Running Footwear and Impact Peak Differences in Recreational Runners
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Processing
2.3. Data Analysis
3. Results
3.1. Spatiotemporal
3.2. Kinematic Parameters
3.3. Footwear and Injuries
3.4. Correlation Matrix
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scheerder, J.; Breedveld, K.; Borgers, J. Running across Europe: The Rise and Size of One of the Largest Sport Markets; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–268. [Google Scholar]
- Larson, P.; Higgins, E.; Kaminski, J.; Decker, T.; Preble, J.; Lyons, D.; McIntyre, K.; Normile, A. Foot strike patterns of recreational and sub-elite runners in a long-distance road race. J. Sports Sci. 2011, 29, 1665–1673. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yuan, P.; Wang, R.; Wang, D.; Liu, J.; Zhou, H. Effects of Foot Strike Techniques on Running Biomechanics: A Systematic Review and Meta-analysis. Sports Health 2021, 13, 71–77. [Google Scholar] [CrossRef]
- Lieberman, D.E.; Venkadesan, M.; Werbel, W.A.; Daoud, A.I.; D’Andrea, S.; Davis, I.S.; Mang’eni, R.O.; Pitsiladis, Y. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature 2010, 463, 531–535. [Google Scholar] [CrossRef]
- Videbæk, S.; Bueno, A.M.; Nielsen, R.O.; Rasmussen, S. Incidence of Running-Related Injuries Per 1000 h of running in Different Types of Runners: A Systematic Review and Meta-Analysis. Sports Med. 2015, 45, 1017–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munteanu, S.E.; Barton, C.J. Lower limb biomechanics during running in individuals with achilles tendinopathy: A systematic review. J. Foot Ankle Res. 2011, 4, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dierks, T.A.; Manal, K.T.; Hamill, J.; Davis, I. Lower extremity kinematics in runners with patellofemoral pain during a prolonged run. Med. Sci. Sports Exerc. 2011, 43, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.H.; Hijmans, J.M.; Rajabi, R.; Diercks, R.; Zwerver, J.; van der Worp, H. Kinematic risk factors for lower limb tendinopathy in distance runners: A systematic review and meta-analysis. Gait Posture 2019, 69, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Ferber, R.; Hreljac, A.; Kendall, K.D. Suspected mechanisms in the cause of overuse running injuries: A clinical review. Sports Health 2009, 1, 242–246. [Google Scholar] [CrossRef] [Green Version]
- Mo, S.; Chan, Z.Y.S.; Lai, K.K.Y.; Chan, P.P.; Wei, R.X.; Yung, P.S.; Shum, G.; Cheung, R.T. Effect of minimalist and maximalist shoes on impact loading and footstrike pattern in habitual rearfoot strike trail runners: An in-field study. Eur. J. Sport Sci. 2021, 21, 183–191. [Google Scholar] [CrossRef]
- Fong Yan, A.; Sinclair, P.J.; Hiller, C.; Wegener, C.; Smith, R.M. Impact attenuation during weight bearing activities in barefoot vs. shod conditions: A systematic review. Gait Posture 2013, 38, 175–186. [Google Scholar] [CrossRef]
