Isolation, Identification, and Biocontrol Potential of Entomopathogenic Nematodes and Associated Bacteria against Virachola livia (Lepidoptera: Lycaenidae) and Ectomyelois ceratoniae (Lepidoptera: Pyralidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Isolation of Entomopathogenic Nematodes (EPNs)
2.2. Isolation of EPN-Associated Microbiota
2.3. Identification of EPN-Associated Bacteria
2.4. Molecular Characterisation through Phylogenetic Tree Analysis
2.5. Insects
2.6. Bioassays
2.6.1. Pathogenicity of EPNs
2.6.2. Pathogenicity of EPBs
2.7. Statistical Analysis
3. Results
3.1. Isolation of Entomopathogenic Nematodes from Soil Samples
3.2. Isolation and Identification of EPBs through 16S rRNA Gene Sequencing
3.3. Pathogenicity Assays
3.3.1. Virulence of EPNs
3.3.2. Virulence of EPN-Associated Bacteria
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koppenhofer, A.M. Nematodes. In Field Manual of Techniques in Invertebrate Pathology: Application and Evaluation of Pathogens for Control of Insects and Other Invertebrate Pests, 3rd ed.; Lacey, L.A., Kaya, H.K., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 249–264. [Google Scholar]
- Kaya, H.K. Soil ecology. In Entomopathogenic Nematodes in Biological Control; Gaugler, R., Kaya, H.K., Eds.; CRC: Boca Raton, FL, USA, 1990; pp. 93–115. [Google Scholar]
- Boemare, N.E.; Akhurst, R.J.; Mourant, R.G. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int. J. Syst. Bacteriol. 1993, 43, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Dillman, A.R.; Guillermin, M.L.; Lee, J.H.; Kim, B.; Sternberg, P.W.; Hallem, E.A. Olfaction shapes host–parasite interactions in parasitic nematodes. Proc. Natl. Acad. Sci. USA 2012, 109, E2324–E2333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvadori, J.D.M.; Defferrari, M.S.; Ligabue-Braun, R.; Lau, E.Y.; Salvadori, J.R.; Carlini, C.R. Characterization of entomopathogenic nematodes and symbiotic bacteria active against Spodoptera frugiperda (Lepidoptera: Noctuidae) and contribution of bacterial urease to the insecticidal effect. Biol. Control. 2012, 63, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Li, Z.; Wang, Y.; Zhang, X. In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea. J. Appl. Microbiol. 2011, 111, 145–154. [Google Scholar] [CrossRef]
- Shi, D.; An, R.; Zhang, W.; Zhang, G.; Yu, Z. Stilbene derivatives from Photorhabdus temperata SN259 and their antifungal activities against phytopathogenic fungi. J. Agric. Food Chem. 2017, 65, 60–65. [Google Scholar] [CrossRef]
- Forst, S.; Dowds, B.; Boemare, N.; Stackebrandt, E. Xenorhabdus and Photorhabdus spp. Bugs that kill bugs. Annu. Rev. Microbiol. 1997, 51, 47–72. [Google Scholar] [CrossRef]
- Bisch, G.; Pages, S.; McMullen, J.G.; Stock, S.P.; Duvic, B.; Givaudan, A.; Gaudriault, S. Xenorhabdus bovienii CS03, the bacterial symbiont of the entomopathogenic nematode Steinernema weiseri, is a non-virulent strain against lepidopteran insects. J. Invertebr. Pathol. 2015, 124, 15–22. [Google Scholar] [CrossRef]
