Oral Microbiome Research on Oral Lichen Planus: Current Findings and Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Microbiome and Human Diseases
3. Composition of Oral Microbiota in OLP Patients
4. Functional Aspects of OLP Oral Microbiota
5. Changes in Oral Microbiota during Treatment of OLP
6. Changes in Host Factors during Development of OLP
7. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ismail, S.B.; Kumar, S.K.; Zain, R.B. Oral lichen planus and lichenoid reactions: Etiopathogenesis, diagnosis, management and malignant transformation. J. Oral Sci. 2007, 49, 89–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Meij, E.H.; Mast, H.; van der Waal, I. The possible premalignant character of oral lichen planus and oral lichenoid lesions: A prospective five-year follow-up study of 192 patients. Oral Oncol. 2007, 43, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, J.O. Oral lichen planus. 1. A clinical evaluation of 115 cases. Oral Surg. Oral Med. Oral Pathol. 1968, 25, 31–42. [Google Scholar] [CrossRef]
- Eisen, D. The clinical features, malignant potential, and systemic associations of oral lichen planus: A study of 723 patients. J. Am. Acad. Dermatol. 2002, 46, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Kazanowska-Dygdala, M.; Dus, I.; Radwan-Oczko, M. The presence of Helicobacter pylori in oral cavities of patients with leukoplakia and oral lichen planus. J. Appl. Oral Sci. 2016, 24, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Attia, E.A.; Abdel Fattah, N.S.; Abdella, H.M. Upper gastrointestinal findings and detection of Helicobacter pylori in patients with oral lichen planus. Clin. Exp. Dermatol. Clin. Dermatol. 2010, 35, 355–360. [Google Scholar] [CrossRef]
- Mizuki, H.; Abe, R.; Kogi, S.; Mikami, T. Immunohistochemical detection of Mycoplasma salivarium in oral lichen planus tissue. J. Oral Pathol. Med. 2017, 46, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Ertugrul, A.S.; Arslan, U.; Dursun, R.; Hakki, S.S. Periodontopathogen profile of healthy and oral lichen planus patients with gingivitis or periodontitis. Int. J. Oral Sci. 2013, 5, 92–97. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Xia, X.; Yang, H.; Peng, Q.; Zheng, J. A pilot study: A possible implication of Candida as an etiologically endogenous pathogen for oral lichen planus. BMC Oral Health 2020, 20, 72. [Google Scholar] [CrossRef]
- Zeng, X.; Xiong, C.; Wang, Z.; Jiang, L.; Hou, X.; Shen, J.; Zhou, M.; Chen, Q. Genotypic profiles and virulence attributes of Candida albicans isolates from patients with oral lichen planus. APMIS 2008, 116, 284–291. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, J.; Zhang, Y.; Lv, T.; Liu, J. The Magnitude of the Association between Human Papillomavirus and Oral Lichen Planus: A Meta-Analysis. PLoS ONE 2016, 11, e0161339. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fu, Q.; Zhang, X. The presence of human papillomavirus and Epstein-Barr virus in male Chinese lichen sclerosus patients: A single center study. Asian J. Androl. 2016, 18, 650–653. [Google Scholar] [CrossRef] [PubMed]
- Alaizari, N.A.; Al-Maweri, S.A.; Al-Shamiri, H.M.; Tarakji, B.; Shugaa-Addin, B. Hepatitis C virus infections in oral lichen planus: A systematic review and meta-analysis. Aust. Dent. J. 2016, 61, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Lodi, G.; Pellicano, R.; Carrozzo, M. Hepatitis C virus infection and lichen planus: A systematic review with meta-analysis. Oral Dis. 2010, 16, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Petti, S.; Rabiei, M.; De Luca, M.; Scully, C. The magnitude of the association between hepatitis C virus infection and oral lichen planus: Meta-analysis and case control study. Odontology 2011, 99, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Hulimavu, S.R.; Mohanty, L.; Tondikulam, N.V.; Shenoy, S.; Jamadar, S.; Bhadranna, A. No evidence for Helicobacter pylori in oral lichen planus. J. Oral Pathol. Med. 2014, 43, 576–578. [Google Scholar] [CrossRef]
