Reproductive Consequences of Electrolyte Disturbances in Domestic Animals
Abstract
:Simple Summary
Abstract
1. Electrolyte Balance
1.1. Anti-Diuretic Hormone (ADH)
1.2. The Renin–Angiotensin–Aldosterone System (RAAS)
1.3. Aldosterone
1.4. Electrolytes in the Male Reproductive System
1.5. Electrolytes in the Female Reproductive System
2. Electrolyte Disturbances
3. The Influence of Electrolyte Disturbances on Animals
4. Reproductive Consequences Resulting from Disturbances in Electrolyte Balance in Animals
4.1. Electrolytes Disturbances in the Male Reproductive System
4.2. Electrolyte Disturbances in Female’s Reproductive System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shrimanker, I.; Bhattarai, S. Electrolytes; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Wilfred–Ekprikpo, P. Changes in Electrolytes in Heterobranchus Longifilis Exposed to Sub Lethal Levels of Different Chemicals in the Laboratory. J. Agric. Res. Pestic. Biofertil. 2021, 1, 1–5. [Google Scholar]
- Müller, D.N.; Wilck, N.; Haase, S.; Kleinewietfeld, M.; Linker, R.A. Sodium in the Microenvironment Regulates Immune Responses and Tissue Homeostasis. Nat. Rev. Immunol. 2019, 19, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Palmer, L.G.; Schnermann, J. Integrated Control of Na Transport along the Nephron. CJASN 2015, 10, 676–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Şahin, A.; Er, E.Ö.; Öz, E.; Yıldırmak, Z.Y.; Bakırdere, S. Sodium, Magnesium, Calcium, Manganese, Iron, Copper, and Zinc in Serums of Beta Thalassemia Major Patients. Biol. Trace. Elem. Res. 2021, 199, 888–894. [Google Scholar] [CrossRef]
- Rodriguez-Giustiniani, P.; Rodriguez-Sanchez, N.; Galloway, S.D.R. Fluid and Electrolyte Balance Considerations for Female Athletes. Eur. J. Sport Sci. 2022, 22, 697–708. [Google Scholar] [CrossRef]
- Watson, F.; Austin, P. Physiology of Human Fluid Balance. Anaesth. Intensive Care Med. 2021, 22, 644–651. [Google Scholar] [CrossRef]
- Keller, W.J.; Mullaj, E. Antidiuretic Hormone Release Associated with Increased Intracranial Pressure Independent of Plasma Osmolality. Brain Behav. 2018, 8, e01005. [Google Scholar] [CrossRef]
- Kurniawan, A.L.; Yang, Y.-L.; Hsu, C.-Y.; Paramastri, R.; Lee, H.-A.; Ni, P.-Y.; Chin, M.-Y.; Chao, J.C.-J. Association between Metabolic Parameters and Risks of Anemia and Electrolyte Disturbances among Stages 3–5 Chronic Kidney Disease Patients in Taiwan. BMC Nephrol. 2021, 22, 385. [Google Scholar] [CrossRef]
- Maher, W.; Macnab, R. Regulation of Fluid and Electrolyte Balance. Anaesth. Intensive Care Med. 2018, 19, 245–248. [Google Scholar] [CrossRef]
- Pollock, J.S.; Ryan, M.J.; Samson, W.K.; Brooks, D.P. Water and Electrolyte Homeostasis Brings Balance to Physiology. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2014, 307, R481–R483. [Google Scholar] [CrossRef] [Green Version]
- Winnicka, A. Wartości Referencyjne Podstawowych Badań Laboratoryjnych w Wterynarii; Wydanie IV.; Wydawnictwo SGGW: Warszawa, Poland, 2008. [Google Scholar]
- Jamroz, D. Żywienie Zwierząt i Paszoznawstwo; PWN: Warszawa, Poland, 2015; Volume 1. [Google Scholar]
- Gołebiewski, M.; Slósarz, J.; Balcerak, M. Instrukcja Odchowu Cieląt Mięsnych; Grupa Wolowina: Warszawa, Poland, 2021. [Google Scholar]
- Jamroz, D. Żywienie Zwierząt i Paszoznawstwo; PWN: Warszawa, Poland, 2015; Volume 2. [Google Scholar]
- Alcantara, P.; Hanson, L.; Smith, J. Sodium Requirements, Balance and Tissue Composition of Growing Pigs. J. Anim. Sci. 1980, 50, 1092–1101. [Google Scholar] [CrossRef] [Green Version]
- Bikker, P.; Blok, M. Phosphorus and Calcium Requirements of Growing Pigs and Sows. Dept. Anim. Nutr. 2017, 59, 1–74. [Google Scholar] [CrossRef]
- Lipiński, K.; Purwin, C. Effects of magnesium on pork quality. J. Elem. 2011, 16, 325–337. [Google Scholar] [CrossRef]
- Meyer, H.; Coenen, M. Pferdefutterung; Enke: Berlin, Germany, 2002. [Google Scholar]
- Dhondup, T.; Qian, Q. Acid-Base and Electrolyte Disorders in Patients with and without Chronic Kidney Disease: An Update. Kidney Dis 2017, 3, 136–148. [Google Scholar] [CrossRef]