- Kim, I.-H.; Aryal, S.K.; Aghai, D.T.; Casanova-Torres, A.M.; Hillman, K.; Kozuch, M.P.; Mans, E.J.; Mauer, T.J.; Ogier, J.C.; Ensign, J.C.; et al. The insect pathogenic bacterium Xenorhabdus innexi has attenuated virulence in multiple insect model hosts yet encodes a potent mosquitocidal toxin. BMC Genom. 2017, 18, 927. [Google Scholar] [CrossRef] [Green Version]
- McMullen, J.G.; McQuade, R.; Ogier, J.C.; Pages, S.; Gaudriault, S.; Stock, S.P. Variable virulence phenotype of Xenorhabdus bovienii (γ-Proteobacteria: Enterobacteriaceae) in the absence of their vector hosts. Microbiology 2017, 163, 510–522. [Google Scholar] [CrossRef]
- Hazır, S.; Kaya, H.K.; Stock, S.P.; Keskin, N. Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) for biological control of soil pests. Turk. J. Biol. 2003, 27, 181–202. [Google Scholar]
- Herz, A.; Koppler, K.; Vogt, H.; Elias, E.; Katz, P.; Peters, A. Biological control of the cherry fruit fly, Rhagoletis cerasi L. (Diptera, Tephritidae) by use of entomopathogenic nematodes: First experiences towards practical implementation. In Proceedings of the 12th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit Growing (Eco-fruit), Weinsberg, Germany, 18–20 February 2006; pp. 67–72. [Google Scholar]
- Yooyangket, T.; Muangpat, P.; Polseela, R.; Tandhavanant, S.; Thanwisai, A.; Vitta, A. Identification of entomopathogenic nematodes and symbiotic bacteria from Nam Nao National Park in Thailand and larvicidal activity of symbiotic bacteria against Aedes aegypti and Aedes albopictus. PLoS ONE 2008, 13, e0195681. [Google Scholar] [CrossRef] [PubMed]
- Elbrense, H.; Elmasry, A.M.; Seleiman, M.F.; AL-Harbi, M.S.; Abd El-Raheem, A.M. Can symbiotic bacteria (Xenorhabdus and Photorhabdus) be more efficient than their entomopathogenic nematodes against Pieris rapae and Pentodon algerinus larvae? Biology 2021, 10, 999. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Xue, R.; Zhang, H.; Jiang, T. A new gene from Xenorhabdus bovienii and its encoded protease inhibitor protein against Acyrthosiphonpisum. Pest. Mang. Sci. 2012, 68, 1345–1351. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Zeng, F.; Dong, S.; Zhang, H. Effects of a protease inhibitor protein from Xenorhabdus bovienii on physiology of pea aphid (Acyrthosiphon pisum). Pestic. Biochem. Physiol. 2014, 108, 86–91. [Google Scholar] [CrossRef]
- Fuchs, S.W.; Grundmann, F.; Kurz, M.; Kaiser, M.; Bode, H.B. Fabclavines: Bioactive peptide–polyketide-polyamino hybrids from Xenorhabdus. Chembiochem 2014, 15, 512–516. [Google Scholar] [CrossRef]
- Mraček, Z.; Liu, Q.Z.; Nguyen, K.B. Steinernema xueshanense n. sp. (Rhabditida, Steinernematidae), a new species of entomopathogenic nematode from the province of Yunnan, southeast Tibetan Mts., China. J. Invertebr. Pathol. 2009, 102, 69–78. [Google Scholar] [CrossRef]
