li, Q.K. Paddy Soils of China; Science Presss: Beijing, China, 1992. [Google Scholar]
- Viketoft, M. Plant induced spatial distribution of nematodes in semi-natural grassland. Nematology 2007, 9, 131–142. [Google Scholar] [CrossRef]
- Clark, M.S.; Ferris, H.; Klonsky, K.; Lanini, W.T.; Van Bruggen, A.H.C.; Zalom, F.G. Agronomic, economic, and environmental comparison of pest management in conventional and alternative tomato and corn systems in northern California. Agric. Ecosyst. Environ. 1998, 68, 51–71. [Google Scholar] [CrossRef]
- Mulder, C.; Zwart, D.D.; Van Wijnen, H.J.; Schouten, A.J.; Breure, A.M. Observational and simulated evidence of ecological shifts within the soil nematode community of agroecosystems under conventional and organic farming. Funct. Ecol. 2003, 17, 516–525. [Google Scholar] [CrossRef]
- Burns, N.C. Soil pH effects on nematode populations associated with soybeans. J. Nematol. 1971, 3, 237–245. [Google Scholar]
- Warner, F. Soil fertility, pH, texture and nematodes. Diagn. Serv. 2009, 13, 21. [Google Scholar]
- Chen, P.; Tsay, T. Effect of crop rotation on Meloidogyne spp. and Pratylenchus spp. populations in strawberry fields in Taiwan. J. Nematol. 2006, 38, 339. [Google Scholar]
- Meelu, O.P. Recycling of crop residues and green manuring for soil and crop productivity improvement in rice-wheat cropping system. Temp. Rice Achiev. Potential 1994, 2, 605–613. [Google Scholar]
- Walia, S.S. Effect of management of crop residues on soil properties in rice-wheat cropping system. Environ. Ecol. 1995, 13, 503–507. [Google Scholar]
- Singh, Y. Crop residue management in rice-wheat cropping system. In Second International Crop Science Congress; National Academy of Agricultural Sciences: Delhi, India, 1996; Volume 43. [Google Scholar]
- Bellakki, M.A.; Badanur, V.P.; Setty, R.A. Effect of long-term integrated nutrient management on some important properties of a Vertisol. J. Indian Soc. Soil Sci. 1998, 46, 176–180. [Google Scholar]
- Yeates, G.W.; Bongers, T. Nematode diversity in agroecosystems. In Invertebrate Biodiversity as Bioindicators of Sustainable Landscapes; Elsevier: Amsterdam, The Netherlands, 1999; pp. 113–135. [Google Scholar]
- Bongers, T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 1990, 83, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Goninan, J.; Lancaster, J.; Abebe, E. Nematode Community Structure and Biodiversity in Relation to Submerged Aquatic Vegetation at Currituck Sound, North Carolina. J. North Carol. Acad. Sci. 2019, 135, 1–6. [Google Scholar] [CrossRef]
- Zhang, Y.; Pennings, S.C.; Li, B.; Wu, J. Biotic homogenization of wetland nematode communities by exotic Spartina alterniflora in China. Ecology 2019, 100, 02596. [Google Scholar] [CrossRef] [PubMed]
- Tsiafouli, M.A.; Dimitriadis, C.; Boutsis, G.; Mazaris, A.D. Nematode community characteristics are associated to loggerhead turtle hatching success. Ecol. Indic. 2020, 111, 105977. [Google Scholar] [CrossRef]