- Richert, F.C.; Stein, T.; Ringhof, S.; Stetter, B.J. The effect of the heel-to-toe drop of standard running shoes on lower limb biomechanics. Footwear Sci. 2019, 11, 161–170. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, X.; Zhang, L.; Liu, H.; Yu, B. The effect of heel-to-toe drop of running shoes on patellofemoral joint stress during running. Gait Posture 2022, 93, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, M.; Awrejcewicz, J.; Fekete, G.; Ren, F.; Gu, Y. Using Gold-standard Gait Analysis Methods to Assess Experience Effects on Lower-limb Mechanics During Moderate High-heeled Jogging and Running. J. Vis. Exp. 2017, 127, e55714. [Google Scholar] [CrossRef] [PubMed]
- Roggio, F.; Ravalli, S.; Maugeri, G.; Bianco, A.; Palma, A.; Di Rosa, M.; Musumeci, G. Technological advancements in the analysis of human motion and posture management through digital devices. World J. Orthop. 2021, 12, 467–484. [Google Scholar] [CrossRef] [PubMed]
- Benson, L.C.; Clermont, C.A.; Bošnjak, E.; Ferber, R. The use of wearable devices for walking and running gait analysis outside of the lab: A systematic review. Gait Posture 2018, 63, 124–138. [Google Scholar] [CrossRef]
- Van Alsenoy, K.; Thomson, A.; Burnett, A. Reliability and validity of the Zebris FDM-THQ instrumented treadmill during running trials. Sports Biomech. 2019, 18, 501–514. [Google Scholar] [CrossRef]
- Bravi, M.; Massaroni, C.; Santacaterina, F.; Di Tocco, J.; Schena, E.; Sterzi, S.; Bressi, F.; Miccinilli, S. Validity Analysis of WalkerViewTM Instrumented Treadmill for Measuring Spatiotemporal and Kinematic Gait Parameters. Sensors 2021, 21, 4795. [Google Scholar] [CrossRef]
- McSweeney, S.C.; Reed, L.F.; Wearing, S.C. Reliability and minimum detectable change of measures of gait in children during walking and running on an instrumented treadmill. Gait Posture 2020, 75, 105–108. [Google Scholar] [CrossRef]
- Scataglini, S.; Verwulgen, S.; Roosens, E.; Haelterman, R.; Van Tiggelen, D. Measuring Spatiotemporal Parameters on Treadmill Walking Using Wearable Inertial System. Sensors 2021, 21, 4441. [Google Scholar] [CrossRef]
- Saggio, G.; Tombolini, F.; Ruggiero, A. Technology-Based Complex Motor Tasks Assessment: A 6-DOF Inertial-Based System Versus a Gold-Standard Optoelectronic-Based One. IEEE Sens. J. 2021, 21, 1616–1624. [Google Scholar] [CrossRef]
- Napier, C.; Cochrane, C.K.; Taunton, J.E.; Hunt, M.A. Gait modifications to change lower extremity gait biomechanics in runners: A systematic review. Br. J. Sports Med. 2015, 49, 1382–1388. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.; Pua, Y.H.; Fortin, K.; Ritchie, C.; Webster, K.E.; Denehy, L.; Bryant, A.L. Validity of the Microsoft Kinect for assessment of postural control. Gait Posture 2012, 36, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Eltoukhy, M.; Oh, J.; Kuenze, C.; Signorile, J. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment. Gait Posture 2017, 51, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Siegler, S.; Allard, P.; Kirtley, C.; Leardini, A.; Rosenbaum, D.; Whittle, M.; D’Lima, D.D.; Cristofolini, L.; Witte, H.; et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: Ankle, hip, and spine. International Society of Biomechanics. J. Biomech. 2002, 35, 543–548. [Google Scholar] [CrossRef]
- Saini, M.; Kerrigan, D.C.; Thirunarayan, M.A.; Duff-Raffaele, M. The Vertical Displacement of the Center of Mass During Walking: A Comparison of Four Measurement Methods. J. Biomech. Eng. 1998, 120, 133–139. [Google Scholar] [CrossRef]