- Li, X.Y.; Liu, Q.; Nermut, J.; Půza, V.; Mraček, Z. Heterorhabditis beicherriana n. sp. (Nematoda: Heterorhabditidae), a new entomopathogenic nematode from the Shunyi district of Beijing, China. Zootaxa 2012, 3569, 25–40. [Google Scholar]
- Cimen, H.; Lee, M.M.; Hatting, J.; Hazir, S.; Stock, S.P. Steinernema innovationi n. sp. (Panagrolaimomorpha: Steinernematidae), a new entomopathogenic nematode species from South Africa. J. Helminthol. 2014, 3, 1–4. [Google Scholar]
- Phan, K.L.; Mracek, Z.; Puza, V.; Nermut, J.; Jarosova, A. Steinernema huense sp. n., a new entomopathogenic nematode (Nematoda: Steinernematidae) from Vietnam. Nematology 2014, 16, 761–775. [Google Scholar] [CrossRef]
- Malan, A.P.; Knoetze, R.; Tiedt, L. Heterorhabditis noenieputensis n. sp. (Rhabditida: Heterorhabditidae), a new entomopathogenic nematode from South Africa. J. Helminthol. 2014, 88, 139–151. [Google Scholar] [CrossRef] [Green Version]
- de Bride, A.L.; Rosa, J.M.O.; de Oliveira, C.M.G.; de Castro e Castro, B.M.; Serrao, J.D.; Zanuncio, J.C.; Leite, L.G.; Wilcken, S.R.S. Entomopathogenic nematodes in agricultural areas in Brazil. Sci. Rep. 2017, 7, 45254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noureldeen, A.H. Validation of DNA fingerprinting techniques in characterization of entomopathogenic nematodes. J. Entomol. Zool. Stud. 2018, 6, 226–231. [Google Scholar]
- Day, K.R.; Wilkins, E.D. Commercial pomegranate (Punica granatum L.) production in California. Acta Hort. 2011, 890, 275–286. [Google Scholar] [CrossRef]
- Braham, M. Insect Larvae Associated with Dropped Pomegranate Fruits in an Organic Orchard in Tunisia. J. Entomol. Nematol. 2015, 7, 5–10. [Google Scholar]
- El-Hawagry, M.S.; Sharaf, M.R.; Al Dhafer, H.M.; Fadl, H.H.; Aldawood, A.S. Addenda to the insect fauna of Al-Baha Province, Kingdom of Saudi Arabia with zoogeographical notes. J. Nat. Hist. 2016, 50, 1209–1236. [Google Scholar] [CrossRef]
- Hoseini, S.A.; Goldansaz, S.H.; Sadeghhasani, S.; Mousavi, S.G. A field screening of 10 high yield pomegranate cultivars for resistance to the carob moth, Ectomyelois ceratoniae, in the climate condition of Karaj, Alborz, Iran. In Proceedings of the 21st Iranian Plant Protection Congress, Urmia, Iran., 23–26 August 2014. [Google Scholar]
- Ksentini, I.; Jardak, T.; Zeghal, N. First report on Virachola livia Klug. (Lepidoptera: Lycaenidae) and its effects on different pomegranate varieties in Tunisia. Bull. OEPP 2011, 41, 178–182. [Google Scholar] [CrossRef]
- Sayed, A.A.; Temerak, S.A.; Lysandrou, M. The use of different insect control regimes using three green chemicals to combat Virachola livia on date palm fruit in Egypt. Acta Hortic. 2010, 882, 471–479. [Google Scholar] [CrossRef]