- Manosalva, P.; Manohar, M.; Von Reuss, S.H.; Chen, S.; Koch, A.; Kaplan, F.; Choe, A.; Micikas, R.J.; Wang, X.; Kogel, K.; et al. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nat. Commun. 2015, 6, 7795. [Google Scholar] [CrossRef] [Green Version]
- Klessig, D.F.; Manohar, M.; Baby, S.; Koch, A.; Danquah, W.B.; Luna, E.; Leach, J.E. Nematode ascaroside enhances resistance in a broad spectrum of plant–pathogen systems. J. Phytopathol. 2019, 167, 265–272. [Google Scholar] [CrossRef]
- Jimenez, R.R.; Ladha, J.K. Automated elemental analysis: A rapid and reliable but expensive measurement of total carbon and nitrogen in plant and soil samples. Commun. Soil Sci. Plant Anal. 1993, 24, 1897–1924. [Google Scholar] [CrossRef]
- Moser, T.; Frankenbach, S. Methodological adaptation for nematodes extraction in forest soils of the southern Mata Atlântica. Pesqui. Agropecu. Bras. 2009, 44, 975–980. [Google Scholar] [CrossRef]
- Speijer, P.R.; De Waele, D. Screening of Musa germplasm for resistance and tolerance to nematodes; IPGRI: Rome, Italy, 1997; Volume 1. [Google Scholar]
- Yeates, G.W.; Bongers, T.D.; De Goede, R.G.M.; Freckman, D.W.; Georgieva, S.S. Feeding habits in soil nematode families and genera—An outline for soil ecologists. J. Nematol. 1993, 25, 315. [Google Scholar]
- Andrassy, I. A Taxonomic Review of the Suborder Rhabditina (Nematode: Secernentia); ORSTOM: Paris, France, 1983; p. 241. [Google Scholar]
- Jairajpuri, M.S.; Ahmad, W. Dorylaimida: Free living, Predacious and Plant Parasitic Nematodes; Brill Publishers: Leiden, The Netherlands, 1992; 458p. [Google Scholar]
- Ahmad, W. Plant Parasitic Nematodes of India: An Identification Manual; Department of Zoology, Aligarh Muslim University: Aligarh, India, 1996; 347p. [Google Scholar]
- Hunt, D.J. Aphelenchida, Longidoridae and Trichodoridae: Their Systematics and Bionomics; CAB International: Wallingford, UK, 1993. [Google Scholar]
- Weaver, W.; Shannon, C.E. The Mathematical Theory of Communication; University of Illinois: Urbana, IL, USA, 1949. [Google Scholar]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Pielou, E.C. Species-diversity and pattern-diversity in the study of ecological succession. J. Theory Boil. 1966, 10, 370–383. [Google Scholar] [CrossRef]
- Margalef, R. Information theory in biology. Gen. Syst. Yearb. 1958, 3, 36–71. [Google Scholar]
- Bongers, T.; Bongers, M. Functional diversity of nematodes. Appl. Soil Ecol. 1998, 10, 239–251. [Google Scholar] [CrossRef]
- Bongers, T. The Maturity Index, the evolution of nematode life history traits, adaptive radiation, and cp-scaling. Plant Soil 1999, 212, 13–22. [Google Scholar] [CrossRef]
- Wasilewska, L. Artect of age of meadows on succession and diversity in soil. Pedobiologia 1994, 38, 1. [Google Scholar]
- Bongers, T.; van der Meulen, H.; Korthals, G. Inverse relationship between the nematode maturity index and plant parasite index under enriched nutrient conditions. Appl. Soil Ecol. 1997, 6, 195–199. [Google Scholar] [CrossRef]
