Testicular Ultrasound Analysis as a Predictive Tool of Ram Sperm Quality
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Semen Collection
2.2. Sperm Motility Evaluation
2.3. Flow Cytometry Analysis
2.3.1. Sperm Viability
2.3.2. Intracellular Reactive Oxygen Species (ROS)
2.3.3. Detection of Membrane Phosphatidylserine (PS) Translocation
2.3.4. DNA Fragmentation—TUNEL Assay
2.4. Assessment of Capacitation Status by CTC Staining
2.5. Morphological Study by Eosin-Nigrosine Staining
2.6. Testes Measurement and Ultrasonography Examination
2.7. Statistics Analyzes
3. Results
3.1. Changes in Size and Ultrasound Evaluation of the Testes and Ram Sperm Quality between Seasons
3.2. Correlation between Testicular Parameters and Sperm-Quality Values
3.3. Correlation between Ultrasonographic and Morphometric Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malpaux, B.; Viguie, C.; Skinner, D.C.; Thiery, J.C.; Pelletier, J.; Chemineau, P. Seasonal breeding in sheep: Mechanism of action of melatonin. Anim. Reprod. Sci. 1996, 42, 109–117. [Google Scholar] [CrossRef]
- Chemineau, P.; Guillaume, D.; Migaud, M.; Thiery, J.C.; Pellicer-Rubio, M.T.; Malpaux, B. Seasonality of reproduction in mammals: Intimate regulatory mechanisms and practical implications. Reprod. Domest. Anim. 2008, 43 (Suppl. 2), 40–47. [Google Scholar] [CrossRef]
- D’Occhio, M.J.; Schanbacher, B.D.; Kinder, J.E. Profiles of luteinizing hormone, follicle-stimulating hormone, testosterone and prolactin in rams of diverse breeds: Effects of contrasting short (8L:16D) and long (16L:8D) photoperiods. Biol. Reprod. 1984, 30, 1039–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lincoln, G.A.; Lincoln, C.E.; McNeilly, A.S. Seasonal cycles in the blood plasma concentration of FSH, inhibin and testosterone, and testicular size in rams of wild, feral and domesticated breeds of sheep. J. Reprod. Fertil. 1990, 88, 623–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poulton, A.L.; Robinson, T.J. The response of rams and ewes of three breeds to artificial photoperiod. J. Reprod. Fertil. 1987, 79, 609–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, G.L.; Jansen, H.; Kao, C. Continuous exposure of Suffolk ewes to an equatorial photoperiod disrupts expression of the annual breeding-season. Biol. Reprod. 1990, 42, 63–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karagiannidis, A.; Varsakeli, S.; Alexopoulos, C.; Amarantidis, I. Seasonal variation in semen characteristics of Chios and Friesian rams in Greece. Small Rumin. Res. 2000, 37, 125–130. [Google Scholar] [CrossRef]
- Mandiki, S.N.M.; Derycke, G.; Bister, J.L.; Paquay, R. Influence of season and age on sexual maturation parameters of Texel, Suffolk and Ile-de-France rams: 1. Testicular size, semen quality and reproductive capacity. Small Rumin. Res. 1998, 28, 67–79. [Google Scholar] [CrossRef]
- Mickelsen, W.D.; Paisley, L.G.; Dahmen, J.J. The effect of season on the scrotal circumference and sperm motility and morphology in rams. Theriogenology 1981, 16, 45–51. [Google Scholar] [CrossRef]
- Coyan, K.; Kaya, A.; Karaca, F.; Ataman, M.B.; Yildiz, C. The effect of melatonin on sperm quality and testicular size of normospermic and pathospermic rams in the anoestrous season. Wien. Tierarztl. Monatsschr. 1998, 85, 383–388. [Google Scholar]