- Abbas, M.S.T.; Razvi, S.A.; Shidi, R.H.; Al-Khatry, S.A. Role of egg parasitoids for controlling the pomegranate butterfly, Virachola livia Klug (Lycaenidae: Lepidoptera) in Sultanate of Oman. J. Biol. Pest Contr. 2008, 18, 43–46. [Google Scholar]
- Kinawy, M.M.; Al-Waili, H.M.; Elmandhari, A.M. Review of the successful classical biological control programs in Sultanate of Oman. J. Biol. Pest Contr. 2008, 18, 1–10. [Google Scholar]
- Obeidat, W.; Akkawi, M. Bionomics and control of pomegranate butterfly Virachola (Deudorix) livia (Klug) (Lepidoptera: Lycaenidae) in Northern Jordan. Diras. Agri. Sci. 2002, 29, 1–12. [Google Scholar]
- Sedra, M.H. Le Palmier Dattier Base de la Mise en Valeur des Oasis au Maroc, Techniques Phoénicicoles et Création d’Oasis; INRA-Editions: Rabat, Morocco, 2003. [Google Scholar]
- Dhouibi, M.H. Lutte Intégrée Pour la Protection du Palmier Dattier en Tunisie; Centre de Publication Universitaire: Tunis, Tunisia, 2000. [Google Scholar]
- Shakeri, M. Carob Moth and Its Control Methods; Yazd Utilization Publishing: Yazd, Iran, 2005. [Google Scholar]
- Pertot, I.; Caffi, T.; Rossi, V.; Mugnai, L.; Hoffmann, C.; Grando, M.S.; Gary, C.; Lafond, D.; Duso, C.; Thiery, D.; et al. A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Protect. 2017, 97, 70–84. [Google Scholar] [CrossRef]
- Khashaba, E.H.K.; Moghaieb, R.E.A.; Abd El Azim, A.M.; Ibrahim, S.A.M. Isolation, identification of entomopathogenic nematodes, and preliminary study of their virulence against the great wax moth, Galleria mellonella L. (Lepidoptera: Pyralidae). Egypt. J. Biol. Pest Control 2020, 30, 55. [Google Scholar] [CrossRef]
- Bedding, R.A.; Akhurst, R.J. A simple technique for the detection of insect parasitic rhabditid nematodes in soil. Nematologica 1975, 21, 109–110. [Google Scholar] [CrossRef]
- Kaya, H.K.; Stock, S.P. Techniques in in sect nematology. In Manual of Techniques in Insect Pathology; Lacey, L.A., Ed.; Academic Press: London, UK, 1997; pp. 281–324. [Google Scholar]
- Nguyen, K.B.; Smart, G.C. Identification of entomopathpgenic nematodes in the Steinernematidae and Heterorhabditidae (Nemata: Rhabditida). J. Nematol. 1996, 28, 286–300. [Google Scholar]
- Poinar, G.G.; Thomas, G.M. Significance of Achromobacter nematophilus Poinar and Thomas (Achromobacteraceae: Eubacteriales) in the development of the nematode, DD-136 (Neoaplectana sp., Steinernematidae). Parasitology 1966, 56, 385–390. [Google Scholar] [CrossRef]
- Vitta, A.; Thimpoo, P.; Meesil, W.; Yimthin, T.; Fukruksa, C.; Polseela, R.; Mangkit, B.; Tandhavanant, S.; Thanwisai, A. Larvicidal activity of Xenorhabdus and Photorhabdus bacteria against Aedes aegypti and Aedes albopictus. Asian Pac. J. Trop. Biomed. 2018, 8, 31. [Google Scholar] [CrossRef]