- Mercer, J.A.; Devita, P.; Derrick, T.R.; Bates, B.T. Individual effects of stride length and frequency on shock attenuation during running. Med. Sci. Sports Exerc. 2003, 35, 307–313. [Google Scholar] [CrossRef]
- Heiderscheit, B.C.; Chumanov, E.S.; Michalski, M.P.; Wille, C.M.; Ryan, M.B. Effects of step rate manipulation on joint mechanics during running. Med. Sci. Sports Exerc. 2011, 43, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Luo, Z.; Dai, B.; Fu, W. Effects of 12-week cadence retraining on impact peak, load rates and lower extremity biomechanics in running. PeerJ 2020, 8, e9813. [Google Scholar] [CrossRef]
- Perl, D.P.; Daoud, A.I.; Lieberman, D.E. Effects of footwear and strike type on running economy. Med. Sci. Sports Exerc. 2012, 44, 1335–1343. [Google Scholar] [CrossRef] [Green Version]
- Shih, Y.; Lin, K.L.; Shiang, T.Y. Is the foot striking pattern more important than barefoot or shod conditions in running? Gait Posture 2013, 38, 490–494. [Google Scholar] [CrossRef]
- Reinking, M.F.; Carson, N.M.; End, B.M.; Miller, O.K.; Munter, J.D.; McPoil, T.G. Differences in Lower Extremity Kinematics Between High School Cross-Country and Young Adult Recreational Runners. Int. J. Sports Phys. Ther. 2021, 16, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Van Hooren, B.; Fuller, J.T.; Buckley, J.D.; Miller, J.R.; Sewell, K.; Rao, G.; Barton, C.; Bishop, C.; Willy, R.W. Is Motorized Treadmill Running Biomechanically Comparable to Overground Running? A Systematic Review and Meta-Analysis of Cross-Over Studies. Sports Med. 2020, 50, 785–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, D.; Louw, Q.; Cockcroft, J.; Tawa, N. Three-dimensional kinematics of the thorax during over-ground running. J. Bodyw. Mov. Ther. 2018, 22, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Weinhandl, J.T.; Smith, J.D.; Dugan, E.L. The effects of repetitive drop jumps on impact phase joint kinematics and kinetics. J. Appl. Biomech. 2011, 27, 108–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, D.; Gard, S.; Fatone, S. The effect of trunk flexion on able-bodied gait. Gait Posture 2008, 27, 653–660. [Google Scholar] [CrossRef]
- Hart, J.M.; Kerrigan, D.C.; Fritz, J.M.; Ingersoll, C.D. Jogging kinematics after lumbar paraspinal muscle fatigue. J. Athl. Train. 2009, 44, 475–481. [Google Scholar] [CrossRef]
- AminiAghdam, S.; Epro, G.; James, D.; Karamanidis, K. Leaning the Trunk Forward Decreases Patellofemoral Joint Loading During Uneven Running. J. Strength Cond. Res. 2021. [Google Scholar] [CrossRef]
- Teng, H.L.; Powers, C.M. Sagittal plane trunk posture influences patellofemoral joint stress during running. J. Orthop. Sports Phys. Ther. 2014, 44, 785–792. [Google Scholar] [CrossRef] [Green Version]
- Rueda, J.; Chorro, D.; Navandar, A.; Torres, G.; Navarro Cabello, E. Running pattern differences in gender and running level. In Proceedings of the 35th Conference of the International Society of Biomechanics in Sports, Cologne, Germany, 14–18 June 2017. [Google Scholar]