- Pourshahidi, S.; Fakhri, F.; Ebrahimi, H.; Fakhraei, B.; Alipour, A.; Ghapanchi, J.; Farjadian, S. Lack of association between Helicobacter pylori infection and oral lichen planus. Asian Pac. J. Cancer Prev. 2012, 13, 1745–1747. [Google Scholar] [CrossRef]
- Baek, K.; Choi, Y. The microbiology of oral lichen planus: Is microbial infection the cause of oral lichen planus? Mol. Oral Microbiol. 2018, 33, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Villa, T.G.; Sánchez-Pérez, Á.; Sieiro, C. Oral lichen planus: A microbiologist point of view. Int. Microbiol. 2021, 24, 275–289. [Google Scholar] [CrossRef]
- Mehdipour, M.; Taghavi Zenouz, A.; Hekmatfar, S.; Adibpour, M.; Bahramian, A.; Khorshidi, R. Prevalence of Candida species in erosive oral lichen planus. J. Dent. Res. Dent. Clin. Dent. Prospect. 2010, 4, 14–16. [Google Scholar] [CrossRef]
- Campisi, G.; Fedele, S.; Lo Russo, L.; Di Fede, O.; Arico, P.; Craxi, A.; Mignogna, M.D. HCV infection and oral lichen planus: A weak association when HCV is endemic. J. Viral Hepat. 2004, 11, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zhang, Z.; Ji, X.; Su, S.; Liu, X.; Xu, S.; Han, Y.; Mu, D.; Liu, H. Lack of evidence of hepatitis in patients with oral lichen planus in China: A case control study. Med. Oral Patol. Oral Y Cir. Bucal 2016, 21, e161–e168. [Google Scholar] [CrossRef] [PubMed]
- ÓFlatharta, C.; Flint, S.R.; Toner, M.; Butler, D.; Mabruk, M.J. Investigation into a possible association between oral lichen planus, the human herpesviruses, and the human papillomaviruses. Mol. Diagn. 2003, 7, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Verges, M.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef] [PubMed]
- Behrouzi, A.; Nafari, A.H.; Siadat, S.D. The significance of microbiome in personalized medicine. Clin. Transl. Med. 2019, 8, 16. [Google Scholar] [CrossRef]
- Petrosino, J.F. The microbiome in precision medicine: The way forward. Genome Med. 2018, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Willing, B.; Halfvarson, J.; Dicksved, J.; Rosenquist, M.; Jarnerot, G.; Engstrand, L.; Tysk, C.; Jansson, J.K. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn's disease. Inflamm. Bowel Dis. 2009, 15, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Willing, B.P.; Dicksved, J.; Halfvarson, J.; Andersson, A.F.; Lucio, M.; Zheng, Z.; Jarnerot, G.; Tysk, C.; Jansson, J.K.; Engstrand, L. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 2010, 139, 1844–1854.e1. [Google Scholar] [CrossRef]
- Marchesi, J.R.; Ravel, J. The vocabulary of microbiome research: A proposal. Microbiome 2015, 3, 31. [Google Scholar] [CrossRef] [Green Version]
- Stewart, E.J. Growing unculturable bacteria. J. Bacteriol. 2012, 194, 4151–4160. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shkoporov, A.N.; Hill, C. Bacteriophages of the human gut: The "Known unknown" of the microbiome. Cell Host Microbe 2019, 25, 195–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. Human gut microbiome viewed across age and geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G.; Liang, S.; Payne, M.A.; Hashim, A.; Jotwani, R.; Eskan, M.A.; McIntosh, M.L.; Alsam, A.; Kirkwood, K.L.; Lambris, J.D.; et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 2011, 10, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Baldridge, M.T.; Nice, T.J.; McCune, B.T.; Yokoyama, C.C.; Kambal, A.; Wheadon, M.; Diamond, M.S.; Ivanova, Y.; Artyomov, M.; Virgin, H.W. Commensal microbes and interferon-lambda determine persistence of enteric murine norovirus infection. Science 2015, 347, 266–269. [Google Scholar] [CrossRef] [Green Version]