- Wasilewska, L. Soil invertebrates as bioindicators, with special reference to soil-inhabiting nematodes. Russ. J. Nematol. 1997, 5, 113–126. [Google Scholar]
- Sieriebriennikov, B.; Ferris, H.; de Goede, R.G. NINJA: An automated calculation system for nematode-based biological monitoring. Eur. J. Soil Biol. 2014, 61, 90–93. [Google Scholar] [CrossRef]
- Korthals, G.W.; Bongers, T.; Kammenga, J.E.; Alexiev, A.D.; Lexmond, T.M. Long-term effects of copper and pH on the nematode community in an agroecosystem. Environ. Toxicol. Chem. 1996, 15, 979–985. [Google Scholar] [CrossRef]
- Räty, M.; Huhta, V. Earthworms and pH affect communities of nematodes and enchytraeids in forest soil. Biol. Fertil. Soils 2003, 38, 52–58. [Google Scholar] [CrossRef]
- Nisa, R.U.; Tantray, A.Y.; Kousera, N.; Alliea, K.A.; Wania, S.M.; Alamric, S.A.; Alyemenic, M.N.; Wijayacd, L.; Shah, A.A. Influence of ecological and edaphic factors on biodiversity of soil nematodes. Saudi J. Biol. Sci. 2021, 28, 3049–3059. [Google Scholar] [CrossRef] [PubMed]
- Boag, B.; Yeates, G.W. Soil nematode biodiversity in terrestrial ecosystems. Biodivers. Conserv. 1998, 7, 617–630. [Google Scholar] [CrossRef]
- Sohlenius, B. A carbon budget for nematodes, rotifers and tardigrades in a Swedish coniferous forest soil. Ecography 1979, 2, 30–40. [Google Scholar] [CrossRef]
- Khatoon, M.; Sharma, S.; Saxena, S.K. Community analysis of predatory nematodes of Rohilkhand division. UP. Curr. Nematol. 2001, 12, 11–14. [Google Scholar]
- Cao, Z.H.; Huang, J.F.; Zhang, C.S.; Li, A.F. Soil quality evolution after land use change from paddy soil to vegetable land. Environ. Geochem. Health 2004, 26, 97–103. [Google Scholar] [CrossRef]
- Liang, W.; Lou, Y.; Li, Q.; Zhong, S.; Zhang, X.; Wang, J. Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biol. Biochem. 2009, 41, 883–890. [Google Scholar] [CrossRef]
- Pan, F.; McLaughlin, N.B.; Yu, Q.; Xue, A.G.; Xu, Y.; Han, X.; Li, C.; Zhao, D. Responses of soil nematode community structure to different long-term fertilizer strategies in the soybean phase of a soybean–wheat–corn rotation. Eur. J. Soil Biol. 2010, 46, 105–111. [Google Scholar] [CrossRef]
- Lupwayi, N.Z.; Benke, M.B.; Hao, X.; O’Donovan, J.T.; Clayton, G.W. Relating crop productivity to soil microbial properties in acid soil treated with cattle manure. Agron. J. 2014, 106, 612–621. [Google Scholar] [CrossRef]
- Landesman, W.J.; Treonis, A.M.; Dighton, J. Effects of a one-year rainfall manipulation on soil nematode abundances and community composition. Pedobiologia 2011, 54, 87–91. [Google Scholar] [CrossRef]
- Wallace, H.R. The Biology of Plant Parasitic Nematodes; Edward Arnold Ltd.: London, UK, 1963. [Google Scholar]
- Castro, C.E.; Thomason, I.J. Permeation dynamics and osmoregulation in Aphelenchus avenae. Nematologica 1973, 19, 100–108. [Google Scholar] [CrossRef]
- Gupta, V.V.; Yeates, G.W. Soil Microfauna as Bioindicators of Soil Health; CAB International: Wallingford, UK, 1997. [Google Scholar]