- Tailliez, P.; Pagès, S.; Ginibre, N.; Boemare, N. New insight into diversity in the genus Xenorhabdus, including the description of ten novel species. Int. J. Syst. Evol. Microbiol. 2006, 56, 2805–2818. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Alotaibi, S.; Hadeer, D.; Alharthi, S.; Alghamdi, A.; Noureldeen, A.; Fallatah, F.; András, F.; Al-Barty, A.; Albogami, B.; Baazeem, A. Potential of three entomopathogenic bacterial isolates for management of the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae). Agriculture 2021, 11, 1256. [Google Scholar] [CrossRef]
- Ogier, J.C.; Pagès, S.; Frayssinet, M.; Gaudriault, S. Entomopathogenic nematode-associated microbiota: From monoxenic paradigm to pathobiome. Microbiome 2020, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Reese, J.M.; Casanova-Torres, A.M.; Goodrich-Blair, H.; Forst, S. Microbial population dynamics in the hemolymph of Manduca sexta infected with Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae. Appl. Environ. Microbiol. 2014, 80, 4277–4285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dirksen, P.; Marsh, S.A.; Braker, I.; Heitland, N.; Wagner, S.; Nakad, R.; Mader, S.; Petersen, C.; Kowallik, V.; Rosenstiel, P.; et al. The native microbiome of the nematode Caenorhabditis elegans: Gateway to a new host-microbiome model. BMC Biol. 2016, 14, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartman, K.; van der Heijden, M.G.; Roussely-Provent, V.; Walser, J.-C.; Schlaeppi, K. Deciphering composition and function of the root microbiome of a legume plant. Microbiome 2017, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lacerda Júnior, G.V.; Noronha, M.F.; de Sousa, S.T.P.; Cabral, L.; Domingos, D.F.; Sáber, M.L.; de Melo, I.S.; Oliveira, V.M. Potential of semiarid soil from Caatinga biome as a novel source for mining lignocellulose degrading enzymes. FEMS Microbiol. Ecol. 2017, 93, fiw248. [Google Scholar] [CrossRef] [Green Version]
- Memari, Z.; Karimi, J.; Kamali, S.; Goldansaz, S.H.; Hosseini, M. Are entomopathogenic nematodes effective biological control agents against the carob moth, Ectomyelois ceratoniae? J. Nematol. 2016, 48, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Kaya, H.K.; Koppenhoffer, A.M. Effects of microbial and other antagonistic organism and competition on entomopathogenic nematodes. Biocontrol. Sci. Technol. 1996, 6, 357–372. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Palyvos, N.E.; Kakouli-Duarte, T. Insecticidal effect of Steinernema feltiae (Filipjev) (Nematoda: Steinernematidae) against Tribolium confusum du Val (Coleoptera: Tenebrionidae) and Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) in stored wheat. J. Stored Prod. Res. 2008, 44, 52–57. [Google Scholar] [CrossRef]
- Jabeen, F.; Ali, H.; Manzoor, M.; Younis, T.; Rasul, A.; Qazi, J.I. Potential of bacterial chitinolytic, Stenotrophomonas maltophilia in biological control of termites. Egypt J. Biol. Pest Cont. 2018, 28, 86. [Google Scholar] [CrossRef] [Green Version]
- Amer, A.; Hamdy, B.; Mahmoud, D.; Elanany, M.; Rady, M.; Alahmadi, T.; Alharbi, S.; Al Ashaal, S. Antagonistic activity of bacteria isolated from the Periplaneta americana L. gut against some multidrug-resistant human pathogens. Antibiotics 2021, 10, 294. [Google Scholar] [CrossRef]