- Bor, B.; Cen, L.; Agnello, M.; Shi, W.; He, X. Morphological and physiological changes induced by contact-dependent interaction between Candida albicans and Fusobacterium nucleatum. Sci. Rep. 2016, 6, 27956. [Google Scholar] [CrossRef]
- Dutton, L.C.; Paszkiewicz, K.H.; Silverman, R.J.; Splatt, P.R.; Shaw, S.; Nobbs, A.H.; Lamont, R.J.; Jenkinson, H.F.; Ramsdale, M. Transcriptional landscape of trans-kingdom communication between Candida albicans and Streptococcus gordonii. Mol. Oral Microbiol. 2016, 31, 136–161. [Google Scholar] [CrossRef] [Green Version]
- Carding, S.; Verbeke, K.; Vipond, D.T.; Corfe, B.M.; Owen, L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 2015, 26, 26191. [Google Scholar] [CrossRef]
- Sudhakara, P.; Gupta, A.; Bhardwaj, A.; Wilson, A. Oral dysbiotic communities and their implications in systemic diseases. Dent. J. 2018, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018, 57, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; van der Veeken, J.; deRoos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020, 51, 102590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costello, E.K.; Lauber, C.L.; Hamady, M.; Fierer, N.; Gordon, J.I.; Knight, R. Bacterial community variation in human body habitats across space and time. Science 2009, 326, 1694–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Human Microbiome Project, C. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Asakawa, M.; Takeshita, T.; Furuta, M.; Kageyama, S.; Takeuchi, K.; Hata, J.; Ninomiya, T.; Yamashita, Y. Tongue microbiota and oral health status in community-dwelling elderly adults. Msphere 2018, 3, e00332-18. [Google Scholar] [CrossRef] [Green Version]
- Sender, R.; Fuchs, S.; Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016, 14, e1002533. [Google Scholar] [CrossRef] [Green Version]
- Escapa, I.F.; Chen, T.; Huang, Y.; Gajare, P.; Dewhirst, F.E.; Lemon, K.P. New insights into human nostril microbiome from the expanded human oral microbiome database (eHOMD): A resource for the microbiome of the human aerodigestive tract. Msystems 2018, 3, e00187-18. [Google Scholar] [CrossRef] [Green Version]
- Peters, B.A.; Wu, J.; Hayes, R.B.; Ahn, J. The oral fungal mycobiome: Characteristics and relation to periodontitis in a pilot study. BMC Microbiol. 2017, 17, 157. [Google Scholar] [CrossRef]
- Said, H.S.; Suda, W.; Nakagome, S.; Chinen, H.; Oshima, K.; Kim, S.; Kimura, R.; Iraha, A.; Ishida, H.; Fujita, J.; et al. Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA Res. 2014, 21, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Graves, D.T.; Correa, J.D.; Silva, T.A. The oral microbiota is modified by systemic diseases. J. Dent. Res. 2019, 98, 148–156. [Google Scholar] [CrossRef]
- Liu, X.X.; Jiao, B.; Liao, X.X.; Guo, L.N.; Yuan, Z.H.; Wang, X.; Xiao, X.W.; Zhang, X.Y.; Tang, B.S.; Shen, L. Analysis of salivary microbiome in patients with alzheimer's disease. J. Alzheimer's Dis. 2019, 72, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Caselli, E.; Fabbri, C.; D’Accolti, M.; Soffritti, I.; Bassi, C.; Mazzacane, S.; Franchi, M. Defining the oral microbiome by whole-genome sequencing and resistome analysis: The complexity of the healthy picture. BMC Microbiol. 2020, 20, 120. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, Z.; Tang, N.; Zhao, Y.; Xu, J.; Li, L.; Qian, L.; Zhang, J.; Fan, Y. Microbial community analysis of saliva and biopsies in patients with oral lichen planus. Front. Microbiol. 2020, 11, 629. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.Y.; Wang, Q.Q.; Li, M.; Cheng, Y.-H.; Cheng, Y.-S.L.; Zhou, Y.; Yang, X.; Zhang, F.; Ge, X.; Zhao, B.; et al. Dysbiosis of saliva microbiome in patients with oral lichen planus. BMC Microbiol. 2020, 20, 75. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Lu, W.; Tu, Q.; Ge, Y.; He, J.; Zhou, Y.; Gou, Y.; Van Nostrand, J.D.; Qin, Y.; Li, J.; et al. Preliminary analysis of salivary microbiome and their potential roles in oral lichen planus. Sci. Rep. 2016, 6, 22943. [Google Scholar] [CrossRef]