- Tomar, V.V.S.; Baniyamuddin, M.D.; Ahmad, W. Community structure of soil inhabiting nematodes in a mango orchard at Aligarh, India. Int. J. Nematol. 2006, 16, 89. [Google Scholar]
- Nicol, J.M.; Turner, S.J.; Coyne, D.L.; Den Nijs, L.; Hockland, S.; Maafi, Z.T. Current nematode threats to world agriculture. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Springer: Dordrecht, The Netherlands, 2011; pp. 21–43. [Google Scholar]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prot, J.C.; Soriano, I.R.S.; Matias, D.M. Major root-parasitic nematodes associated with irrigated rice in the Philippines. Fundam. Appl. Nematol. 1994, 17, 75–78. [Google Scholar]
- Padgham, J.L.; Duxbury, J.M.; Mazid, A.M.; Abawi, G.S.; Hossain, M. Yield loss caused by Meloidogyne graminicola on lowland rainfed rice in Bangladesh. J. Nematol. 2004, 36, 42. [Google Scholar]
- Pokharel, R.R.; Abawi, G.S.; Duxbury, J.M.; Smart, C. Reproductive fitness of isolates of Meloidogyne graminicola from Nepal on selected rice and wheat varieties. J. Nematol. 2005, 37, 388. [Google Scholar]
- Mantelin, S.; Bellafiore, S.; Kyndt, T. Meloidogyne graminicola: A major threat to rice agriculture. Mol. Plant Pathol. 2017, 18, 3. [Google Scholar] [CrossRef]
- Bebber, D.P.; Holmes, T.; Gurr, S.J. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 2014, 23, 1398–1407. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Kadota, Y.; Shirasu, K. Plant Immune Responses to Parasitic Nematodes. Front. Plant Sci. 2019, 10, 1165. [Google Scholar] [CrossRef] [Green Version]
- Devictor, V.; Robert, A. Measuring community responses to large-scale disturbance in conservation biogeography. Divers. Distrib. 2009, 15, 122–130. [Google Scholar] [CrossRef]
- Gamito, S. Caution is needed when applying Margalef diversity index. Ecol. Indic. 2010, 10, 550–551. [Google Scholar] [CrossRef]
- Sánchez-Moreno, S.; Nicola, N.L.; Ferris, H.; Zalom, F.G. Effects of agricultural management on nematode–mite assemblages: Soil food web indices as predictors of mite community composition. Appl. Soil Ecol. 2009, 41, 107–117. [Google Scholar] [CrossRef]
- Neher, D.A.; Darby, B.J. Computation, and application of nematode community indices: General guidelines. In Freshwater Nematodes: Ecology and Taxonomy; CABI Publishing: Wallingford, UK, 2006; pp. 211–222. [Google Scholar]
- Pen-Mouratov, S.; Shukurov, N.; Steinberger, Y. Soil free-living nematodes as indicators of both industrial pollution and livestock activity in Central Asia. Ecol. Indic. 2010, 10, 955–967. [Google Scholar] [CrossRef]
- Korobushkin, D.I.; Butenko, K.O.; Gongalsky, K.B.; Saifutdinov, R.A.; Zaitsev, A.S. Soil nematode communities in temperate rice-growing systems. Eur. J. Soil Biol. 2019, 93, 103099. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, B.; Jin, C.; Wang, F. Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil. Soil Biol. Biochem. 2013, 60, 1–9. [Google Scholar] [CrossRef]
Soil Ecology | p-Value | F-Value | R2 |
---|---|---|---|
Soil Ph | 0.006 | 25.23 | 66.12% |
Soil moisture | 0.021 | 41.89 | 58.23% |
Soil nitrogen content | 0.009 | 38.06 | 48.34% |