- Ellison, D.; Farrar, F.C. Kidney Influence on Fluid and Electrolyte Balance. Nurs. Clin. North Am. 2018, 53, 469–480. [Google Scholar] [CrossRef]
- Atherton, J.C. Regulation of Fluid and Electrolyte Balance by the Kidney. Anaesth. Intensive Care Med. 2006, 7, 227–233. [Google Scholar] [CrossRef]
- Bankir, L.; Bichet, D.G.; Morgenthaler, N.G. Vasopressin: Physiology, Assessment and Osmosensation. J. Intern. Med. 2017, 282, 284–297. [Google Scholar] [CrossRef] [Green Version]
- Harrison, T.D. The Relationship between Plasma Osmolarity and Feed Efficiency in Beef Cattle and Effect of Feeding Cows Medicated Feed through Mineral Containing AltosidRTM IGR on the Growth of Beef Calves. Master’s Thesis, West Virginia University Libraries, Morgantown, WV, USA, 2016. [Google Scholar]
- Wilkinson, J.S. A Preliminary Study of the Measurement of Plasma Osmotic Pressure in Equine Medicine. Equine Vet. J. 1976, 8, 84–85. [Google Scholar] [CrossRef]
- Clabots, M.F.; Gaillard, E.; Aumann, M. Acute Kidney Injury, Seizures, and Hypertonic Hyponatremia Secondary to Mannitol Intoxication in a Dog. J. Vet. Emerg. Crit. Care 2019, 29, 680–685. [Google Scholar] [CrossRef]
- Hoehne, S.N.; Kohen, C.J.; Puschner, B.; Gennity, I.; Hagley, S.P.; Farrell, K.S.; Unger, K.; Cagle, L.A.; Jandrey, K.E. Severe Hypernatremia and Transient Azotemia in a Cat Following Inadvertent Intravenous Administration of a Commercial Polyethylene Glycol Solution. J. Vet. Emerg. Crit. Care 2019, 29, 690–695. [Google Scholar] [CrossRef]
- Verschuren, E.H.J.; Castenmiller, C.; Peters, D.J.M.; Arjona, F.J.; Bindels, R.J.M.; Hoenderop, J.G.J. Sensing of Tubular Flow and Renal Electrolyte Transport. Nat. Rev. Nephrol. 2020, 16, 337–351. [Google Scholar] [CrossRef]
- Gianzo, M.; Subirán, N. Regulation of Male Fertility by the Renin-Angiotensin System. IJMS 2020, 21, 7943. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, D.; Lu, Y.; Liu, Z. The Interplay of Renin-Angiotensin System and Toll-Like Receptor 4 in the Inflammation of Diabetic Nephropathy. J. Immunol. Res. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Prieto, M.C.; Gonzalez, A.A.; Visniauskas, B.; Navar, L.G. The Evolving Complexity of the Collecting Duct Renin–Angiotensin System in Hypertension. Nat. Rev. Nephrol. 2021, 17, 481–492. [Google Scholar] [CrossRef]
- Hirooka, K.; Kiuchi, Y. The Retinal Renin-Angiotensin-Aldosterone System: Implications for Glaucoma. Antioxidants 2022, 11, 610. [Google Scholar] [CrossRef]
- Laghlam, D.; Jozwiak, M.; Nguyen, L.S. Renin–Angiotensin–Aldosterone System and Immunomodulation: A State-of-the-Art Review. Cells 2021, 10, 1767. [Google Scholar] [CrossRef]
- Tsilosani, A.; Gao, C.; Zhang, W. Aldosterone-Regulated Sodium Transport and Blood Pressure. Front. Physiol. 2022, 13, 770375. [Google Scholar] [CrossRef]
- Ferreira, N.S.; Tostes, R.C.; Paradis, P.; Schiffrin, E.L. Aldosterone, Inflammation, Immune System, and Hypertension. Am. J. Hypertens. 2021, 34, 15–27. [Google Scholar] [CrossRef]
- Fadl, A.M.; Abdelnaby, E.A.; El-Sherbiny, H.R. Supplemental Dietary Zinc Sulphate and Folic Acid Combination Improves Testicular Volume and Haemodynamics, Testosterone Levels and Semen Quality in Rams under Heat Stress Conditions. Reprod Domest. Anim. 2022, 57, 567–576. [Google Scholar] [CrossRef]
- Fallah, A.; Mohammad-Hasani, A.; Colagar, A.H. Zinc Is an Essential Element for Male Fertility: A Review of Zn Roles in Men’s Health, Germination, Sperm Quality, and Fertilization. J. Reprod. Infertil. 2018, 19, 13. [Google Scholar]
- Anyogu, D.C.; Shoyinka, S.V.O.; Ihedioha, J.I. Infection of West African Dwarf Rams with Trypanosoma Brucei Brucei and Trypanosoma Congolense Significantly Alter Serum Electrolytes, Redox Balance, Sperm Parameters, and Gonadal Morphology. Vet. Res. Commun. 2022, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Imran Afridi, H.; Gul Kazi, T.; Naz Talpur, F.; Ahmed Baig, J.; Qadir Chanihoon, G. Essential Trace and Toxic Elemental Concentrations in Biological Samples of Male Adult Referent and Eunuch Subjects. Clin. Chim. Acta 2022, 529, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Mirnamniha, M.; Faroughi, F.; Tahmasbpour, E.; Ebrahimi, P.; Beigi Harchegani, A. An Overview on Role of Some Trace Elements in Human Reproductive Health, Sperm Function and Fertilization Process. Rev. Environ. Health 2019, 34, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Beigi Harchegani, A.; Irandoost, A.; Mirnamniha, M.; Rahmani, H.; Tahmasbpour, E. Possible Mechanisms for The Effects of Calcium Deficiency on Male Infertility. Int J. Fertil. Steril. 2019, 12, 267. [Google Scholar] [CrossRef]