- Zhong, E.F.; Chang, A.; Stucky, A.; Chen, X.; Mundluru, T.; Khalifeh, M.; Sedghizadeh, P.P. Genomic analysis of oral lichen planus and related oral microbiome pathogens. Pathogens 2020, 9, 952. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Yang, Z.; Li, J.; Li, Y.; Li, H.; Li, W.; Jia, J.; Ge, S.; Sun, Y. Helicobacter pylori infection is correlated with the incidence of erosive oral lichen planus and the alteration of the oral microbiome composition. BMC Microbiol. 2021, 21, 122. [Google Scholar] [CrossRef]
- Hijazi, K.; Morrison, R.W.; Mukhopadhya, I.; Martin, B.; Gemmell, M.; Shaw, S.; Santoro, F. Oral bacterial diversity is inversely correlated with mucosal inflammation. Oral Dis. 2020, 26, 1566–1575. [Google Scholar] [CrossRef]
- He, Y.; Gong, D.; Shi, C.; Shao, F.; Shi, J.; Fei, J. Dysbiosis of oral buccal mucosa microbiota in patients with oral lichen planus. Oral Dis. 2017, 23, 674–682. [Google Scholar] [CrossRef]
- Du, G.H.; Wang, Y.F.; Chen, J.J.; Deng, Y.W.; Han, X.Z.; Tang, G.Y. Potential association between Fusobacterium nucleatum enrichment on oral mucosal surface and oral lichen planus. Oral Dis. 2020, 26, 122–130. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kim, Y.; Yoon, H.-J.; Baek, K.J.; Alam, J.; Park, H.K.; Choi, Y. The presence of bacteria within tissue provides insights into the pathogenesis of oral lichen planus. Sci. Rep. 2016, 6, 29186. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, H.; Liao, Y.; Li, H.; Shi, L.; Deng, Y.; Shen, X.; Song, Z. Comparative analyses of the subgingival microbiome in chronic periodontitis patients with and without gingival erosive oral lichen planus based on 16S rRNA gene sequencing. BioMed Res. Int. 2021, 2021, 9995225. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, K.; Zhang, B.; Tu, Q.; Yao, Y.; Cui, B.; Ren, B.; He, J.; Shen, X.; Van Nostrand, J.D.; et al. Salivary mycobiome dysbiosis and its potential impact on bacteriome shifts and host immunity in oral lichen planus. Int. J. Oral Sci. 2019, 11, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baek, K.; Lee, J.; Lee, A.; Lee, J.; Yoon, H.-J.; Park, H.K.; Chun, J.; Choi, Y. Characterization of intratissue bacterial communities and isolation of Escherichia coli from oral lichen planus lesions. Sci. Rep. 2020, 10, 3495. [Google Scholar] [CrossRef]
- Holmstrup, P.; Schiøtz, A.W.; Westergaard, J. Effect of dental plaque control on gingival lichen planus. Oral Surg. Oral Med. Oral Pathol. 1990, 69, 585–590. [Google Scholar] [CrossRef]
- Ramón-Fluixá, C.; Bagán-Sebastián, J.; Milián-Masanet, M.; Scully, C. Periodontal status in patients with oral lichen planus: A study of 90 cases. Oral Dis. 1999, 5, 303–306. [Google Scholar] [CrossRef]
- Ma, Z.S. Testing the Anna Karenina principle in human microbiome-associated diseases. Iscience 2020, 23, 101007. [Google Scholar] [CrossRef]
- Dabdoub, S.M.; Ganesan, S.M.; Kumar, P.S. Comparative metagenomics reveals taxonomically idiosyncratic yet functionally congruent communities in periodontitis. Sci. Rep. 2016, 6, 38993. [Google Scholar] [CrossRef]
- Duran-Pinedo, A.E.; Chen, T.; Teles, R.; Starr, J.R.; Wang, X.; Krishnan, K.; Frias-Lopez, J. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J. 2014, 8, 1659–1672. [Google Scholar] [CrossRef]
- Wang, J.; Qi, J.; Zhao, H.; He, S.; Zhang, Y.; Wei, S.; Zhao, F. Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease. Sci. Rep. 2013, 3, 1843. [Google Scholar] [CrossRef]