- Gouletsou, P.G.; Amiridis, G.S.; Cripps, P.J.; Lainas, T.; Deligiannis, K.; Saratsis, P.; Fthenakis, G.C. Ultrasonographic appearance of clinically healthy testicles and epididymides of rams. Theriogenology 2003, 59, 1959–1972. [Google Scholar] [CrossRef]
- Gouletsou, P.G. Ultrasonographic examination of the scrotal contents in rams. Small Rumin. Res. 2017, 152, 100–106. [Google Scholar] [CrossRef]
- Giffin, J.L.; Bartlewski, P.M.; Hahnel, A.C. Correlations among ultrasonographic and microscopic characteristics of prepubescent ram lamb testes. Exp. Biol. Med. 2014, 239, 1606–1618. [Google Scholar] [CrossRef] [PubMed]
- Giffin, J.L.; Franks, S.E.; Rodriguez-Sosa, J.R.; Hahnel, A.; Bartlewski, P.M. A Study of Morphological and Haemodynamic Determinants of Testicular Echotexture Characteristics in the Ram. Exp. Biol. Med. 2009, 234, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, B.; Lau, C.P.-S.; Giffin, J.; Santos, N.; Hahnel, A.; Raeside, J.; Christie, H.; Bartlewski, P. Suitability of epididymal and testicular ultrasonography and computerized image analysis for assessment of current and future semen quality in the ram. Exp. Biol. Med. 2012, 237, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Hedia, M.; El-Belely, M.; Ismail, S.; Abo El-Maaty, A. Seasonal changes in testicular ultrasonogram pixel-intensity and their association with semen characteristics in rams. Asian Pac. J. Reprod. 2020, 9, 49–54. [Google Scholar] [CrossRef]
- Urt, M.A.G.; Bakarji, E.W.B.; Faria, F.J.C.; Santos, E.F.; Costa, D.S. Lack of relationship between testicular echotexture and seminal characteristics in adult Texel rams. Agric. Sci. 2018, 9, 936–946. [Google Scholar] [CrossRef] [Green Version]
- Andrade, A.K.G.; Soares, A.T.; Freitas, F.F.; Silva, S.V.; Pena-Alfaro, C.E.; Batista, A.M.; Guerra, M.M.P. Testicular and epididymal ultrasonography in Santa Ines lambs raised in Brazil. Anim. Reprod. 2014, 11, 110–118. [Google Scholar]
- Camela, E.S.C.; Nociti, R.P.; Santos, V.J.C.; Macente, B.I.; Murawski, M.; Vicente, W.R.R.; Bartlewski, P.M.; Oliveira, M.E.F. Changes in testicular size, echotexture, and arterial blood flow associated with the attainment of puberty in Dorper rams raised in a subtropical climate. Reprod. Domest. Anim. 2019, 54, 131–137. [Google Scholar] [CrossRef]
- Echegaray, A.; Marcantonio, S.; Maraboli, C.; Munoz, I.; Escartin, N.; Gnemmi, G. New echotexture parameters to evaluate the testicular parenchyma in bulls. In Reproduction in Domestic Animals, Proceedings of the 22nd Annual Conference of the European Society for Domestic Animal Reproduction (ESDAR), Cordoba, Spain, 27–29 September 2018; Wiley Blackwell: Hoboken, NJ, USA, 2018; p. 129. [Google Scholar]
- Escartin, N.; Munoz, I.; Gil, A.; Echegaray, A. New echotexture parameters to evaluate the testicular parenchyma in rams. In Reproduction in Domestic Animals, Proceedings of the 22nd Annual Conference of the European Society for Domestic Animal Reproduction (ESDAR), Cordoba, Spain, 27–29 September 2018; Wiley Blackwell: Hoboken, NJ, USA, 2018; pp. 130–131. [Google Scholar]