- Malik, M.I.; Jamil, H.; Qureshi, Z.I.; Mehfooz, A.; Rizvi, S.N.B.; Ullah, S.; Dilshad, R.; Zaman, A.; Ullah, N.; Safdar, S.K.; et al. Investigation on Relationship of Hormonal Profile and Biochemical Constituents of Seminal Plasma with Physical Characteristics of Damani Buck Semen. Pure Appl. Biol. 2018, 7, 684–691. [Google Scholar]
- Azab, S.S.; Mostafa, T.; Abougabal, K.M.; Tohamy, A.A.; Nabil, N. Assessment of Seminal Calcium and Magnesium Levels in Infertile Men with Varicocele before and after Varicocelectomy. Andrology 2021, 9, 1853–1858. [Google Scholar] [CrossRef]
- Ghaniei, A.; Eslami, M.; BabaeiMarzango, S.S. Determination of Calcium, Magnesium, Phosphorus, Iron, and Copper Contents in Rooster Seminal Plasma and Their Effects on Semen Quality. Comp. Clin. Pathol. 2018, 27, 427–431. [Google Scholar] [CrossRef]
- Umar, S.; Ahmad, M.; Ahmad, I.; Zubair, M.; Umar, Z.; Qureshi, A.S.; Manzoor, A.; Murtaza, A.; Shaukat, A. Correlation of Biochemical Constituents of Seminal Plasma with Semen Quality in Teddy Goat (Capra Hircus) Bucks. Andrologia 2018, 50, e12940. [Google Scholar] [CrossRef]
- Okediran, B.S.; Amid, S.A.; Suleiman, K.Y.; Adah, A.S.; Sanusi, F.; Olaifa, F.H. Electrolytes changes in male rats deprived of feed and water. Assiut Vet. Med. J. 2021, 67, 7. [Google Scholar] [CrossRef]
- Syeda, S.S.; Sánchez, G.; McDermott, J.P.; Hong, K.H.; Blanco, G.; Georg, G.I. The Na+ and K+ Transport System of Sperm (ATP1A4) Is Essential for Male Fertility and an Attractive Target for Male Contraception. Biol. Reprod. 2020, 103, 343–356. [Google Scholar] [CrossRef]
- Jimenez, T.; McDermott, J.P.; Sánchez, G.; Blanco, G. Na,K-ATPase A4 Isoform Is Essential for Sperm Fertility. Proc. Natl. Acad. Sci. USA 2011, 108, 644–649. [Google Scholar] [CrossRef] [Green Version]
- Puga Molina, L.C.; Luque, G.M.; Balestrini, P.A.; Marín-Briggiler, C.I.; Romarowski, A.; Buffone, M.G. Molecular Basis of Human Sperm Capacitation. Front. Cell Dev. Biol. 2018, 6, 72. [Google Scholar] [CrossRef] [Green Version]
- Venkata Krishnaiah, M.; Arangasamy, A.; Selvaraju, S.; Guvvala, P.R.; Ramesh, K. Organic Zn and Cu Interaction Impact on Sexual Behaviour, Semen Characteristics, Hormones and Spermatozoal Gene Expression in Bucks (Capra Hircus). Theriogenology 2019, 130, 130–139. [Google Scholar] [CrossRef]
- Ogochukwu Nzoputam, J. Variations in Plasma Electrolytes and Thirst Perception During the Menstrual Cycle. AJBLS 2019, 7, 6. [Google Scholar] [CrossRef]
- Giersch, G.E.W.; Charkoudian, N.; Stearns, R.L.; Casa, D.J. Fluid Balance and Hydration Considerations for Women: Review and Future Directions. Sports Med. 2020, 50, 253–261. [Google Scholar] [CrossRef]
- Zhang, X.; Ge, Y.; Bukhari, A.-A.-S.; Zhu, Q.; Shen, Y.; Li, M.; Sun, H.; Su, D.; Liang, X. Estrogen Negatively Regulates the Renal Epithelial Sodium Channel (ENaC) by Promoting Derlin-1 Expression and AMPK Activation. Exp. Mol. Med. 2019, 51, 1–12. [Google Scholar] [CrossRef]
- Satué, K.; Fazio, E.; Muñoz, A.; Medica, P. Endocrine and Electrolyte Balances during Periovulatory Period in Cycling Mares. Animals 2021, 11, 520. [Google Scholar] [CrossRef]
- Leroy, J.L.M.R.; Vanholder, T.; Delanghe, J.R.; Opsomer, G.; Van Soom, A.; Bols, P.E.J.; Dewulf, J.; de Kruif, A. Metabolic Changes in Follicular Fluid of the Dominant Follicle in High-Yielding Dairy Cows Early Post Partum. Theriogenology 2004, 62, 1131–1143. [Google Scholar] [CrossRef]
