Microtubular Assessment of C6 Rat Glioma Cell Spheroids Developed in Transparent Liquid Marbles or Hanging Drops
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. 3D Cell Culture
2.2.1. Hanging Drops (HDs)
2.2.2. Liquid Marble (LM)
2.3. Immunofluorescence and Confocal Microscope Acquisition
2.4. Western Blot (WB)
2.5. Statistical Analysis
3. Results
3.1. Morphology Features of Spheroids
3.2. Immunofluorescence Staining
3.3. Western Blot (WB)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ostrom, Q.T.; Gittleman, H.; Farah, P.; Ondracek, A.; Chen, Y.; Wolinsky, Y.; Stroup, N.E.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2006-2010. Neuro-Oncology 2013, 15 (Suppl. 2), ii1–ii56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manini, I.; Caponnetto, F.; Bartolini, A.; Ius, T.; Mariuzzi, L.; Di Loreto, C.; Beltrami, A.P.; Cesselli, D. Role of Microenvironment in Glioma Invasion: What We Learned from In Vitro Models. Int. J. Mol. Sci. 2018, 19, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcmillin, D.W.; Negri, J.M.; Mitsiades, C.S. The Role of Tumour-Stromal Interactions in Modifying Drug Response: Challenges and Opportunities. Nat. Rev. Drug Discov. 2013, 12, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Breslin, S.; O’Driscoll, L. Three-Dimensional Cell Culture: The Missing Link in Drug Discovery. Drug Discov. Today 2013, 18, 240–249. [Google Scholar] [CrossRef]
- Chatzinikolaidou, M. Cell Spheroids: The New Frontiers in In Vitro Models for Cancer Drug Validation. Drug Discov. Today 2016, 21, 1553–1560. [Google Scholar] [CrossRef]
- Friedrich, J.; Seidel, C.; Ebner, R.; Kunz-Schughart, L.A. Spheroid-Based Drug Screen: Considerations and Practical Approach. Nat. Protoc. 2009, 4, 309–324. [Google Scholar] [CrossRef]
- Hirschhaeuser, F.; Menne, H.; Dittfeld, C.; West, J.; Mueller-Klieser, W.; Kunz-Schughart, L.A. Multicellular Tumor Spheroids: An Underestimated Tool Is Catching up Again. J. Biotechnol. 2010, 148, 3–15. [Google Scholar] [CrossRef]
- Griffith, L.G.; Swartz, M.A. Capturing Complex 3D Tissue Physiology in Vitro. Nat. Rev. Mol. Cell Biol. 2006, 7, 211–224. [Google Scholar] [CrossRef]
- Yamada, K.M.; Cukierman, E. Modeling Tissue Morphogenesis and Cancer in 3D. Cell 2007, 130, 601–610. [Google Scholar] [CrossRef] [Green Version]
- Nunes, A.S.; Barros, A.S.; Costa, E.C.; Moreira, A.F.; Correia, I.J. 3D Tumor Spheroids as in Vitro Models to Mimic in Vivo Human Solid Tumors Resistance to Therapeutic Drugs. Biotechnol. Bioeng. 2019, 116, 206–226. [Google Scholar] [CrossRef] [Green Version]
- Katt, M.E.; Placone, A.L.; Wong, A.D.; Xu, Z.S.; Searson, P.C. In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform. Front. Bioeng. Biotechnol. 2016, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Regmi, S.; Raut, P.K.; Pathak, S.; Shrestha, P.; Park, P.H.; Jeong, J.H. Enhanced Viability and Function of Mesenchymal Stromal Cell Spheroids Is Mediated via Autophagy Induction. Autophagy 2021, 17, 2991–3010. [Google Scholar] [CrossRef] [PubMed]
- Sontheimer-Phelps, A.; Hassell, B.A.; Ingber, D.E. Modelling Cancer in Microfluidic Human Organs-on-Chips. Nat. Rev. Cancer 2019, 19, 65–81. [Google Scholar] [CrossRef] [PubMed]