- Feres, M.; Retamal-Valdes, B.; Gonçalves, C.; Cristina Figueiredo, L.; Teles, F. Did omics change periodontal therapy? Periodontol 2021, 85, 182–209. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Jones, R.B.; Fodor, A.A. Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories. Microbiome 2020, 8, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marttila, E.; Uittamo, J.; Rusanen, P.; Lindqvist, C.; Salaspuro, M.; Rautemaa, R. Acetaldehyde production and microbial colonization in oral squamous cell carcinoma and oral lichenoid disease. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 116, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Keller, M.K.; Kragelund, C. Randomized pilot study on probiotic effects on recurrent candidiasis in oral lichen planus patients. Oral Dis. 2018, 24, 1107–1114. [Google Scholar] [CrossRef]
- Kragelund, C.; Keller, M.K. The oral microbiome in oral lichen planus during a 1-year randomized clinical trial. Oral Dis. 2019, 25, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Marlina, E.; Goodman, R.N.; Mercadante, V.; Shephard, M.; McMillan, R.; Hodgson, T.; Leeson, R.; Porter, S.; Barber, J.A.; Fedele, S.; et al. A proof of concept pilot trial of probiotics in symptomatic oral lichen planus (CABRIO). Oral Dis. Press 2021. [Google Scholar] [CrossRef]
- Cosgarea, R.; Pollmann, R.; Sharif, J.; Schmidt, T.; Stein, R.; Bodea, A.; Auschill, T.; Sculean, A.; Eming, R.; Greene, B.; et al. Photodynamic therapy in oral lichen planus: A prospective case-controlled pilot study. Sci. Rep. 2020, 10, 1667. [Google Scholar] [CrossRef]
- Ku, J.-K.; Park, S.-Y.; Hwang, K.-G.; Yun, P.-Y. The effect of mouthrinse with 0.05% dexamethasone solution on the oral bacterial community of oral lichen planus patients: Prospective pilot study. Appl. Sci. 2021, 11, 6286. [Google Scholar] [CrossRef]
- Lu, R.; Zhang, J.; Sun, W.; Du, G.; Zhou, G. Inflammation-related cytokines in oral lichen planus: An overview. J. Oral Pathol. Med. 2015, 44, 1–14. [Google Scholar] [CrossRef]
- Zhu, Z.D.; Ren, X.M.; Zhou, M.M.; Chen, Q.M.; Hua, H.; Li, C.L. Salivary cytokine profile in patients with oral lichen planus. J. Dent. Sci. 2022, 17, 100–105. [Google Scholar] [CrossRef]
- Vo, P.T.-D.; Choi, S.S.; Park, H.R.; Lee, A.; Jeong, S.-H.; Choi, Y. Gene signatures associated with barrier dysfunction and infection in oral lichen planus identified by analysis of transcriptomic data. PLoS ONE 2021, 16, e0257356. [Google Scholar] [CrossRef]
- Gassling, V.; Hampe, J.; Açil, Y.; Braesen, J.H.; Wiltfang, J.; Häsler, R. Disease-associated miRNA-mRNA networks in oral lichen planus. PLoS ONE 2013, 8, e63015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danielsson, K.; Coates, P.J.; Ebrahimi, M.; Nylander, E.; Wahlin, Y.B.; Nylander, K. Genes involved in epithelial differentiation and development are differentially expressed in oral and genital lichen planus epithelium compared to normal epithelium. Acta Derm.-Venereol. 2014, 94, 526–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Deng, Y.; Peng, S.; Yan, L.; Xu, H.; Wang, Q.; Shen, Z. RNA-Seq based transcriptome analysis in oral lichen planus. Hereditas 2021, 158, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Aviles-Jimenez, F.; Vazquez-Jimenez, F.; Medrano-Guzman, R.; Mantilla, A.; Torres, J. Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer. Sci. Rep. 2015, 4, 4202. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Li, L.; Zuo, X.; Li, Y. Change of the duodenal mucosa-associated microbiota is related to intestinal metaplasia. BMC Microbiol. 2019, 19, 275. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.L.; Liu, X.Q.; Liu, W.; Cheng, B.; Li, M.T. Comparative analysis of whole saliva proteomes for the screening of biomarkers for oral lichen planus. Inflamm. Res. 2006, 55, 405–407. [Google Scholar] [CrossRef]