- Hassan, M.S.; Al-Nuaimi, A.J.; Al-Yasari, A.M.; Jameel, Y.J. Study the Effects of Follicular Size on Some Biochemical Follicular Fluid Composition in She Camel (Camelus Dromedarius). Adv. Anim. Vet. Sci. 2018, 6, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Yeh, J. Calcium Oscillatory Patterns and Oocyte Activation During Fertilization: A Possible Mechanism for Total Fertilization Failure (TFF) in Human In Vitro Fertilization? Reprod. Sci. 2021, 28, 639–648. [Google Scholar] [CrossRef]
- Chen, W.; Xia, W.G.; Ruan, D.; Wang, S.; Abouelezz, K.F.M.; Wang, S.L.; Zhang, Y.N.; Zheng, C.T. Dietary Calcium Deficiency Suppresses Follicle Selection in Laying Ducks through Mechanism Involving Cyclic Adenosine Monophosphate-Mediated Signaling Pathway. Animal 2020, 14, 2100–2108. [Google Scholar] [CrossRef]
- Johnson, A.L. Ovarian Follicle Selection and Granulosa Cell Differentiation. Poult. Sci. 2015, 94, 781–785. [Google Scholar] [CrossRef]
- Francoeur, L.; Stephens, C.S.; Johnson, P.A. Ad Libitum Feeding in Broiler Breeder Hens Alters the Transcriptome of Granulosa Cells of Pre-Hierarchal Follicles. Animals 2021, 11, 2706. [Google Scholar] [CrossRef]
- Carvacho, I.; Piesche, M.; Maier, T.J.; Machaca, K. Ion Channel Function During Oocyte Maturation and Fertilization. Front. Cell Dev. Biol. 2018, 6, 63. [Google Scholar] [CrossRef]
- Wakai, T.; Mehregan, A.; Fissore, R.A. Ca2+ Signaling and Homeostasis in Mammalian Oocytes and Eggs. Cold Spring Harb. Perspect. Biol. 2019, 11, a035162. [Google Scholar] [CrossRef] [Green Version]
- Bonte, D.; Thys, V.; De Sutter, P.; Boel, A.; Leybaert, L.; Heindryckx, B. Vitrification Negatively Affects the Ca2+-Releasing and Activation Potential of Mouse Oocytes, but Vitrified Oocytes Are Potentially Useful for Diagnostic Purposes. Reprod. BioMedicine Online 2020, 40, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Saleh, A.; Abozed, G.F.; Zanouny, A.I. Effect of Different Dietary Electrolyte Balance Levels on Physiological Responses and Metabolic Rate of Rams Exposed to Heat Stress Conditions. J. Anim. Poult. Prod. 2020, 11, 465–471. [Google Scholar] [CrossRef]
- Shafqat, A.; Kashir, J.; Alsalameh, S.; Alkattan, K.; Yaqinuddin, A. Fertilization, Oocyte Activation, Calcium Release and Epigenetic Remodelling: Lessons From Cancer Models. Front. Cell Dev. Biol. 2022, 10, 781953. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Fan, L.; Li, A.; Dong, F.; Hou, Y.; Schatten, H.; Sun, Q.; Ou, X. Effects of Various Calcium Transporters on Mitochondrial Ca 2+ Changes and Oocyte Maturation. J. Cell Physiol. 2021, 236, 6548–6558. [Google Scholar] [CrossRef]
- Anifandis, G.; Michopoulos, A.; Daponte, A.; Chatzimeletiou, K.; Simopoulou, M.; Messini, C.I.; Polyzos, N.P.; Vassiou, K.; Dafopoulos, K.; Goulis, D.G. Artificial Oocyte Activation: Physiological, Pathophysiological and Ethical Aspects. Syst. Biol. Reprod. Med. 2019, 65, 3–11. [Google Scholar] [CrossRef]
- Yeste, M.; Llavanera, M.; Pérez, G.; Scornik, F.; Puig-Parri, J.; Brugada, R.; Bonet, S.; Pinart, E. Elucidating the Role of K+ Channels during In Vitro Capacitation of Boar Spermatozoa: Do SLO1 Channels Play a Crucial Role? IJMS 2019, 20, 6330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-M.; Song, K.-S.; Xu, B.; Wang, T. Role of Potassium Channels in Female Reproductive System. Obs. Gynecol. Sci. 2020, 63, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, A.; Parmar, D. Role of Minerals in Reproductive Health of Dairy Cattle: A Review. Int. J. Livest. Res. 2017, 7, 16–26. [Google Scholar] [CrossRef]
- Beg, Y.J.; Ahmed, J.A.; Nashiruddullah, N.; Chakraborty, D. Electrolyte and Electrocardiogram Changes in Dehydrated Male Bovine Calves. IJAR 2020, 55, 889–893. [Google Scholar] [CrossRef]
- Liu, S.-W.; Li, Y.; Zou, L.-L.; Guan, Y.-T.; Peng, S.; Zheng, L.-X.; Deng, S.-M.; Zhu, L.-Y.; Wang, L.-W.; Chen, L.-X. Chloride Channels Are Involved in Sperm Motility and Are Downregulated in Spermatozoa from Patients with Asthenozoospermia. Asian J. Androl. 2017, 19, 418. [Google Scholar] [CrossRef]
- Adami, C.; Westwood-Hearn, H.; Bolt, D.M.; Monticelli, P. Prevalence of Electrolyte Disturbances and Perianesthetic Death Risk Factors in 120 Horses Undergoing Colic Surgery. J. Equine Vet. Sci. 2020, 84, 102843. [Google Scholar] [CrossRef]