- Koblbauer, I.F.; van Schooten, K.S.; Verhagen, E.A.; van Dieën, J.H. Kinematic changes during running-induced fatigue and relations with core endurance in novice runners. J. Sci. Med. Sport 2014, 17, 419–424. [Google Scholar] [CrossRef]
- Dos Santos, A.F.; Nakagawa, T.H.; Nakashima, G.Y.; Maciel, C.D.; Serrão, F. The Effects of Forefoot Striking, Increasing Step Rate, and Forward Trunk Lean Running on Trunk and Lower Limb Kinematics and Comfort. Int. J. Sports Med. 2016, 37, 369–373. [Google Scholar] [CrossRef]
- Brigaud, F. Guide de la Foulée Avec Prise D’appui Avant-Pied; Editions DésIris, France: Gap, France, 2016. [Google Scholar]
- Altman, A.; Davis, I. Comparing Barefoot Running to an Altered Strike Pattern in Shoes. Med. Sci. Sports Exerc. 2011, 43, 59. [Google Scholar] [CrossRef]
- Giandolini, M.; Arnal, P.J.; Millet, G.Y.; Peyrot, N.; Samozino, P.; Dubois, B.; Morin, J.B. Impact reduction during running: Efficiency of simple acute interventions in recreational runners. Eur. J. Appl. Physiol. 2013, 113, 599–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moen, M.H.; Tol, J.L.; Weir, A.; Steunebrink, M.; De Winter, T.C. Medial tibial stress syndrome: A critical review. Sports Med. 2009, 39, 523–546. [Google Scholar] [CrossRef]
- Burke, A.; Dillon, S.; O’Connor, S.; Whyte, E.F.; Gore, S.; Moran, K.A. Risk Factors for Injuries in Runners: A Systematic Review of Foot Strike Technique and Its Classification at Impact. Orthop. J. Sports Med. 2021, 9, 23259671211020283. [Google Scholar] [CrossRef] [PubMed]
- Malisoux, L.; Chambon, N.; Urhausen, A.; Theisen, D. Influence of the Heel-to-Toe Drop of Standard Cushioned Running Shoes on Injury Risk in Leisure-Time Runners: A Randomized Controlled Trial With 6-Month Follow-up. Am. J. Sports Med. 2016, 44, 2933–2940. [Google Scholar] [CrossRef]
- Kakouris, N.; Yener, N.; Fong, D.T.P. A systematic review of running-related musculoskeletal injuries in runners. J. Sport Health Sci. 2021, 10, 513–522. [Google Scholar] [CrossRef]
- Van Gent, R.N.; Siem, D.; van Middelkoop, M.; van Os, A.G.; Bierma-Zeinstra, S.M.; Koes, B.W. Incidence and determinants of lower extremity running injuries in long distance runners: A systematic review. Br. J. Sports Med. 2007, 41, 469–480. [Google Scholar] [CrossRef] [Green Version]
- Van der Worp, H.; Vrielink, J.W.; Bredeweg, S.W. Do runners who suffer injuries have higher vertical ground reaction forces than those who remain injury-free? A systematic review and meta-analysis. Br. J. Sports Med. 2016, 50, 450. [Google Scholar] [CrossRef] [PubMed]
- Vannatta, C.N.; Heinert, B.L.; Kernozek, T.W. Biomechanical risk factors for running-related injury differ by sample population: A systematic review and meta-analysis. Clin. Biomech. 2020, 75, 104991. [Google Scholar] [CrossRef] [PubMed]
M | Mean Angle (SD) | |
---|---|---|
IP group | n-IP group | |
Age (years) | 47.19 (6.85) | 45.15 (6.09) |
Height (cm) | 174.38 (5.10) | 174.85 (6.91) |
Body mass (kg) | 70.81 (6.06) | 73.15 (7.60) |
BMI (kg/m2) | 23.27 (1.45) | 23.92 (1.94) |
Weekly km (km) | 40.00 (6.32) | 44.20 (14.97) |
Weekly training (days) | 3.34 (0.52) | 3.50 (1.05) |
Mean Angle (SD) | |||||
---|---|---|---|---|---|