- Talungchit, S.; Buajeeb, W.; Lerdtripop, C.; Surarit, R.; Chairatvit, K.; Roytrakul, S.; Kobayashi, H.; Izumi, Y.; Khovidhunkit, S.-O.P. Putative salivary protein biomarkers for the diagnosis of oral lichen planus: A case-control study. BMC Oral Health 2018, 18, 42. [Google Scholar] [CrossRef]
- Souza, M.; Florezi, G.; Nico, M.; De Paula, F.; Paula, F.; Lourenço, S. Salivary proteomics in lichen planus: A relationship with pathogenesis? Oral Dis. 2018, 24, 784–792. [Google Scholar] [CrossRef]
- Henskens, Y.M.; van der Velden, U.; Veerman, E.C.; Nieuw Amerongen, A.V. Protein, albumin and cystatin concentrations in saliva of healthy subjects and of patients with gingivitis or periodontitis. J. Periodontal Res. 1993, 28, 43–48. [Google Scholar] [CrossRef]
- Metgud, R.; Patel, S. Serum and salivary levels of albumin as diagnostic tools for oral pre-malignancy and oral malignancy. Biotech. Histochem. 2014, 89, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Shaila, M.; Pai, G.P.; Shetty, P. Salivary protein concentration, flow rate, buffer capacity and pH estimation: A comparative study among young and elderly subjects, both normal and with gingivitis and periodontitis. J. Indian Soc. Periodontol. 2013, 17, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Larsen, K.R.; Johansen, J.D.; Reibel, J.; Zachariae, C.; Rosing, K.; Pedersen, A.M.L. Oral symptoms and salivary findings in oral lichen planus, oral lichenoid lesions and stomatitis. BMC Oral Health 2017, 17, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rusthen, S.; Kristoffersen, A.K.; Young, A.; Galtung, H.K.; Petrovski, B.E.; Palm, O.; Enersen, M.; Jensen, J.L. Dysbiotic salivary microbiota in dry mouth and primary Sjogren's syndrome patients. PLoS ONE 2019, 14, e0218319. [Google Scholar] [CrossRef]
- van der Meulen, T.A.; Harmsen, H.J.M.; Bootsma, H.; Liefers, S.C.; Vich Vila, A.; Zhernakova, A.; Weersma, R.K.; Spijkervet, F.K.L.; Kroese, F.G.M.; Vissink, A. Reduced salivary secretion contributes more to changes in the oral microbiome of patients with primary Sjogren's syndrome than underlying disease. Ann. Rheum. Dis. 2018, 77, 1542–1544. [Google Scholar] [CrossRef]
- Li, X.Z.; Zhang, S.N.; Yang, X.Y. Serum-based metabolomics characterization of patients with reticular oral lichen planus. Arch. Oral Biol. 2019, 99, 183–189. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L.; Du, Q.; Sun, Z.; Yue, E.; Xue, P.; Zhao, H. Human saliva metabolome for oral lichen planus biomarker identification. Recent Pat. Anti-Cancer Drug Discov. 2021, 16, 417–425. [Google Scholar] [CrossRef]
- Wang, X.S.; Sun, Z.; Liu, L.W.; Du, Q.Z.; Liu, Z.S.; Yang, Y.J.; Xue, P.; Zhao, H.Y. Potential metabolic biomarkers for early detection of oral lichen planus, a precancerous lesion. Front. Pharmacol. 2020, 11, 603899. [Google Scholar] [CrossRef]
- Xin, M.Z.; Shi, Y.Y.; Li, C.S.; Zuo, L.H.; Li, N.; Liu, L.W.; Ma, H.X.; Du, Q.Z.; Xue, P.; Sun, Z.; et al. Metabolomics and transcriptomics analysis on metabolic characteristics of oral lichen planus. Front. Oncol. 2021, 11, 769163. [Google Scholar] [CrossRef]
- Ishikawa, S.; Sugimoto, M.; Edamatsu, K.; Sugano, A.; Kitabatake, K.; Iino, M. Discrimination of oral squamous cell carcinoma from oral lichen planus by salivary metabolomics. Oral Dis. 2020, 26, 35–42. [Google Scholar] [CrossRef]