- Ham, S.L.; Joshi, R.; Thakuri, P.S.; Tavana, H. Liquid-Based Three-Dimensional Tumor Models for Cancer Research and Drug Discovery. Exp. Biol. Med. 2016, 241, 939–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bresciani, G.; Hofland, L.J.; Dogan, F.; Giamas, G.; Gagliano, T.; Zatelli, M.C. Evaluation of Spheroid 3D Culture Methods to Study a Pancreatic Neuroendocrine Neoplasm Cell Line. Front. Endocrinol. 2019, 10, 682. [Google Scholar] [CrossRef]
- Amaral, R.L.F.; Miranda, M.; Marcato, P.D.; Swiech, K. Comparative Analysis of 3D Bladder Tumor Spheroids Obtained by Forced Floating and Hanging Drop Methods for Drug Screening. Front. Physiol. 2017, 8, 605. [Google Scholar] [CrossRef] [Green Version]
- Froehlich, K.; Haeger, J.D.; Heger, J.; Pastuschek, J.; Photini, S.M.; Yan, Y.; Lupp, A.; Pfarrer, C.; Mrowka, R.; Schleußner, E.; et al. Generation of Multicellular Breast Cancer Tumor Spheroids: Comparison of Different Protocols. J. Mammary Gland Biol. Neoplasia 2016, 21, 89–98. [Google Scholar] [CrossRef]
- Mirab, F.; Kang, Y.J.; Majd, S. Preparation and Characterization of Size-Controlled Glioma Spheroids Using Agarose Hydrogel Microwells. PLoS ONE 2019, 14, e0211078. [Google Scholar] [CrossRef]
- Berges, R.; Denicolai, E.; Tchoghandjian, A.; Baeza-Kallee, N.; Honore, S.; Figarella-Branger, D.; Braguer, D. Proscillaridin A Exerts Anti-Tumor Effects through GSK3β Activation and Alteration of Microtubule Dynamics in Glioblastoma. Cell Death Dis. 2018, 9, 984. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Tanaka, M.; Krstin, S.; Peixoto, H.S.; de Melo Moura, C.C.; Wink, M. Cytoskeletal Interference—A New Mode of Action for the Anticancer Drugs Camptothecin and Topotecan. Eur. J. Pharmacol. 2016, 789, 265–274. [Google Scholar] [CrossRef]
- Jordan, M.A.; Wilson, L. Microtubules and Actin Filaments: Dynamic Targets for Cancer Chemotherapy. Curr. Opin. Cell Biol. 1998, 10, 123–130. [Google Scholar] [CrossRef]
- Pasquier, E.; Kavallaris, M. Microtubules: A Dynamic Target in Cancer Therapy. IUBMB Life 2008, 60, 165–170. [Google Scholar] [CrossRef] [PubMed]
- D. Katsetos, C.; Draber, P.; Kavallaris, M. Targeting βIII-Tubulin in Glioblastoma Multiforme: From Cell Biology and Histopathology to Cancer Therapeutics. Anticancer Agents Med. Chem. 2012, 11, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Gadau, S.D. Morphological and Quantitative Analysis on α-Tubulin Modifications in Glioblastoma Cells. Neurosci. Lett. 2018, 687, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Arru, C.; Serra, E.; Porcu, C.; Gadau, S.D. Confocal Investigation on Colocalization between Tubulin Posttranslational Modifications and Associated Proteins in Rat C6 Glioma Cells. J. Struct. Biol. 2021, 213, 107676. [Google Scholar] [CrossRef] [PubMed]
- Wild-Bode, C.; Weller, M.; Rimner, A.; Dichgans, J.; Wick, W. Sublethal Irradiation Promotes Migration and Invasiveness of Glioma Cells. Cancer Res. 2001, 61, 2744–2750. [Google Scholar]
- Mahesparan, R.; Tysnes, B.B.; Read, T.A.; Enger, P.; Bjerkvig, R.; Lund-Johansen, M. Extracellular Matrix-Induced Cell Migration from Glioblastoma Biopsy Specimens in Vitro. Acta Neuropathol. 1999, 97, 231–239. [Google Scholar] [CrossRef]
- Bjerkvig, R.; Tonnesen, A.; Laerum, O.D.; Backlund, E.O. Multicellular Tumor Spheroids from Human Gliomas Maintained in Organ Culture. J. Neurosurg. 1990, 72, 463–475. [Google Scholar] [CrossRef] [Green Version]
- Carlsson, J.; Nederman, T. A Method to Measure the Radio and Chemosensitivity of Human Spheroids. Adv. Exp. Med. Biol. 1983, 159, 399–417. [Google Scholar]