Soil organic carbon | 0.014 | 42.31 | 42.95% |
Soil nematode density | 0.008 | 37.81 | 47.70% |
Soil nematode frequency | 0.012 | 31.24 | 44.61% |
Soil nematode abundance | 0.000 | 48.32 | 55.25% |
Interaction of nematode frequency of root samples with soil samples at different seasons | |||
Root-nematode × soil-nematode (spring) | 0.000 | 27.19 | 68.73% |
Root-nematode × soil-nematode (summer) | 0.011 | 11.41 | 34.56% |
Root-nematode × soil-nematode (winter) | 0.002 | 22.53 | 57.87% |
Nematode Genera | Spring Season | Summer Season | Winter Season | ||||||
---|---|---|---|---|---|---|---|---|---|
c-p Value | PV | RPV (%) | c-p Value | PV | RPV (%) | c-p Value | PV | RPV | |
Plant-parasitic | |||||||||
Psilenchus | 2 | 251.98 ± 16.43 | 3.54 ± 0.56 | 2 | 252.46 ± 16.34 | 63.12 ± 5.12 | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Radopholus | 2 | 158.59 ± 11.32 | 2.23 ± 0.42 | 2 | 206.88 ± 13.19 | 51.72 ± 4.21 | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Longidorus * | 5 | 218.13 ± 14.12 | 3.07 ± 0.51 | 5 | 292.12 ± 16.35 | 73.03 ± 5.69 | 5 | 241.83 ± 14.21 | 3.44 ± 0.55 |
Rotylenchus | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 | 1 | 151.48 ± 12.27 | 37.87 ± 3.56 | 1 | 167.16 ± 12.24 | 41.79 ± 5.63 |
Criconemoides $ | 3 | 30.99 ± 4.21 | 0.44 ± 0.11 | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Ditylenchus | 2 | 102.45 ± 7.65 | 1.44 ± 0.21 | 2 | 325.13 ± 18.57 | 81.28 ± 5.78 | 2 | 157.09 ± 11.23 | 39.27 ± 4.82 |
Meloidogyne * | 3 | 139.67 ± 9.78 | 1.96 ± 0.25 | 3 | 351.54 ± 19.48 | 87.89 ± 5.88 | 3 | 206.97 ± 13.25 | 51.74 ± 5.76 |
Helicotylenchus | 3 | 100.22 ± 6.89 | 1.41 ± 0.22 | 3 | 203.95 ± 12.23 | 50.99 ± 4.35 | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Heterodera * | 3 | 208.47 ± 12.68 | 2.93 ± 0.30 | 3 | 234.10 ± 14.09 | 58.52 ± 4.43 | 3 | 268.76 ± 15.69 | 67.19 ± 6.21 |
Hirschmanniella * | 3 | 111.36 ± 7.98 | 1.57 ± 0.24 | 3 | 321.95 ± 18.64 | 80.49 ± 6.11 | 3 | 312.77 ± 18.52 | 78.19 ± 6.93 |
Hoplolaimus | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 | 1 | 194.79 ± 12.51 | 48.70 ± 4.68 | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Globodera | 3 | 55.21 ± 5.59 | 0.78 ± 0.18 | 3 | 167.46 ± 12.8 | 41.87 ± 3.98 | 3 | 151.04 ± 11.06 | 37.76 ± 4.25 |
Tylenchus * | 2 | 253.99 ± 17.35 | 3.57 ± 0.63 | 2 | 246.34 ± 15.35 | 61.58 ± 5.24 | 2 | 268.52 ± 14.52 | 67.13 ± 6.22 |
Paratylenchus | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 | 1 | 323.41 ± 18.43 | 80.85 ± 5.35 | 1 | 228.80 ± 12.67 | 57.20 ± 6.02 |
Pratylenchus | 3 | 95.62 ± 6.11 | 1.34 ± 0.35 | 3 | 246.04 ± 14.65 | 61.51 ± 5.13 | 3 | 188.79 ± 10.45 | 47.20 ± 5.09 |
Hexatylenchus | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 | 2 | 142.87 ± 12.27 | 35.72 ± 3.36 | 2 | 97.69 ± 8.66 | 24.42 ± 3.65 |
Tylenchorhynchus | 2 | 168.35 ± 12.25 | 2.37 ± 0.36 | 2 | 52.79 ± 5.62 | 13.20 ± 1.44 | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Xiphinema | 0 | 251.98 ± 15.97 | 3.54 ± 0.66 | 1 | 27.83 ± 4.15 | 6.96 ± 0.67 | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Bacteriovores | |||||||||