- Lohavanichbutr, P.; Zhang, Y.; Wang, P.; Gu, H.; Nagana Gowda, G.A.; Djukovic, D.; Buas, M.F.; Raftery, D.; Chen, C. Salivary metabolite profiling distinguishes patients with oral cavity squamous cell carcinoma from normal controls. PLoS ONE 2018, 13, e0204249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galli, S.J.; Tsai, M.; Piliponsky, A.M. The development of allergic inflammation. Nature 2008, 454, 445–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, H.-E.; Chun, Y.; Jeong, S.; Jumreornvong, O.; Sicherer, S.H.; Bunyavanich, S. Multidimensional study of the oral microbiome, metabolite, and immunologic environment in peanut allergy. J. Allergy Clin. Immunol. 2021, 148, 627–632.e3. [Google Scholar] [CrossRef] [PubMed]
- Arweiler, N.B.; Rahmel, V.; Alhamwe, B.A.; Alhamdan, F.; Zemlin, M.; Boutin, S.; Dalpke, A.; Renz, H. Dental biofilm and saliva microbiome and its interplay with pediatric allergies. Microorganisms 2021, 9, 1330. [Google Scholar] [CrossRef]
- Gunatheesan, S.; Tam, M.M.; Tate, B.; Tversky, J.; Nixon, R. Retrospective study of oral lichen planus and allergy to spearmint oil. Australas. J. Dermatol. 2012, 53, 224–228. [Google Scholar] [CrossRef]
- Ditrichova, D.; Kapralova, S.; Tichy, M.; Ticha, V.; Dobesova, J.; Justova, E.; Eber, M.; Pirek, P. Oral lichenoid lesions and allergy to dental materials. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc 2007, 151, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Laeijendecker, R.; Dekker, S.K.; Burger, P.M.; Mulder, P.G.H.; Van Joost, T.; Neumann, M.H.A. Oral lichen planus and allergy to dental amalgam restorations. Arch. Dermatol. 2004, 140, 1434–1438. [Google Scholar] [CrossRef] [Green Version]
- Pali-Schöll, I.; Jensen-Jarolim, E. Gender aspects in food allergy. Curr. Opin. Allergy Clin. Immunol. 2019, 19, 249–255. [Google Scholar] [CrossRef]
- Minty, M.; Loubières, P.; Canceill, T.; Azalbert, V.; Burcelin, R.; Tercé, F.; Blasco-Baque, V. Gender-associated differences in oral microbiota and salivary biochemical parameters in response to feeding. J. Physiol. Biochem. 2021, 77, 155–166. [Google Scholar] [CrossRef]
- Schwartz, J.L.; Peña, N.; Kawar, N.; Zhang, A.; Callahan, N.; Robles, S.J.; Griebel, A.; Adami, G.R. Old age and other factors associated with salivary microbiome variation. BMC Oral Health 2021, 21, 490. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, Y.-H.; Zhao, Y.-Q.; Feng, Y.; Yan, F.; Gao, Z.-R.; Ye, Q.; Chen, Y.; Liu, Q.; Tan, L.; et al. Gender variations in the oral microbiomes of elderly patients with initial periodontitis. J. Immunol. Res. 2021, 2021, 7403042. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-H.; Chen, H.-M.; Yang, S.-F.; Liang, C.; Peng, C.-Y.; Lin, F.-M.; Tsai, L.-L.; Wu, B.-C.; Hsin, C.-H.; Chuang, C.-Y.; et al. Bacterial alterations in salivary microbiota and their association in oral cancer. Sci. Rep. 2017, 7, 16540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groeger, S.; Domann, E.; Gonzales, J.R.; Chakraborty, T.; Meyle, J. B7-H1 and B7-DC receptors of oral squamous carcinoma cells are upregulated by Porphyromonas gingivalis. Immunobiology 2011, 216, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Xu, X.; Tan, L.; Lin, L.; Pan, Y. The effects of Porphyromonas gingivalis on the cell cycle progression of human gingival epithelial cells. Oral Dis. 2014, 20, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, I.; Verma, M.; Panda, M. Role of oral microbiome signatures in diagnosis and prognosis of oral cancer. Technol. Cancer Res. Treat. 2019, 18, 1533033819867354. [Google Scholar] [CrossRef] [Green Version]
Study [Reference] | Method | Sample | Group (N) | Related Genera |
---|---|---|---|---|
Wang et al., 2016 [55] | 16S rRNA sequencing | unstimulated saliva | healthy control (18) | Haemophilus, Corynebacterium, Cellulosimicrobium, Campylobacter |
reticular OLP (19) | Solobacterium | |||
erosive OLP (18) | Porphyromonas | |||
Choi et al., 2016 [61] | 16S rRNA sequencing | buccal mucosa | healthy control (11) | Streptococcus, Escherichia |