- Nederman, T.; Acker, H.; Carlsson, J. Penetration of Substances into Tumor Tissue: A Methodological Study with Microelectrodes and Cellular Spheroids. In Vitro 1983, 19, 479–488. [Google Scholar] [CrossRef]
- Paulus, W.; Huettner, C.; Tonn, J.C. Collagens, Integrins and the Mesenchymal Drift in Glioblastomas: A Comparison of Biopsy Specimens, Spheroid and Early Monolayer Cultures. Int. J. Cancer 1994, 58, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Hubert, C.G.; Rivera, M.; Spangler, L.C.; Wu, Q.; Mack, S.C.; Prager, B.C.; Couce, M.; McLendon, R.E.; Sloan, A.E.; Rich, J.N. A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found In Vivo. Cancer Res. 2016, 76, 2465–2477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vadivelu, R.K.; Ooi, C.H.; Yao, R.Q.; Tello Velasquez, J.; Pastrana, E.; Diaz-Nido, J.; Lim, F.; Ekberg, J.A.K.; Nguyen, N.T.; St John, J.A. Generation of Three-Dimensional Multiple Spheroid Model of Olfactory Ensheathing Cells Using Floating Liquid Marbles. Sci. Rep. 2015, 5, 15083. [Google Scholar] [CrossRef] [Green Version]
- Sarvi, F.; Yue, Z.; Hourigan, K.; Thompson, M.C.; Chan, P.P.Y. Surface-Functionalization of PDMS for Potential Micro-Bioreactor and Embryonic Stem Cell Culture Applications. J. Mater. Chem. B 2013, 1, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Ding, W.; Wang, Y.; Ji, T.; Sun, S.; Mo, Q.; Chen, P.; Fang, Y.; Liu, J.; Wang, B.; et al. Ubiquitin B in Cervical Cancer: Critical for the Maintenance of Cancer Stem-like Cell Characters. PLoS ONE 2013, 8, e84457. [Google Scholar] [CrossRef]
- Serrano, M.C.; Nardecchia, S.; Gutiérrez, M.C.; Ferrer, M.L.; Del Monte, F. Mammalian Cell Cryopreservation by Using Liquid Marbles. ACS Appl. Mater. Interfaces 2015, 7, 3854–3860. [Google Scholar] [CrossRef]
- Aalders, J.; Léger, L.; Piras, D.; van Hengel, J.; Ledda, S. Use of Transparent Liquid Marble: Microbioreactor to Culture Cardiospheres. Methods Mol. Biol. 2021, 2273, 85–102. [Google Scholar]
- Ledda, S.; Idda, A.; Kelly, J.; Ariu, F.; Bogliolo, L.; Bebbere, D. A Novel Technique for in Vitro Maturation of Sheep Oocytes in a Liquid Marble Microbioreactor. J. Assist. Reprod. Genet. 2016, 33, 513–518. [Google Scholar] [CrossRef] [Green Version]
- Gadau, S.; Lepore, G.; Zedda, M.; Mura, A.; Farina, V. Different Nitrosative-Induced Microtubular Modifications and Testosterone Neuroprotective Effects on High-d-Glucose-Exposed Neuroblastoma and Glioma Cells. Neuroendocrinol. Lett. 2009, 30, 300409–300421. [Google Scholar]
- Gadau, S.D. Nitrosative stress induces proliferation and viability changes in high glucose-exposed rat Schwannoma cells. Neuro Endocrinol. Lett. 2012, 33, 279–284. [Google Scholar]
- de Souza, I.R.; Canavez, A.D.P.M.; Schuck, D.C.; Gagosian, V.S.C.; de Souza, I.R.; Vicari, T.; da Silva Trindade, E.; Cestari, M.M.; Lorencini, M.; Leme, D.M. Development of 3D Cultures of Zebrafish Liver and Embryo Cell Lines: A Comparison of Different Spheroid Formation Methods. Ecotoxicology 2021, 30, 1893–1909. [Google Scholar] [CrossRef] [PubMed]
- Tofani, L.B.; Abriata, J.P.; Luiz, M.T.; Marchetti, J.M.; Swiech, K. Establishment and Characterization of an in Vitro 3D Ovarian Cancer Model for Drug Screening Assays. Biotechnol. Prog. 2020, 36, e3034. [Google Scholar] [CrossRef] [PubMed]