Acrobelus | 0 | 14.94 ± 2.11 | 0.21 ± 0.09 | 2 | 190.30 ± 12.33 | 47.57 ± 4.21 | 2 | 300.75 ± 17.34 | 75.18 ± 8.23 |
Cephalobus * | 2 | 309.33 ± 18.55 | 4.35 ± 0.79 | 2 | 163.53 ± 12.26 | 40.88 ± 3.57 | 2 | 318.31 ± 17.84 | 79.57 ± 7.46 |
Eucephalobus | 2 | 43.13 ± 4.78 | 0.61 ± 0.11 | 2 | 70.56 ± 5.82 | 17.64 ± 2.23 | 2 | 218.20 ± 13.23 | 54.55 ± 6.12 |
Rhabdolaimus $ | 1 | 459.96 ± 21.57 | 6.47 ± 0.87 | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 | 1 | 189.31 ± 11.21 | 47.32 ± 5.86 |
Diplogaster | 1 | 406.23 ± 20.62 | 5.71 ± 0.66 | 1 | 124.96 ± 9.48 | 31.24 ± 3.15 | 1 | 273.79 ± 12.47 | 68.44 ± 5.98 |
Diploscapter | 1 | 358.84 ± 19.43 | 5.05 ± 0.61 | 1 | 91.35 ± 6.09 | 22.84 ± 3.10 | 1 | 148.10 ± 10.33 | 37.02 ± 3.51 |
Rhabditis | 1 | 242.28 ± 14.74 | 3.41 ± 0.43 | 1 | 110.82 ± 7.87 | 27.70 ± 3.79 | 1 | 215.97 ± 12.82 | 53.99 ± 4.76 |
Teratorhabditis $ | 1 | 373.49 ± 18.55 | 5.25 ± 0.72 | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 | 1 | 133.21 ± 9.87 | 33.30 ± 3.43 |
Mesorhabditis | 1 | 320.89 ± 16.91 | 4.51 ± 0.58 | 1 | 146.31 ± 11.23 | 36.58 ± 4.13 | 1 | 242.04 ± 13.42 | 60.51 ± 5.88 |
Cuticularia * | 2 | 101.60 ± 6.68 | 1.43 ± 0.41 | 2 | 115.37 ± 6.89 | 28.84 ± 3.88 | 2 | 283.40 ± 15.21 | 70.84 ± 6.11 |
Pelodera $ | 1 | 253.99 ± 15.87 | 3.57 ± 0.59 | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 | 1 | 193.18 ± 10.12 | 48.29 ± 4.57 |
Protorhabditis | 1 | 14.94 ± 1.76 | 0.21 ± 0.08 | 1 | 79.55 ± 6.62 | 19.89 ± 2.58 | 1 | 288.86 ± 16.11 | 72.21 ± 6.74 |
Omnivores | |||||||||
Eudorylaimus | 4 | 292.84 ± 14.59 | 4.12 ± 0.57 | 4 | 170.41 ± 8.75 | 42.60 ± 4.54 | 4 | 115.45 ± 8.91 | 28.86 ± 3.45 |
Dorylaimus * | 4 | 324.42 ± 18.52 | 4.56 ± 0.62 | 4 | 196.01 ± 8.87 | 49.00 ± 4.67 | 4 | 171.18 ± 12.13 | 42.79 ± 4.41 |
Mesodorylaimus | 4 | 219.74 ± 12.23 | 3.09 ± 0.57 | 4 | 225.50 ± 12.26 | 56.37 ± 5.11 | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Discolaimius | 5 | 181.83 ± 8.79 | 2.56 ± 0.36 | 5 | 132.07 ± 6.86 | 33.02 ± 3.24 | 5 | 81.06 ± 8.46 | 20.26 ± 2.78 |
Predatory | |||||||||
Mononchus | 1 | 253.99 ± 13.37 | 3.57 ± 0.60 | 1 | 64.92 ± 4.67 | 16.23 ± 2.28 | 1 | 97.69 ± 9.15 | 24.42 ± 2.89 |
Mylonchulus $ | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 | 5 | 67.55 ± 7.13 | 16.89 ± 1.46 |
Prionchulus | 4 | 171.29 ± 8.11 | 2.41 ± 0.29 | 4 | 25.25 ± 2.64 | 6.31 ± 1.04 | 4 | 46.99 ± 5.45 | 11.75 ± 1.31 |
Clarkus | 1 | 11.95 ± 1.67 | 2.99 ± 0.47 | 1 | 30.81 ± 2.80 | 7.70 ± 0.95 | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Miconchulus | 4 | 173.23 ± 7.88 | 2.44 ± 0.44 | 4 | 11.36 ± 1.34 | 2.84 ± 0.46 | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Fungivores | |||||||||
Dorylaimellus | 4 | 214.11 ± 11.49 | 3.01 ± 0.48 | 4 | 192.80 ± 9.86 | 48.20 ± 5.32 | 4 | 203.80 ± 12.25 | 50.95 ± 4.94 |
Dorylaimoides * | 4 | 324.34 ± 18.33 | 4.56 ± 0.65 | 4 | 242.22 ± 12.48 | 60.56 ± 5.46 | 4 | 330.38 ± 14.64 | 82.59 ± 7.47 |