- Berg, R.D. The indigenous gastrointestinal microflora. Trends Microbiol. 1996, 4, 430–435. [Google Scholar] [CrossRef]
- Ribitsch, D.; Heumann, S.; Karl, W.; Gerlach, J.; Leber, R.; Birner-Gruenberger, R.; Gruber, K.; Eiteljoerg, I.; Remler, P.; Siegert, P.; et al. Extracellular serine proteases from Stenotrophomonas maltophilia: Screening, isolation and heterologous expression in E. coli. J. Biotechnol. 2012, 157, 140–147. [Google Scholar] [CrossRef] [PubMed]
Location | Vegetation | Entomopathogenic Nematodes |
---|---|---|
Thomala (32) * | Citrus (6) *, Grapevine (7), Pomegranate (10), Uncultivated (9) | + (10) ** |
Al-Haweyia (32) | Fig (8), Mango (7), Citrus (10), Grapevine (7) | + (7) |
Al-Mathnah (32) | Grapevine (13), Fig (9), Pomegranate (10) | - |
Liyah (32) | Mango (13), Apple (12), Uncultivated (7) | - |
Bani-Malik (32) | Citrus (10), Grapevine (7), Pomegranate (10), Uncultivated (5) | + (5) |
Al-Hada (32) | Grapevine (6), Uncultivated (9), Roses (17) | - |
Al-Shafa (32) | Citrus (9), Uncultivated (6), Apple (17) | + (6) |
Taif University (32) | Pomegranate (5), Citrus (5), Roses (19), Uncultivated (3) | + (3) |
Alsail Alkabir (32) | Apple (11), Pomegranate (5), Fig (11), Roses (4), Uncultivated (1) | + (2) |
Garoah (32) | Fig (12), Mango (20) | + (2) |
EPNs | Steinernema sp. | Heterorhabditis sp. | Total of EPNs Isolates | Frequency of Occurrence % | |
---|---|---|---|---|---|
Vegetation | |||||
Citrus (40) | + (7) * | + (6) | 2 (13) | 32.5 | |
Pomegranate (40) | + (5) | + (4) | 2 (9) | 22.5 | |
Grapevine (40) | + (4) | + (3) | 2 (7) | 17.5 | |
Fig (40) | + (2) | - | 1 (2) | 5 | |
Apple (40) | - | + (1) | 1 (1) | 2.5 | |
Mango (40) | + (1) | + (1) | 2 (2) | 5 | |
Roses (40) | + (1) | - | 1 (1) | 2.5 | |
Uncultivated (40) | - | - | 0 | 0 | |
Total of positive vegetation | 6 (20) | 5 (15) | 11 (35) | ||
Frequency of occurrence % | 6.25 | 4.69 | 10.94 |
EPNs | Exposure Time (h) | LC50 IJ/Larva (95% LCL–UCL) | LC90 IJ/Larva (95% LCL–UCL) | Slope ± SE | Intercept | X2 | p-Value |
---|---|---|---|---|---|---|---|
Steinernema spp. | 24 | 43 (29.8–66.3) | 352.8 (179.6–1254.9) | 0.11 ± 0.02 | 4.94 | 0.74 | 0.007 |
48 | 18.5 (11.2–27.9) | 208.1 (106.3–793.4) | 0.095 ± 0.019 | 9.4 | 1.56 | 0.008 | |
72 | 13.6 (8.6–19.3) | 97.9 (59.6–238) | 0.103 ± 0.021 | 10.6 | 3.47 | 0.007 | |
96 | 12.9 (8.2–18.2) | 85.5 (53.5–194.2) | 0.101 ± 0.024 | 11.01 | 2.70 | 0.014 | |
Heterorhabditis spp. | 24 | 118 (82.8–210.7) | 586.2 (295.2–2421.9) | 0.092 ± 0.012 | 0.49 | 1.58 | 0.002 |
48 | 52 (37–79.9) | 359.6 (189.7–1177.3) | 0.108 ± 0.022 | 3.8 | 3.87 | 0.008 | |
72 | 32.4 (22.7–47.4) | 243.9 (134.3–720.1) | 0.109 ± 0.024 | 6.1 | 1.75 | 0.011 | |
96 | 28.3 (19.4–41.3) | 226 (124.2–674.6) | 0.105 ± 0.025 | 7 | 0.80 | 0.014 |