- Lafuente, A.; Lafuente, M.; Escartin, N.; Munoz, I.; Echegaray, A. New echotexture parameters to evaluate the testicular parenchyma in stallions. In Reproduction in Domestic Animals, Proceedings of the 22nd Annual Conference of the European Society for Domestic Animal Reproduction (ESDAR), Cordoba, Spain, 27–29 September 2018; Wiley Blackwell: Hoboken, NJ, USA, 2018; pp. 155–156. [Google Scholar]
- Munoz, I.; Escartin, N.; Zamora, A.; Echegaray, A. New echotexture parameters to evaluate the testicular parenchyma in boars. In Reproduction in Domestic Animals, Proceedings of the 22nd Annual Conference of the European Society for Domestic Animal Reproduction (ESDAR), Cordoba, Spain, 27–29 September 2018; Wiley Blackwell: Hoboken, NJ, USA, 2018; pp. 169–170. [Google Scholar]
- Kastelic, J.P.; Rizzoto, G.; Thundathil, J. Review: Testicular vascular cone development and its association with scrotal thermoregulation, semen quality and sperm production in bulls. Animal 2018, 12, S133–S141. [Google Scholar] [CrossRef]
- Zelli, R.; Troisi, A.; Ngonput, A.E.; Cardinali, L.; Polisca, A. Evaluation of testicular artery blood flow by Doppler ultrasonography as a predictor of spermatogenesis in the dog. Res. Vet. Sci. 2013, 95, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Samir, H.; Nyametease, P.; Nagaoka, K.; Watanabe, G. Effect of seasonality on testicular blood flow as determined by color Doppler ultrasonography and hormonal profiles in Shiba goats. Anim. Reprod. Sci. 2018, 197, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Hedia, M.G.; El-Belely, M.S.; Ismail, S.T.; Abo El-Maaty, A.M. Monthly changes in testicular blood flow dynamics and their association with testicular volume, plasma steroid hormones profile and semen characteristics in rams. Theriogenology 2019, 123, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Ntemka, A.; Kiossis, E.; Boscos, C.; Theodoridis, A.; Kourousekos, G.; Tsakmakidis, I. Effects of testicular hemodynamic and echogenicity changes on ram semen characteristics. Reprod. Domest. Anim. 2018, 53, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; England, G.C.W.; Noakes, D.E. Ultrasonography of spontaneous lesions of the genital system of three rams, and their influence on semen quality. Vet. Rec. 2000, 146, 10–15. [Google Scholar] [CrossRef]
- Del Valle, I.; Mendoza, N.; Casao, A.; Cebrián-Pérez, J.A.; Pérez-Pé, R.; Muiño-Blanco, T. Significance of Non-conventional Parameters in the Evaluation of Cooling-induced Damage to Ram Spermatozoa Diluted in Three Different Media. Reprod. Domest. Anim. 2010, 45, 260–268. [Google Scholar] [CrossRef]
- Mendoza, N.; Casao, A.; Domingo, J.; Quintín, F.; Laviña, A.; Fantova, E.; Cebrián-Pérez, J.Á.; Muiño-Blanco, T.; Pérez-Pe, R. Influence of Non-conventional Sperm Quality Parameters on Field Fertility in Ovine. Front. Vet. Sci. 2021, 8, 413. [Google Scholar] [CrossRef]
- Harrison, R.A.; Vickers, S.E. Use of fluorescent probes to assess membrane integrity in mammalian spermatozoa. J. Reprod. Fertil. 1990, 88, 343–352. [Google Scholar] [CrossRef]
- Guthrie, H.D.; Welch, G.R. Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry1. J. Anim. Sci. 2006, 84, 2089–2100. [Google Scholar] [CrossRef] [Green Version]
- Ward, C.R.; Storey, B.T. Determination of the time course of capacitation in mouse spermatozoa using a chlortetracycline fluorescence assay. Dev. Biol. 1984, 104, 287–296. [Google Scholar] [CrossRef]