- Gadau, S.D. Detection, Distribution and Amount of Posttranslational α-Tubulin Modifications in Immortalized Rat Schwann Cells. Arch. Ital. Biol. 2015, 153, 255–265. [Google Scholar] [PubMed]
- Gadau, S.D. Tubulin Post-Translational Modifications in Developing Dog Primary Neurons Obtained with Methods According to the 3Rs Principles. Res. Vet. Sci. 2019, 122, 56–63. [Google Scholar] [CrossRef]
- Haycock, J.W. 3D Cell Culture: A Review of Current Approaches and Techniques. Methods Mol. Biol. 2011, 695, 1–15. [Google Scholar]
- Ravi, M.; Paramesh, V.; Kaviya, S.R.; Anuradha, E.; Paul Solomon, F.D. 3D Cell Culture Systems: Advantages and Applications. J. Cell. Physiol. 2015, 230, 16–26. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, L.; Yang, L.; Li, H.; Li, R.; Yu, J.; Yang, L.; Wei, F.; Yan, C.; Sun, Q.; et al. Anti-CD47 Antibody As a Targeted Therapeutic Agent for Human Lung Cancer and Cancer Stem Cells. Front. Immunol. 2017, 8, 404. [Google Scholar] [CrossRef] [Green Version]
- Pennarossa, G.; Manzoni, E.F.M.; Ledda, S.; de Eguileor, M.; Gandolfi, F.; Brevini, T.A.L. Use of a PTFE Micro-Bioreactor to Promote 3D Cell Rearrangement and Maintain High Plasticity in Epigenetically Erased Fibroblasts. Stem Cell Rev. Rep. 2019, 15, 82–92. [Google Scholar] [CrossRef]
- Schaletzky, J.; Rape, M. Getting a Grip on Microtubules. Cell 2016, 164, 836–837. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Dai, X.; Sun, Y.; Lu, Y.; Zhou, C.; Miao, Y.; Wang, Y.; Xiong, B. Stag3 Regulates Microtubule Stability to Maintain Euploidy during Mouse Oocyte Meiotic Maturation. Oncotarget 2017, 8, 1593–1602. [Google Scholar] [CrossRef] [Green Version]
- Cai, D.; McEwen, D.P.; Martens, J.R.; Meyhofer, E.; Verhey, K.J. Single Molecule Imaging Reveals Differences in Microtubule Track Selection between Kinesin Motors. PLoS Biol. 2009, 7, e1000216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portran, D.; Schaedel, L.; Xu, Z.; Théry, M.; Nachury, M.V. Tubulin Acetylation Protects Long-Lived Microtubules against Mechanical Ageing. Nat. Cell Biol. 2017, 19, 391–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Schaedel, L.; Portran, D.; Aguilar, A.; Gaillard, J.; Peter Marinkovich, M.; Théry, M.; Nachury, M.V. Microtubules Acquire Resistance from Mechanical Breakage through Intralumenal Acetylation. Science 2017, 356, 328–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langella, A.; Gadau, S.D.; Serra, E.; Bebbere, D.; Ledda, S. Microtubular Assessment of C6 Rat Glioma Cell Spheroids Developed in Transparent Liquid Marbles or Hanging Drops. Biology 2022, 11, 492. https://doi.org/10.3390/biology11040492
Langella A, Gadau SD, Serra E, Bebbere D, Ledda S. Microtubular Assessment of C6 Rat Glioma Cell Spheroids Developed in Transparent Liquid Marbles or Hanging Drops. Biology. 2022; 11(4):492. https://doi.org/10.3390/biology11040492
Chicago/Turabian StyleLangella, Arianna, Sergio Domenico Gadau, Elisa Serra, Daniela Bebbere, and Sergio Ledda. 2022. "Microtubular Assessment of C6 Rat Glioma Cell Spheroids Developed in Transparent Liquid Marbles or Hanging Drops" Biology 11, no. 4: 492. https://doi.org/10.3390/biology11040492
APA StyleLangella, A., Gadau, S. D., Serra, E., Bebbere, D., & Ledda, S. (2022). Microtubular Assessment of C6 Rat Glioma Cell Spheroids Developed in Transparent Liquid Marbles or Hanging Drops. Biology, 11(4), 492. https://doi.org/10.3390/biology11040492