Tylencholaimus | 1 | 38.03 ± 2.66 | 0.53 ± 0.13 | 1 | 139.57 ± 7.76 | 34.89 ± 3.43 | 1 | 283.40 ± 13.77 | 70.84 ± 6.88 |
Aphelenchus | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 | 2 | 231.86 ± 12.58 | 57.97 ± 4.89 | 2 | 300.75 ± 13.86 | 75.18 ± 7.14 |
Aphelenchoides | 2 | 126.95 ± 5.87 | 1.78 ± 0.22 | 2 | 206.88 ± 11.59 | 51.72 ± 4.26 | 2 | 227.90 ± 12.57 | 56.97 ± 5.68 |
Nematode Genera | Absolute Frequency | Relative Frequency | Mean Density | Relative Density | PV | RPV |
---|---|---|---|---|---|---|
Hirschmanniella * | 52.50 ± 8.22 | 4.87 ± 0.64 | 3.73 ± 0.23 | 188.21 ± 12.24 | 415.34 ± 34.54 | 31.60 ± 7.24 |
Meloidogyne * | 48.00 ± 6.43 | 4.41 ± 0.51 | 3.52 ± 0.31 | 159.46 ± 10.37 | 334.87 ± 31.46 | 25.47 ± 4.35 |
Paratylenchus | 27.50 ± 3.56 | 2.55 ± 0.23 | 2.17 ± 0.24 | 97.22 ± 8.45 | 155.25 ± 21.34 | 11.81 ± 2.78 |
Xiphinema | 6.50 ± 0.68 | 0.58 ± 0.11 | 0.70 ± 0.12 | 41.43 ± 3.58 | 31.55 ± 6.65 | 2.40 ± 0.25 |
Globodera | 11.00 ± 1.21 | 0.98 ± 0.48 | 1.16 ± 0.14 | 67.68 ± 5.42 | 70.00 ± 14.67 | 5.10 ± 0.55 |
Heterodera * | 38.50 ± 4.50 | 3.21 ± 0.54 | 3.31 ± 0.32 | 147.96 ± 11.25 | 265.09 ± 30.22 | 20.16 ± 3.15 |
Tylenchorhynchus | 6.50 ± 0.72 | 0.58 ± 0.13 | 1.27 ± 0.15 | 59.76 ± 4.13 | 45.51 ± 9.23 | 3.46 ± 0.80 |
Indices | Spring Season | Summer Season | Winter Season |
---|---|---|---|
Shannon–Wiener -ndex (H’) | 3.47 ± 0.55 b | 3.60 ± 0.57 a | 3.40 ± 0.51 c |
Pielou’s evenness (J′) | 0.002 ± 0.001 c | 1.00 ± 0.08 a | 0.90 ± 0.08 b |
Simpson index (D) | 0.97 ± 0.06 a | 0.002 ± 0.001 b | 0.002 ± 0.001 b |
Margalef Index (MgI) | 5.80 ± 0.78 b | 6.21 ± 0.72 a | 5.60 ± 0.65 c |
Wasilewska index (WI) | 1.15 ± 0.09 b | 0.82 ± 0.06 c | 1.50 ± 0.11 a |
Channel index (CI) | 3.03 ± 0.42 c | 9.10 ± 1.03 a | 5.50 ± 0.58 b |
Food web complexity (FWC) | 0.60 ± 0.04 a | 0.50 ± 0.03 b | 0.50 ± 0.04 b |
Maturity index (MI) | 2.40 ± 0.22 a | 2.30 ± 0.46 b | 2.20 ± 0.24 c |
Plant-parasitic index (PPI) | 2.78 ± 0.27 b | 2.97 ± 0.21 a | 2.47 ± 0.25 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nisa, R.U.; Nisa, A.U.; Hroobi, A.A.; Shah, A.A.; Tantray, A.Y. Year-Long Assessment of Soil Nematode Diversity and Root Inhibition-Indicator Nematode Genera in Rice Fields. Biology 2022, 11, 1572. https://doi.org/10.3390/biology11111572
Nisa RU, Nisa AU, Hroobi AA, Shah AA, Tantray AY. Year-Long Assessment of Soil Nematode Diversity and Root Inhibition-Indicator Nematode Genera in Rice Fields. Biology. 2022; 11(11):1572. https://doi.org/10.3390/biology11111572
Chicago/Turabian StyleNisa, Rawhat Un, Anees Un Nisa, Ali Ahmed Hroobi, Ali Asghar Shah, and Aadil Yousuf Tantray. 2022. "Year-Long Assessment of Soil Nematode Diversity and Root Inhibition-Indicator Nematode Genera in Rice Fields" Biology 11, no. 11: 1572. https://doi.org/10.3390/biology11111572
APA StyleNisa, R. U., Nisa, A. U., Hroobi, A. A., Shah, A. A., & Tantray, A. Y. (2022). Year-Long Assessment of Soil Nematode Diversity and Root Inhibition-Indicator Nematode Genera in Rice Fields. Biology, 11(11), 1572. https://doi.org/10.3390/biology11111572