EPNs | Exposure Time (h) | LC50 IJ/Larva (95% LCL–UCL) | LC90 IJ/Larva (95% LCL–UCL) | Slope ± SE | Intercept | X2 | p-Value |
---|---|---|---|---|---|---|---|
Steinernema spp. | 24 | 28.1 (19.4–40.8) | 217.5 (120.8–628.7) | 0.11 ± 0.023 | 6.7 | 0.64 | 0.009 |
48 | 9 (4.3–14.1) | 97.7 (54.9–311.2) | 0.085 ± 0.015 | 12.9 | 4.17 | 0.005 | |
72 | 6.6 (3.1–10.2) | 51.4 (32.2–123.8) | 0.077 ± 0.021 | 14.9 | 5.87 | 0.021 | |
96 | 5.7 (2.3–9.1) | 47 (29.3–116) | 0.07 ± 0.02 | 15.8 | 5.4 | 0.026 | |
Heterorhabditis spp. | 24 | 68.3 (48.2–110.2) | 451.9 (230.4–1622.4) | 0.104 ± 0.018 | 2.7 | 2.30 | 0.004 |
48 | 34.4 (24.4–49.9) | 237.1 (133.7–656.5) | 0.114 ± 0.022 | 5.5 | 1.18 | 0.007 | |
72 | 26.6 (19.1–36.6) | 151.5 (94–338.7) | 0.119 ± 0.028 | 6.6 | 3.31 | 0.014 | |
96 | 20.2 (13.8–28.4) | 138.1 (82.9–338.1) | 0.102 ± 0.022 | 9.3 | 6.9 | 0.01 |
Bacterial Species | Concentration(CFU/mL) | * Mortality % | Bacterial Species Means | |||
---|---|---|---|---|---|---|
6 h | 12 h | 24 h | 48 h | |||
Pseudomonas mosselii | 102 | ** 32 ± 8 j | 48 ± 4.9 i | 56 ± 7.5 ghi | 64 ± 7.5 efg | 66 b |
104 | 52 ± 4.9 hi | 60 ± 9 fgh | 68 ± 4.9 ef | 80 ± 0 cd | ||
106 | 60 ± 6.3 fgh | 72 ± 4.9 de | 80 ± 0 cd | 84 ± 4 bc | ||
108 | 64 ± 9.8 efg | 68 ± 4.9 ef | 80 ± 6.3 cd | 88 ± 4.9 bc | ||
Stenotrophomonas maltophilia | 102 | 48 ± 4.9 i | 52 ± 4.9 hi | 56 ± 7.5 ghi | 72 ± 4.9 de | 78.5 a |
104 | 72 ± 4.9 de | 80 ± 0 cd | 84 ± 4 bc | 88 ± 4.9 bc | ||
106 | 72 ± 4.9 de | 80 ± 0 cd | 88 ± 4.9 bc | 92 ± 4.9 ab | ||
108 | 84 ± 4 bc | 88 ± 4.9 bc | 100 ± 0 a | 100 ± 0 a | ||
Control | 0 ± 0 k | 0 ± 0 k | 0 ± 0 k | 0 ± 0 k | 0 c | |
Exposure Time Means | 40.3 d | 45.7 c | 51 b | 55.7 a |
Bacterial Species | Exposure Time (h) | LC50 CFU/mL (95% LCL–UCL) | LC90 CFU/mL (95% LCL–UCL) | Slope ± SE | Intercept | X2 | p-Value |
---|---|---|---|---|---|---|---|
Pseudomonas mosselii | 6 | * 4.1 (1.7–7.2) | 15 (13–17.9) | 2.0 ± 0.42 | 2.6 | 0.123 | 0.019 |
12 | 2.9 (0.5–4.4) | 13.3 (10.4–15.6) | 2.1 ± 0.61 | 4.2 | 0.087 | 0.044 | |
24 | 1.5 (0–2.8) | 11.3 (7.7–13.2) | 2.3 ± 0.74 | 5 | 0.202 | 0.052 | |
48 | 1 (0–2.2) | 9.4 (5.4–11.5) | 2.5 ± 0.88 | 6 | 0.056 | 0.069 | |
Stenotrophomonas maltophilia | 6 | 2.1 (0.3–3.2) | 13.4 (7.5–15.8) | 2.4 ± 0.65 | 4.2 | 0.612 | 0.034 |
12 | 1.7 (0.3–2.7) | 9.1 (5.8–14) | 2.6 ± 0.75 | 4.8 | 0.689 | 0.043 | |
24 | 1.3 (0.2–2.1) | 5 (3.6–8.4) | 2.8 ± 0.87 | 6 | 2.04 | 0.051 | |
48 | 0.8 (0–1.7) | 3.9 (1.9–6.5) | 2.7 ± 1.1 | 7.4 | 1.49 | 0.089 |
Bacterial Species | Concentration (CFU/mL) | * Mortality % | Bacterial Species Means | |||
---|---|---|---|---|---|---|
6 h | 12 h | 24 h | 48 h | |||
Pseudomonas mosselii | 102 | ** 40 ± 6.3 h | 52 ± 4.9 g | 60 ± 6.3 fg | 68 ± 4.9 ef | 71.3 b |
104 | 60 ± 0 fg | 68 ± 4.9 ef | 76 ± 4 de | 84 ± 4 cd | ||
106 | 60 ± 6.3 fg | 76 ± 4 de | 84 ± 4 cd | 92 ± 4.9 abc | ||
108 | 68 ± 8 ef | 76 ± 4 de | 84 ± 4 cd | 92 ± 4.9 abc | ||