OLP (13) | Leptotrichia, Acinetobacter | |||
He et al., 2017 [59] | 16S rRNA sequencing | buccal mucosa | healthy control (21) | Actinobacillus |
OLP (43) a | Actinomyces, Veillonella, Lautrophia, Leptotrichia | |||
Li et al., 2019 [63] | ITS2 region sequencing | unstimulated saliva | healthy control (18) | Ascomycota_unidentified_1_1, Trichosporon |
reticular OLP (17) | Candida, Aspergillus | |||
erosive OLP (18) | Alternaria, Sclerotiniaceae_unidentified | |||
Du et al., 2020 [60] | 16S rRNA sequencing | buccal mucosa | healthy control (10) | Streptococcus, Neisseria |
OLP (20) b | Fusobacterium, Granulicatella | |||
Baek et al., 2020 [64] | 16S rRNA sequencing | buccal mucosa | OLP (7) | Haemophilus, Neisseria, Fusobacterium |
biopsy tissue | OLP (7) | Escherichia, Acinetobacter, Sphingomonas | ||
Yu et al., 2020 [54] | 16S rRNA sequencing | unstimulated saliva | healthy control (10) | Abiotrophia, Eikenella, Aggregatibacter, Bacteroides, Neisseria, Ezakiella |
non-erosive OLP (10) | Haemophilus, Oribacterium | |||
data | erosive OLP (10) | Rothia, Oribacterium | ||
Wang et al., 2020 [53] | 16S rRNA sequencing | unstimulated saliva | healthy control (20) | ND |
OLP (40) c | Capnocytophaga, Gemella, Granulicatella | |||
biopsy tissue | healthy control (4) | Streptococcus, Micrococcus, Sphingobium | ||
OLP (20) d | Escherichia-Shigella, Phyllobacterium, Megaspaera | |||
Hijazi et al., 2020 [58] | 16S rRNA sequencing | buccal mucosa | healthy control (13) | ND |
data | OLP (18) | ND | ||
Zhong et al., 2020 [56] | RNA sequencing | unstimulated saliva | healthy control (5) | ND |
data | OLP (10) | ND | ||
Li et al., 2021 [57] | 16S rRNA sequencing | unstimulated saliva | healthy control (21) | Streptococcus, Rothia |
OLP (30) | Prevotella, Alloprevotella, Fusobacterium, Porphyromonas | |||
Liu et al., 2021 [62] | 16S rRNA sequencing | subgingival plaque | chronic periodontitis (20) | Leptotrichia, Prevotella |
chronic periodontitis with gingival erosive OLP (19) | Pseudomonas, Granulicatella |
Study [Reference] | Method | Sample | Intervention | Description |
---|---|---|---|---|
Keller and Kragelund, 2018 [74], Kragelund and Keller, 2019 [75] | 16S rRNA sequencing, ITS1 region sequencing | mouthwash, buccal mucosa | conventional treatment (antimycotics or steroids) with or without probiotics | Total number of participants: 22 Patients were followed up until 1 year from the beginning of the study |
Cosgarea et al., 2020 [77] | qPCR | unstimulated saliva | photodynamic therapy | Total number of participants: 20 Number of bacterial species analyzed: 20 |
Ku et al., 2021 [78] | qPCR | unstimulated saliva | dexamethasone gargle | Total number of participants: 20 Number of bacterial species analyzed: 9 |
Marlina et al., 2021 [76] | 16S rRNA sequencing | unstimulated saliva | probiotics | Total number of participants: 27 Administration of topical medications (analgesics, corticosteroids, immunosuppressants) were not controlled |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, W.; Jang, S. Oral Microbiome Research on Oral Lichen Planus: Current Findings and Perspectives. Biology 2022, 11, 723. https://doi.org/10.3390/biology11050723
Jung W, Jang S. Oral Microbiome Research on Oral Lichen Planus: Current Findings and Perspectives. Biology. 2022; 11(5):723. https://doi.org/10.3390/biology11050723
Chicago/Turabian StyleJung, Won, and Sungil Jang. 2022. "Oral Microbiome Research on Oral Lichen Planus: Current Findings and Perspectives" Biology 11, no. 5: 723. https://doi.org/10.3390/biology11050723
APA StyleJung, W., & Jang, S. (2022). Oral Microbiome Research on Oral Lichen Planus: Current Findings and Perspectives. Biology, 11(5), 723. https://doi.org/10.3390/biology11050723