- Goggs, R.; De Rosa, S.; Fletcher, D.J. Multivariable Analysis of the Association between Electrolyte Disturbances and Mortality in Cats. J. Feline Med. Surg. 2018, 20, 1072–1081. [Google Scholar] [CrossRef]
- Navaneethan, S.D.; Shao, J.; Buysse, J.; Bushinsky, D.A. Effects of Treatment of Metabolic Acidosis in CKD: A Systematic Review and Meta-Analysis. CJASN 2019, 14, 1011–1020. [Google Scholar] [CrossRef] [Green Version]
- Gillion, V.; Jadoul, M.; Devuyst, O.; Pochet, J.-M. The Patient with Metabolic Alkalosis. Acta Clin. Belg. 2019, 74, 34–40. [Google Scholar] [CrossRef]
- Goncalves, F.A.; de Jesus, J.S.; Cordeiro, L.; Piraciaba, M.C.T.; de Araujo, L.K.R.P.; Steller Wagner Martins, C.; Dalboni, M.A.; Pereira, B.J.; Silva, B.C.; Moysés, R.M.A.; et al. Hypokalemia and Hyperkalemia in Patients on Peritoneal Dialysis: Incidence and Associated Factors. Int. Urol. Nephrol. 2020, 52, 393–398. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, S.; Zhang, M.; Cui, L. Hyponatremia in Patients with Chronic Kidney Disease: Hyponatremia and Chronic Kidney Disease. Hemodial. Int. 2017, 21, 3–10. [Google Scholar] [CrossRef]
- Ahmed, F.; Mohammed, A. Magnesium: The Forgotten Electrolyte—A Review on Hypomagnesemia. Med. Sci. 2019, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Indrova, E.; Dolezel, R.; Novakova-Mala, J.; Pechova, A.; Zavadilova, M.; Cech, S. Impact of Acute Metabolic Acidosis on the Acid-Base Balance in Follicular Fluid and Blood in Dairy Cattle. Theriogenology 2017, 89, 41–46. [Google Scholar] [CrossRef]
- Buduk, S.; Garud, K.; Gaikwad, R.; Galdhar, C. Electrolyte and Acid-Base Alterations in Dogs with Renal Dysfunction. J. Canine Dev. Res. 2020, 15, 10–15. [Google Scholar]
- Garzon-Audor, A.; Oliver-Espinosa, O.; Castañeda-Salazar, R. Acid Base Disorders in Hospitalized Cattle. Braz. J. Vet. Res. Anim. Sci. 2020, 57, e159837. [Google Scholar] [CrossRef]
- Wrzecińska, M.; Czerniawska-Piątkowska, E.; Kowalczyk, A. The Impact of Stress and Selected Environmental Factors on Cows’ Reproduction. J. Appl. Anim. Res. 2021, 49, 318–323. [Google Scholar] [CrossRef]
- Burhans, W.S.; Rossiter Burhans, C.A.; Baumgard, L.H. Invited Review: Lethal Heat Stress: The Putative Pathophysiology of a Deadly Disorder in Dairy Cattle. J. Dairy Sci. 2022, 105, 3716–3735. [Google Scholar] [CrossRef]
- Cottrell, J.J.; Furness, J.B.; Wijesiriwardana, U.A.; Ringuet, M.; Liu, F.; DiGiacomo, K.; Leury, B.J.; Clarke, I.J.; Dunshea, F.R. The Effect of Heat Stress on Respiratory Alkalosis and Insulin Sensitivity in Cinnamon Supplemented Pigs. Animals 2020, 10, 690. [Google Scholar] [CrossRef]
- Mohammadifard, N.; Gotay, C.; Humphries, K.H.; Ignaszewski, A.; Esmaillzadeh, A.; Sarrafzadegan, N. Electrolyte Minerals Intake and Cardiovascular Health. Crit. Rev. Food Sci. Nutr. 2019, 59, 2375–2385. [Google Scholar] [CrossRef]
- Choi, K.-S.; Park, K.-M.; Kang, J.-H.; Ku, J.; Cha, S.-E.; Kim, S.; Yu, D.-H.; Park, J. Electrolyte Concentrations and Blood Gas Values in Neonatal Calves with Diarrhea; in review; 2021. [Google Scholar] [CrossRef]
- Leemans, B.; Gadella, B.M.; Stout, T.A.E.; De Schauwer, C.; Nelis, H.; Hoogewijs, M.; Van Soom, A. Why Doesn’t Conventional IVF Work in the Horse? The Equine Oviduct as a Microenvironment for Capacitation/Fertilization. Reproduction 2016, 152, R233–R245. [Google Scholar] [CrossRef] [Green Version]
- Ao, X.; Yoo, D.H.; Kim, I.H. Effects of Dietary Electrolyte Balance on Reproductive Performance and Blood Profiles in Sows. Anim. Feed Sci. Technol. 2020, 259, 114270, Research Square. [Google Scholar] [CrossRef]
- Grala, T.M.; Kuhn-Sherlock, B.; Roche, J.R.; Jordan, O.M.; Phyn, C.V.C.; Burke, C.R.; Meier, S. Changes in Plasma Electrolytes, Minerals, and Hepatic Markers of Health across the Transition Period in Dairy Cows Divergent in Genetic Merit for Fertility Traits and Postpartum Anovulatory Intervals. J. Dairy Sci. 2022, 105, 1754–1767. [Google Scholar] [CrossRef]