IP Group | n-IP Group | Sig. | Effect Size (d) + | U3 ++ | |
Stride length (cm) | 105.50 (20.50) | 119.30 (11.10) | 0.02 * | −0.84 | 80% |
Contact time (s) | 0.30 (0.04) | 0.30 (0.02) | 0.40 | 0.32 | - |
SPM | 163 (13.90) | 170 (11.40) | 0.17 | −0.51 | 69.5% |
CoM displacement (cm) | 6.20 (0.98) | 5.80 (1.39) | 0.37 | 0.35 | - |
Step cycle (c/s) | 1.43 (0.09) | 1.46 (0.09) | 0.46 | −0.33 | - |
Speed (km/h) | 11.20 (2.88) | 11.90 (1.50) | 0.18 | −0.32 | - |
Joint Excursion | Mean Angle (SD) | ||||
---|---|---|---|---|---|
IP Group | n-IP Group | Sig. | Effect Size (d) + | U3 ++ | |
Trunk | |||||
Flexion | 11.40° (2.30) | 11.60° (2.40) | 0.31 | −0.06 | - |
Hip | |||||
Flexion | 40.40° (9.50) | 32.30° (10.20) | 0.03 * | −0.82 | 79.3% |
Extension | 30.20° (3.90) | 27.70° (4.60) | 0.12 | −0.58 | 71.9% |
Knee | |||||
Flexion | 86.60° (17.10) | 88.74° (15.80) | 0.73 | 0.13 | - |
Extension | 5.60° (3.50) | 4.90° (3.40) | 0.59 | −0.20 | - |
Ankle | |||||
Dorsiflexion | 20.80° (5.50) | 13.40° (7.20) | 0.003 ** | −1.17 | 87.9% |
Plantarflexion | 50.30° (4.60) | 51.50° (4.70) | 0.03 * | 0.25 | - |
Foot | |||||
Inversion at IC | 14.30° (3.50) | 17.30° (3.80) | 0.03 * | 0.83 | 79.6% |
Inversion at TO | 5.00° (2.70) | 3.58° (3.00) | 0.13 | −0.50 | 69.2% |
n-IP Group | IP Group | |
---|---|---|
Shoes size | ||
Same as the foot size | 28.57% | 14.29% |
½ point greater | 14.29% | 57.14% |
1 point greater | 57.14% | 28.57% |
New shoes change | ||
After 600–800 km | 71.43% | 71.43% |
After 800–1000 km | 28.57% | - |
When the shoes are ruined | - | 28.58% |
Feet pain after training | ||
Yes | 14.29% | 57.14% |
No | 85.71% | 42.86% |
Suspend due to injury (in one year) | ||
0 times | 57.14% | 14.29% |
1 time | 28.57% | 42.86% |
2 times | 14.29% | 42.80% |
Common injury location | ||
Back | 7.14% | - |
Hip | 7.14% | - |
Hamstring | 21.43% | 16.67% |
Knee | 7.14% | 41.67% |
Calf | 21.43% | 16.67% |
Achilles tendon | - | 8.33% |
Foot | - | 8.49% |
None | 35.72% | 8.33% |
Injury severity | ||
None | 42.86% | 12.50% |
Mild, needed a little rest | 28.57% | 25.00% |
Moderate, extended rest and ice | 28.57% | 12.50% |
Severe, needed medications or physiotherapy | - | 50.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roggio, F.; Trovato, B.; Zanghì, M.; Petrigna, L.; Testa, G.; Pavone, V.; Musumeci, G. Running Footwear and Impact Peak Differences in Recreational Runners. Biology 2022, 11, 818. https://doi.org/10.3390/biology11060818
Roggio F, Trovato B, Zanghì M, Petrigna L, Testa G, Pavone V, Musumeci G. Running Footwear and Impact Peak Differences in Recreational Runners. Biology. 2022; 11(6):818. https://doi.org/10.3390/biology11060818
Chicago/Turabian StyleRoggio, Federico, Bruno Trovato, Marta Zanghì, Luca Petrigna, Gianluca Testa, Vito Pavone, and Giuseppe Musumeci. 2022. "Running Footwear and Impact Peak Differences in Recreational Runners" Biology 11, no. 6: 818. https://doi.org/10.3390/biology11060818
APA StyleRoggio, F., Trovato, B., Zanghì, M., Petrigna, L., Testa, G., Pavone, V., & Musumeci, G. (2022). Running Footwear and Impact Peak Differences in Recreational Runners. Biology, 11(6), 818. https://doi.org/10.3390/biology11060818