- Gillan, L.; Evans, G.; Maxwell, W.M. Capacitation status and fertility of fresh and frozen-thawed ram spermatozoa. Reprod. Fertil. Dev. 1997, 9, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Hafez, E.S.E.; Hafez, B. Reproduction in Farm Animals, 7th ed.; Wiley Blackwell: Hoboken, NJ, USA, 2000; p. 509. [Google Scholar]
- Godfrey, R.W.; Collins, J.R.; Gray, M.L. Evaluation of sexual behavior of hair sheep rams in a tropical environment. J. Anim. Sci. 1998, 76, 714–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batissaco, L.; Celeghini, E.C.C.; Pinaffi, F.L.V.; Oliveira, B.M.M.d.; Andrade, A.F.C.d.; Recalde, E.C.S.; Fernandes, C.B. Correlations between testicular hemodynamic and sperm characteristics in rams. Braz. J. Vet. Res. Anim. Sci. 2013, 50, 384–395. [Google Scholar] [CrossRef] [Green Version]
- Abecia, J.A.; Carvajal-Serna, M.; Casao, A.; Palacios, C.; Pulinas, L.; Keller, M.; Chemineau, P.; Delgadillo, J.A. The continuous presence of ewes in estrus in spring influences testicular volume, testicular echogenicity and testosterone concentration, but not LH pulsatility in rams. Animal 2020, 14, 2554–2561. [Google Scholar] [CrossRef] [PubMed]
- Sarlós, P.; Egerszegi, I.; Balogh, O.; Molnár, A.; Cseh, S.; Rátky, J. Seasonal changes of scrotal circumference, blood plasma testosterone concentration and semen characteristics in Racka rams. Small Rumin. Res. 2013, 111, 90–95. [Google Scholar] [CrossRef]
- Matos, C.A.P.; Thomas, D.L. Physiology and genetics of testicular size in sheep: A review. Livest. Prod. Sci. 1992, 32, 1–30. [Google Scholar] [CrossRef]
- Lindsay, D.R.; Pelletier, J.; Pisselet, C.; Courot, M. Changes in photoperiod and nutrition and their effect on testicular growth of rams. Reproduction 1984, 71, 351–356. [Google Scholar] [CrossRef]
- Avdi, M.; Banos, G.; Stefos, K.; Chemineau, P. Seasonal variation in testicular volume and sexual behavior of Chios and Serres rams. Theriogenology 2004, 62, 275–282. [Google Scholar] [CrossRef]
- Ahmadi, B.; Mirshahi, A.; Giffin, J.; Oliveira, M.E.F.; Gao, L.; Hahnel, A.; Bartlewski, P.M. Preliminary assessment of the quantitative relationships between testicular tissue composition and ultrasonographic image attributes in the ram. Vet. J. 2013, 198, 282–285. [Google Scholar] [CrossRef]
- Evans, A.C.O.; Pierson, R.A.; Garcia, A.; McDougall, L.M.; Hrudka, F.; Rawlings, N.C. Changes in circulating hormone concentrations, testes histology and testes ultrasonography during sexual maturation in beef bulls. Theriogenology 1996, 46, 345–357. [Google Scholar] [CrossRef]
- Kafi, M.; Safdarian, M.; Hashemi, M. Seasonal variation in semen characteristics, scrotal circumference and libido of Persian Karakul rams. Small Rumin. Res. 2004, 53, 133–139. [Google Scholar] [CrossRef]
- Malpaux, B.; Migaud, M.; Tricoire, H.; Chemineau, P. Biology of mammalian photoperiodism and the critical role of the pineal gland and melatonin. J. Biol. Rhythm. 2001, 16, 336–347. [Google Scholar] [CrossRef] [PubMed]
- Senger, P.L. Pathways to Pregnancy and Parturition, 2nd ed.; Current Conceptions, Inc.: Pullman, WA, USA, 2003. [Google Scholar]
- Arteaga, A.A.; Barth, A.D.; Brito, L.F.C. Relationship between semen quality and pixel–intensity of testicular ultrasonograms after scrotal insulation in beef bulls. Theriogenology 2005, 64, 408–415. [Google Scholar] [CrossRef]