- Sathisha, K.; Narayana Swamy, G.; Shrikant, K.; Ramesh, P.; Sathyanarayana, M.; Sudha, G. Metabolic Hormonal and Serum Electrolytes Profile of Mandya Sheep during Summer Stress upon Dietary Supplementation of Antioxidants. J. Entomol. Zool. Stud. 2020, 8, 408–411. [Google Scholar]
- Bernardino, R.L.; Carrageta, D.F.; Sousa, M.; Alves, M.G.; Oliveira, P.F. PH and Male Fertility: Making Sense on PH Homeodynamics throughout the Male Reproductive Tract. Cell. Mol. Life Sci. 2019, 76, 3783–3800. [Google Scholar] [CrossRef]
- Freitas, M.J.; Vijayaraghavan, S.; Fardilha, M. Signaling Mechanisms in Mammalian Sperm Motility. Biol. Reprod. 2017, 96, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.Y.; Xu, W.M.; Chen, Z.H.; Ni, Y.; Yuan, Y.Y.; Zhou, S.C.; Zhou, W.W.; Tsang, L.L.; Chung, Y.W.; Höglund, P.; et al. Cl− Is Required for HCO3− Entry Necessary for Sperm Capacitation in Guinea Pig: Involvement of a Cl−/HCO3− Exchanger (SLC26A3) and CFTR1. Biol. Reprod. 2009, 80, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Cavarocchi, E.; Whitfield, M.; Saez, F.; Touré, A. Sperm Ion Transporters and Channels in Human Asthenozoospermia: Genetic Etiology, Lessons from Animal Models, and Clinical Perspectives. IJMS 2022, 23, 3926. [Google Scholar] [CrossRef]
- Lishko, P.V.; Mannowetz, N. CatSper: A Unique Calcium Channel of the Sperm Flagellum. Curr. Opin. Physiol. 2018, 2, 109–113. [Google Scholar] [CrossRef]
- Nowicka-Bauer, K.; Szymczak-Cendlak, M. Structure and Function of Ion Channels Regulating Sperm Motility—An Overview. IJMS 2021, 22, 3259. [Google Scholar] [CrossRef]
- Singh, A.P.; Rajender, S. CatSper Channel, Sperm Function and Male Fertility. Reprod. BioMedicine Online 2015, 30, 28–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; McGoldrick, L.L.; Chung, J.-J. Sperm Ion Channels and Transporters in Male Fertility and Infertility. Nat. Rev. Urol. 2021, 18, 46–66. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.G.; Publicover, S.J.; Barratt, C.L.R.; Martins da Silva, S.J. Human Sperm Ion Channel (Dys)Function: Implications for Fertilization. Hum. Reprod. Update 2019, 25, 758–776. [Google Scholar] [CrossRef] [PubMed]
- Lissabet, J.F.B.; Herrera Belén, L.; Lee-Estevez, M.; Risopatrón, J.; Valdebenito, I.; Figueroa, E.; Farías, J.G. The CatSper Channel Is Present and Plays a Key Role in Sperm Motility of the Atlantic Salmon (Salmo Salar). Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 2020, 241, 110634. [Google Scholar] [CrossRef] [PubMed]
- Noto, F.; Recuero, S.; Valencia, J.; Saporito, B.; Robbe, D.; Bonet, S.; Carluccio, A.; Yeste, M. Inhibition of Potassium Channels Affects the Ability of Pig Spermatozoa to Elicit Capacitation and Trigger the Acrosome Exocytosis Induced by Progesterone. Int. J. Mol. Sci. 2021, 22, 1992. [Google Scholar] [CrossRef]
- Cooray, A.; Kim, J.H.; Chae, M.R.; Lee, S.; Lee, K.P. Perspectives on Potential Fatty Acid Modulations of Motility Associated Human Sperm Ion Channels. Int. J. Mol. Sci. 2022, 23, 3718. [Google Scholar] [CrossRef]
- Gupta, R.K.; Swain, D.K.; Singh, V.; Anand, M.; Choudhury, S.; Yadav, S.; Saxena, A.; Garg, S.K. Molecular Characterization of Voltage-Gated Potassium Channel (Kv) and Its Importance in Functional Dynamics in Bull Spermatozoa. Theriogenology 2018, 114, 229–236. [Google Scholar] [CrossRef]
- Singh, V. The Role of Sperm Ion Channels in Male Infertility. Polymorphism 2019, 2, 101–106. [Google Scholar]
- Zeng, X.-H.; Yang, C.; Kim, S.T.; Lingle, C.J.; Xia, X.-M. Deletion of the Slo3 Gene Abolishes Alkalization-Activated K + Current in Mouse Spermatozoa. Proc. Natl. Acad. Sci. USA 2011, 108, 5879–5884. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, D.S.; Swain, D.K.; Shah, N.; Yadav, H.P.; Sharma, A.; Yadav, B.; Yadav, S.; Nigam, R.; Garg, S.K. Modulation of Voltage-Gated Sodium Channels Induces Capacitation in Bull Spermatozoa through Phosphorylation of Tyrosine Containing Proteins. Theriogenology 2018, 108, 207–216. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Swain, D.K.; Shah, N.; Yadav, H.P.; Nakade, U.P.; Singh, V.K.; Nigam, R.; Yadav, S.; Garg, S.K. Functional and Molecular Characterization of Voltage Gated Sodium Channel Na v 1.8 in Bull Spermatozoa. Theriogenology 2017, 90, 210–218. [Google Scholar] [CrossRef]