Stenotrophomonas maltophilia | 102 | 52 ± 4.9 g | 56 ± 4 g | 60 ± 6.3 fg | 76 ± 4 de | 82.3 a |
104 | 76 ± 4 de | 84 ± 4 cd | 88 ± 4.9 bc | 92 ± 4.9 abc | ||
106 | 76 ± 4 de | 84 ± 4 cd | 92 ± 4.9 abc | 96 ± 4 ab | ||
108 | 88 ± 4.9 bc | 96 ± 4 ab | 100 ± 0 a | 100 ± 0 a | ||
Control | 0 ± 0 i | 0 ± 0 i | 0 ± 0 i | 0 ± 0 i | 0 c | |
Exposure Time Means | 43.3 d | 49.3 c | 53.7 b | 58.3 a |
Bacterial Species | Exposure Time (h) | LC50 CFU/mL (95% LCL–UCL) | LC90 CFU/mL (95% LCL–UCL) | Slope ± SE | Intercept | X2 | p-Value |
---|---|---|---|---|---|---|---|
Pseudomonas mosselii | 6 | * 2.6 (0–4.3) | 13.4 (11.6–15.6) | 2.1 ± 0.56 | 3.8 | 0.087 | 0.036 |
12 | 1.7 (0–3.1) | 11.3 (8.9–14.2) | 2.2 ± 0.72 | 4.8 | 0.180 | 0.055 | |
24 | 1.2 (0–2.4) | 9.4 (6.2–13.5) | 2.4 ± 0.83 | 5.6 | 0.170 | 0.063 | |
48 | 1 (0.01–2) | 5.9 (3.9–8.1) | 2.6 ± 0.94 | 6.4 | 0.172 | 0.070 | |
Stenotrophomonas maltophilia | 6 | 1.8 (0.2–2.8) | 10.5 (6.4–12.8) | 2.5 ± 0.70 | 4.6 | 0.687 | 0.038 |
12 | 1.7 (0.5–2.5) | 6.2 (4.5–9.3) | 2.8 ± 0.77 | 5 | 1.22 | 0.038 | |
24 | 0.97 (0.02–1.8) | 4 (2.6–6.3) | 2.7 ± 1 | 7 | 1.33 | 0.076 | |
48 | 0.68 (0–1.5) | 3 (0.6–5) | 2.7 ± 1.2 | 8 | 0.697 | 0.106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, S.S.; Darwish, H.; Zaynab, M.; Alharthi, S.; Alghamdi, A.; Al-Barty, A.; Asif, M.; Wahdan, R.H.; Baazeem, A.; Noureldeen, A. Isolation, Identification, and Biocontrol Potential of Entomopathogenic Nematodes and Associated Bacteria against Virachola livia (Lepidoptera: Lycaenidae) and Ectomyelois ceratoniae (Lepidoptera: Pyralidae). Biology 2022, 11, 295. https://doi.org/10.3390/biology11020295
Alotaibi SS, Darwish H, Zaynab M, Alharthi S, Alghamdi A, Al-Barty A, Asif M, Wahdan RH, Baazeem A, Noureldeen A. Isolation, Identification, and Biocontrol Potential of Entomopathogenic Nematodes and Associated Bacteria against Virachola livia (Lepidoptera: Lycaenidae) and Ectomyelois ceratoniae (Lepidoptera: Pyralidae). Biology. 2022; 11(2):295. https://doi.org/10.3390/biology11020295
Chicago/Turabian StyleAlotaibi, Saqer S., Hadeer Darwish, Madiha Zaynab, Sarah Alharthi, Akram Alghamdi, Amal Al-Barty, Mohd Asif, Rania H. Wahdan, Alaa Baazeem, and Ahmed Noureldeen. 2022. "Isolation, Identification, and Biocontrol Potential of Entomopathogenic Nematodes and Associated Bacteria against Virachola livia (Lepidoptera: Lycaenidae) and Ectomyelois ceratoniae (Lepidoptera: Pyralidae)" Biology 11, no. 2: 295. https://doi.org/10.3390/biology11020295
APA StyleAlotaibi, S. S., Darwish, H., Zaynab, M., Alharthi, S., Alghamdi, A., Al-Barty, A., Asif, M., Wahdan, R. H., Baazeem, A., & Noureldeen, A. (2022). Isolation, Identification, and Biocontrol Potential of Entomopathogenic Nematodes and Associated Bacteria against Virachola livia (Lepidoptera: Lycaenidae) and Ectomyelois ceratoniae (Lepidoptera: Pyralidae). Biology, 11(2), 295. https://doi.org/10.3390/biology11020295