- Bartlewski, P.M.; Giffin, J.L.; Oluwole, O.A.; Hahnel, A.C. Prospective ultrasonographic and endocrine predictors of spermatogenic onset in ram lambs. Anim. Reprod. Sci. 2017, 179, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Asadi, A.; Ghahremani, R.; Abdolmaleki, A.; Rajaei, F. Role of sperm apoptosis and oxidative stress in male infertility: A narrative review. Int. J. Reprod. Biomed. 2021, 19, 493–504. [Google Scholar] [CrossRef]
- Aitken, R.J.; Roman, S.D. Antioxidant Systems and Oxidative Stress in the Testes. Oxid. Med. Cell Longev. 2008, 1, 616821. [Google Scholar] [CrossRef] [Green Version]
- Balci, A.; Karazincir, S.; Gorur, S.; Sumbas, H.; Egilmez, E.; Inandi, T. Long-term effect of varicocele repair on intratesticular arterial resistance index. J. Clin. Ultrasound 2008, 36, 148–152. [Google Scholar] [CrossRef]
Breeding Season (n = 56) | Non-Breeding Season (n = 40) | |
---|---|---|
Testicular size | ||
Scrotal circumference (cm) | 35.1 ± 0.4 | 36.21 ± 0.39 |
Testicular width (cm) | 7.09 ± 0.08 | 7.21 ± 0.08 |
Testicular length (cm) | 10.54 ± 0.19 | 10.69 ± 0.2 |
Testicular volume (cm3) | 524.43 ± 18.6 | 563.3 ± 21.42 |
ECOTEXT® parameters | ||
Ec1 (black pixels) | 23.24 ± 2.46 a | 14.03 ± 1.88 b |
Ec2 (white pixels) | 166.21 ± 19.7 | 187.29 ± 27.96 |
Ec3 (grey pixels) | 100.96 ± 0.97 | 103.1 ± 1.3 |
TD (density of tubules/cm3) | 147.97 ± 2.11 | 151.25 ± 1.91 |
LA (lumen area, %) | 8.54 ± 0.3 | 7.71 ± 0.32 |
LD (lumen diameter, μm) | 103.68 ± 1.49 a | 97.67 ± 1.58 b |
Doppler parameters | ||
Frequency (bpm) | 90.02 ± 2.51 a | 96.69 ± 2.06 b |
RI (Resistive index) | 0.56 ± 0.02 | 0.55 ± 0.02 |
PI (Pulsatility index) | 0.89 ± 0.04 | 0.84 ± 0.05 |
Sperm Parameter | Breeding Season (n = 56) | Non-Breeding Season (n = 40) |
---|---|---|
Sperm concentration (×106 cells/mL) | 4203.36 ± 176.74 | 4561.00 ± 237.38 |
Total motility (%) | 90.36 ± 0.69 | 91.28 ± 0.66 |
Progressive motility (%) | 41.66 ± 1.24 | 44.95 ± 1.52 |
Membrane integrity (Viability %) | 75.99 ± 1.44 | 80.37 ± 1.15 |
Viable spermatozoa without PS 1 translocation (%) | 62.17 ± 2.17 | 59.98 ± 2.27 |
Spermatozoa with PS 1 translocation (%) | 15.23 ± 1.12 | 16.85 ± 1.13 |
Viable spermatozoa with low ROS 2 levels (%) | 73.3 ± 1.3 | 74.55 ± 0.97 |
Spermatozoa with high ROS 2 levels (%) | 7.73 ± 0.35 a | 9.79 ± 0.4 b |
Sperm with DNA fragmentation (%) | 8.55 ± 0.46 | 8.78 ± 0.52 |
Sperm Concentration | Total Motility | Progressive Motility | Viable Spermatozoa without PS Translocation | Total Spermatozoa with High ROS Levels | Normal Morphology | Proximal Cytoplasmic Droplet | Distal Cytoplasmic Droplet | Bent Tail | |
---|---|---|---|---|---|---|---|---|---|
Testicular size | |||||||||
Scrotal circumference | −0.141 | 0.186 | 0.042 | −0.011 | 0.190 | 0.177 | 0.027 | −0.138 | −0.166 |
Testicular width | −0.300 ** | 0.124 | 0.094 | 0.012 | 0.148 | 0.138 | −0.139 | −0.163 | −0.239 * |
Testicular length | −0.162 | 0.025 | −0.017 | −0.265 ** | −0.024 | 0.172 | −0.234 * | 0.007 | 0.047 |
Testicular volume | −0.173 | 0.060 | 0.138 | −0.158 | 0.107 | 0.190 | −0.082 | −0.092 | −0.091 |
ECOTEXT® parameters | |||||||||
Ec1 (black pixels) | −0.032 | 0.17 | 0.101 | 0.070 | −0.175 | 0.051 | −0.049 | −0.186 | 0.139 |