- Budziszewska, B.K. Zaburzenia metaboliczne i wodno-elektrolitowe u pacjentów z hematologicznymi chorobami nowotworowymi. Varia Med. 2018, 15, 201–215. [Google Scholar] [CrossRef] [Green Version]
- Gärtner, T.; Zoche-Golob, V.; Redlberger, S.; Reinhold, P.; Donat, K. Acid-Base Assessment of Post-Parturient German Holstein Dairy Cows from Jugular Venous Blood and Urine: A Comparison of the Strong Ion Approach and Traditional Blood Gas Analysis. PLoS ONE 2019, 14, e0210948. [Google Scholar] [CrossRef]
- Alsaad, K.M.; Alfaris, A.A. Stenosis of the Large Intestine in a Dog (A Case Report). IOSR J. Agric. Vet. Sci. (IOSR-JAVS) 2021, 14, 62–67. [Google Scholar]
- Kowalczyk, A.; Wrzecińska, M.; Czerniawska-Piątkowska, E.; Kupczyński, R. Exosomes—Spectacular Role in Reproduction. Biomed. Pharmacother. 2022, 148, 112752. [Google Scholar] [CrossRef]
- Indrová, E.; Andrlíková, M.; Bína, V.; Doležel, R.; Lopatářová, M.; Novakova, J.; Zavadilová, M.; Čech, S. Acid-Base Balance Parameters of Follicular Fluid and Venous Blood in Cattle. Acta Vet. Brno 2020, 89, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Mogheiseh, A.; Kafi, M.; Golestani, N.; Roshan-Ghasrodashti, A.; Nazifi, S.; Mirzaei, A. Follicular Fluid Composition of Ovulatory Follicles in Repeat Breeder Holstein Dairy Cows. Asian Pac. J. Reprod. 2019, 8, 124. [Google Scholar] [CrossRef]
- Popkiss, S.; Horta, F.; Vollenhoven, B.; Green, M.P.; Zander-Fox, D. Calcium Chloride Dihydrate Supplementation at ICSI Improves Fertilization and Pregnancy Rates in Patients with Previous Low Fertilization: A Retrospective Paired Treatment Cycle Study. J. Assist. Reprod. Genet. 2022, 39, 1055–1064. [Google Scholar] [CrossRef]
- Liu, J.; Li, Q.; Ren, J.; Liang, X.; Zhang, Q.; Han, Y. Association of Sex with Serum Potassium, Sodium, and Calcium Disorders after Hypertensive Intracerebral Hemorrhage. World Neurosurg. 2020, 141, e367–e373. [Google Scholar] [CrossRef]
- Fatima, S.S.; Rehman, R.; Martins, R.S.; Alam, F.; Ashraf, M. Single Nucleotide Polymorphisms in Renalase and KCNQ1 Genes and Female Infertility: A Cross-sectional Study in Pakistan. Andrologia 2019, 51, e13434. [Google Scholar] [CrossRef]
- Ruan, Y.C.; Chen, H.; Chan, H.C. Ion Channels in the Endometrium: Regulation of Endometrial Receptivity and Embryo Implantation. Hum. Reprod. Update 2014, 20, 517–529. [Google Scholar] [CrossRef] [Green Version]
- Ling, C.K.; Santos, L.L.; Zhou, W.; Dimitriadis, E. Chloride Intracellular Channel 4 Is Dysregulated in Endometrium of Women with Infertility and Alters Receptivity. Biochem. Biophys. Res. Commun. 2020, 531, 490–496. [Google Scholar] [CrossRef]
Electrolyte | Functions | Regulation | Disorders | Literatures |
---|---|---|---|---|
Sodium (Na+) | Maintaining the volume of extracellular fluid, regulating of the membrane potential of cells, muscle contraction | Sodium re-absorption takes place in the proximal tubule and distal kidneys | Hyponatraemia-low serum sodium levels- headache, confusion, nausea, delirium. Hypernatremia-high serum sodium concentration-symptoms: rapid breathing, difficulty sleeping, and feeling anxious | [1,3,4,5] |
Potassium (K+) | Establish the resting membrane potential in neurons and muscle fibers after membrane depolarization and action potentials. The sodium-potassium adenosine triphosphatase pump has the primary responsibility for regulating the homeostasis between sodium and potassium, nerve conduction | In kidneys, the potassium filtration takes place at the glomerulus under the influence of aldosterone | Cardiac arrhythmias, muscle cramps, muscle weakness, rhabdomyolysis, myoglobinuria are signs and symptoms in hyperkalemia | [1,3,6,7] |