Ec2 (white pixels) | 0.168 | −0.171 | −0.127 | −0.108 | 0.201 * | −0.116 | 0.175 | 0.037 | −0.036 |
Ec3 (grey pixels) | 0.142 | −0.17 | −0.081 | −0.114 | 0.184 | −0.079 | 0.12 | 0.004 | −0.064 |
TD (tubular density) | −0.218 * | 0.2 | 0.371 ** | −0.030 | −0.225 * | 0.233* | −0.338 ** | −0.263 ** | 0.094 |
LA (lumen area) | −0.101 | 0.158 | 0.182 | 0.133 | −0.238* | 0.109 | −0.167 | −0.144 | 0.155 |
LD (lumen diameter) | −0.024 | 0.122 | 0.027 | 0.173 | −0.182 | 0.024 | −0.006 | −0.049 | 0.123 |
Doppler parameters | |||||||||
Frequency | 0.203 * | −0.210 * | −0.078 | 0.072 | 0.107 | −0.196 | −0.005 | 0.05 | 0.283 ** |
PI (Pulsatility index) | −0.310 ** | 0.203 * | 0.054 | −0.004 | −0.304 ** | 0.019 | −0.176 | −0.028 | −0.009 |
RI (Resistive index) | −0.30 3** | 0.186 | 0.076 | −0.012 | −0.317 ** | 0.045 | −0.198 | −0.043 | −0.002 |
Sperm Concentration | Total Motility | Progressive Motility | Viability | Viable Spermatozoa without PS Translocation | Total Spermatozoa with PS Translocation | Total Spermatozoa with High ROS Levels | Sperm with DNA Fragmentation | Normal Morphology | DETACHED HEAD | Proximal Cytoplasmic Droplet | Distal Cytoplasmic Droplet | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Testicular size | ||||||||||||
Scrotal circunference | −0.140 | 0.080 | 0.039 | −0.056 | −0.087 | 0.074 | 0.129 | 0.093 | 0.203 * | −0.003 | −0.029 | −0.129 |
Testicular width | −0.167 | 0.205 * | 0.007 | 0.009 | −0.062 | 0.039 | 0.080 | −0.034 | 0.196 | 0.032 | −0.024 | −0.212 * |
Testicular length | −0.195 | −0.161 | −0.065 | −0.229 * | −0.284 * | 0.081 | −0.070 | 0.115 | 0.105 | 0.255 * | −0.082 | −0.042 |
Testicular volume | −0.172 | −0.026 | 0.003 | −0.162 | −0.213 * | 0.097 | 0.046 | 0.122 | 0.167 | 0.110 | −0.041 | −0.098 |
ECOTEXT® parameters | ||||||||||||
Ec1 (black pixels) | −0.015 | 0.14 | −0.016 | −0.052 | 0.090 | −0.099 | −0.099 | −0.15 | −0.140 | −0.251 * | −0.065 | −0.174 |
Ec2 (white pixels) | −0.013 | −0.255 * | −0.124 | 0.001 | −0.071 | 0.236 * | 0.169 | 0.137 | 0.044 | 0.039 | 0.201 * | 0.132 |
Ec3 (grey pixels) | −0.014 | −0.232 * | −0.086 | −0.034 | −0.104 | 0.218 * | 0.150 | 0.12 | 0.108 | 0.091 | 0.147 | 0.127 |
TD (tubular density) | −0.134 | 0.234 * | 0.295 ** | −0.226 * | −0.052 | −0.145 | −0.194 | −0.216 * | 0.171 | −0.087 | −0.291 ** | −0.312 ** |
LA (lumen area) | −0.043 | 0.229 * | 0.125 | −0.081 | 0.098 | −0.194 | −0.140 | −0.17 | −0.079 | −0.157 | −0.134 | −0.207 * |
LD (lumen diameter) | 0.038 | 0.157 | −0.015 | 0.05 | 0.130 | −0.138 | −0.098 | −0.102 | −0.153 | −0.156 | −0.105 | −0.09 |
Doppler parameters | ||||||||||||
Frequency | 0.232 * | 0.091 | 0.023 | 0.029 | 0.083 | −0.039 | 0.050 | 0.04 | 0.062 | −0.021 | −0.095 | −0.054 |
PI (Pulsatility index) | −0.164 | 0.071 | 0.032 | −0.159 | −0.067 | −0.001 | −0.194 | 0.021 | 0.046 | 0.057 | −0.149 | −0.101 |
RI (Resistive index) | −0.179 | 0.068 | 0.027 | −0.168 | −0.081 | −0.001 | −0.206 * | 0.008 | 0.086 | 0.074 | −0.184 | −0.12 |
Sperm Concentration | Progressive Motility | Viability | Viable Spermatozoa without PS Translocation | Viable Spermatozoa with low ROS Levels | Non-Capacitated Sperm | Capacitated Sperm | Distal Cytoplasmic Droplet | |
---|---|---|---|---|---|---|---|---|
Testicular size | ||||||||
Scrotal circunference | −0.105 | −0.030 | −0.072 | −0.063 | −0.156 | −0.019 | −0.008 | −0.156 |
Testicular width | −0.155 | −0.093 | 0.011 | −0.081 | −0.057 | −0.005 | −0.024 | −0.056 |
Testicular length | −0.139 | −0.172 | −0.281 ** | −0.344 ** | −0.235 ** | −0.042 | 0.020 | −0.053 |
Testicular volume | −0.124 | −0.090 | −0.191 | −0.223 * | −0.221 * | −0.022 | −0.009 | −0.127 |
ECOTEXT® parameters | ||||||||
Ec1 (black pixels) | −0.043 | 0.09 | 0.087 | 0.095 | 0.053 | 0.063 | −0.09 | −0.026 |
Ec2 (white pixels) | −0.052 | −0.231 * | 0.03 | 0.033 | −0.051 | 0.02 | 0.014 | 0.116 |
Ec3 (grey pixels) | −0.099 | −0.178 | −0.019 | −0.055 | −0.083 | 0.026 | 0.016 | 0.066 |
TD (tubular density) | −0.329 ** | 0.155 | −0.209 * | −0.125 | −0.156 | 0.001 | −0.032 | −0.266 ** |
LA (lumen area) | −0.062 | 0.158 | −0.018 | 0.057 | 0.013 | −0.01 | −0.035 | −0.126 |
LD (lumen diameter) | 0.081 | 0.158 | 0.084 | 0.112 | 0.100 | 0.017 | −0.05 | 0.043 |
Doppler parameters | ||||||||
Frequency | 0.025 | −0.01 | −0.193 | −0.077 | −0.149 | −0.256 * | 0.296 ** | −0.01 |
PI (Pulsatility index) | −0.084 | 0.011 | 0.001 | −0.118 | 0.014 | 0.163 | −0.158 | −0.159 |
RI (Resistive index) | −0.116 | 0.021 | −0.033 | −0.153 | 0.002 | 0.137 | −0.128 | −0.176 |
Ec1 (Black Pixels) | Ec2 (White Pixels) | Ec3 (Grey Pixels) | TD (Tubular Density) | LA (lumen AREA) | LD (Lumen Diameter) | |
---|---|---|---|---|---|---|
Scrotal circumference | −0.249 * | 0.245 * | 0.299 ** | 0.093 | −0.227 * | −0.365 ** |
Testicular width | −0.188 | 0.145 | 0.171 | 0.118 | −0.134 | −0.245 * |
Testicular length | −0.271 ** | 0.184 | 0.236 * | 0.176 | −0.210 * | −0.361 ** |
Testicular volume | −0.273 ** | 0.226 * | 0.287 ** | 0.155 | −0.225 * | −0.391 ** |
Frequency | Pulsatility Index (PI) | Resistive Index (RI) | |
---|---|---|---|
Testicular size | |||
Scrotal circumference | −0.067 | −0.102 | −0.111 |
Testicular width | 0.160 | −0.026 | −0.024 |
Testicular length | 0.041 | 0.083 | 0.109 |
Testicular volume | −0.037 | −0.005 | −0.002 |
ECOTEXT® parameters | |||
Ec1 (black pixels) | −0.226 * | 0.314 ** | 0.308 ** |
Ec2 (white pixels) | 0.171 | −0.422 ** | −0.430 ** |
Ec3 (grey pixels) | 0.179 | −0.369 ** | −0.371 ** |
TD (tubular density) | −0.120 | 0.490 ** | 0.520 ** |
LA (lumen area) | −0.211 * | 0.386 ** | 0.387 ** |
LD (lumen diameter) | −0.192 | 0.225 * | 0.218 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvajal-Serna, M.; Miguel-Jiménez, S.; Pérez-Pe, R.; Casao, A. Testicular Ultrasound Analysis as a Predictive Tool of Ram Sperm Quality. Biology 2022, 11, 261. https://doi.org/10.3390/biology11020261
Carvajal-Serna M, Miguel-Jiménez S, Pérez-Pe R, Casao A. Testicular Ultrasound Analysis as a Predictive Tool of Ram Sperm Quality. Biology. 2022; 11(2):261. https://doi.org/10.3390/biology11020261
Chicago/Turabian StyleCarvajal-Serna, Melissa, Sara Miguel-Jiménez, Rosaura Pérez-Pe, and Adriana Casao. 2022. "Testicular Ultrasound Analysis as a Predictive Tool of Ram Sperm Quality" Biology 11, no. 2: 261. https://doi.org/10.3390/biology11020261
APA StyleCarvajal-Serna, M., Miguel-Jiménez, S., Pérez-Pe, R., & Casao, A. (2022). Testicular Ultrasound Analysis as a Predictive Tool of Ram Sperm Quality. Biology, 11(2), 261. https://doi.org/10.3390/biology11020261