Chloride (Cl−) | Mostly in the extracellular fluid. Maintains serum electroneutrality, a key electrolyte for maintaining the acid-base balance, contributes to electrical activity (e.g., muscular and myocardial activities), contributes to the production of hydrochloric acid, secretion of fluids in the digestive tract, affects the transport of oxygen and gas exchange, contributes to the maintenance of blood pressure, affects the functions of the kidneys | The kidneys predominantly regulate serum chloride levels | Hyperchloremia can occur due to loss as vomiting or excess water gain, such as congestive heart failure | [3,8,9] |
Calcium (Ca2+) | It is present in the extracellular fluid. Involved in skeletal mineralization, muscle contraction, nerve impulses, blood clotting, fertilization, and secretion of hormones | Parathyroid hormone (PTH) and calcitonin (CT) participate in the regulation of calcium. Absorption of calcium in the intestine is primarily under the control of the hormonally active form of vitamin D | Hypocalcemia/abnormally low calcium blood levels, is in hypoparathyroidism. Hypercalcemia/abnormally high calcium blood levels- primary hyperparathyroidism | [1,3,7,10] |
Magnesium (Mg2+) | ATP metabolism, muscle contraction and relaxation, proper neurological functioning, enzymatic reactions, nucleic acid synthesis, cell membrane ion transport, cell proliferation, calcium homeostasis, and neurotransmitter release. Mg2+ is involved in the secretion and activity of parathyroid hormone (PTH) | Its plasma concentrations depend on gastrointestinal absorption, renal excretion, and bone exchange | Hypomagnesemia-decreases in magnesium levels in the serum, may lead to gastrointestinal disorders | [1,3,6,10,11] |
Animal | Electrolytes | Reference | ||||
Cl− [mg/dL] | Mg2+ [mg/dL] | K+ [mg/dL] | Na+ [mg/dL] | Ca2+ [mg/dL] | [12] | |
Cattle | 330–380 | 1.9–3.0 | 14.9–20.0 | 310–360 | 9.0–12.1 | |
Horses | 320–380 | 1.7–2.8 | 13.5–18.5 | 320–360 | 10.7–13.4 | |
Goats | 347–393 | 1.8–4.0 | 9.8–16.0 | 323–361 | 8.8–12.0 | |
Sheeps | 345–400 | 2.0–3.0 | 16.0–20.0 | 340–370 | 10.0–13.0 | |
Pigs | 340–390 | 2.3–3.5 | 17.0–22.0 | 320–360 | 8.0–16.0 |
Animal | Electrolyte | Literatures | |||||
---|---|---|---|---|---|---|---|
Sodium (Na+) | Potassium (K+) | Chloride (Cl−) | Calcium (Ca2+) | Magnesium (Mg2+) | |||
Cattle | Cows | 0.11–0.20% (14–59 g/d) | 1% (heifers 0.6%) 72–285 g/d | 0.10–0.16% | 45–210 g/d | 16–50 g/d | [13] |
Bulls | 0.11–0.20% | 1% | 0.10–0.16% | 30–50 g | 50 g | [13] | |
Calves | 0.15% | 0.65% | 0.20% | 0.70% | 0.10% | [14] | |
Pigs | Sow | 1–1.2 g/d | 0.2% | 12–15 g/d | 18–32 g/d | 0.5–0.65 g/kg | [15,16,17] |
Porkers | 1.3–1.7 g/d | 0.2% | 2.2–4.0 g/d | 8–12 g/d | 0.2–0.3 g/d | [15,16,17] | |
Piglets | 0.9% | 0.2% | 0.5–1.5 g/d | 0.49% (3.3–5.9 g/d) | 0.04% | [16,17,18] | |
Horse | Mare | 27–62 g/d | 15 g/d | 67–123 g/d | 26–28 g/d | 6–14 g/d | [19] |
Stallion | 27–62 g/d | 15 g/d | 67–123 g/d | 26–28 g/d | 6–14 g/d | [19] | |
Foal | 5–9 g/d | 17–26 g/d | 16–36 g/d | 27–34 g/d | 4–9 g/d | [19] | |
Poultry | Hen | 0.14–0.17 g/d | 0.2 g/d | 0.3–0.45 | 2.8–4.7% | 0.04% | [15] |
Animal | Range of Normal Plasma Osmolality | Reference |
---|---|---|
Cattle | 270–310 mOsm/kg water | [24] |
Horses | 280–310 mOsm/kg water | [25] |
Dogs | 290–310 mOsm/kg water | [26] |
Cats | 290–330 mOsm/kg water | [27] |
Adult human | 275–295 mOsm/kg water | [8] |
Electrolyte | Male | Female | References |
---|---|---|---|
Na+ | acrosomal reaction, sperm quality, sperm capacitation, motility | associated with the viability of the follicle and its activity in the synthesis of estrogens, participation in contraction, and relaxation of the uterus | [37,39,40,41,43,48,56,70,71,72] |
K+ | acrosomal reaction, sperm quality, motility | participation in contraction and relaxation of the uterus | |
Ca2+ | acrosomal reaction, sperm quality, sperm capacitation, motility, spermatogenesis, morphology of sperm | important role in the production of developing follicle hormones, regulation of the secretion of hormones necessary for ovaries and ovulation, estrogen synthesis, participation in contraction and relaxation of the uterus | |
Mg2+ | Sperm quality, sperm capacitation, motility, spermatogenesis, morphology of sperm | the function of nervous and muscle tissue, influence on lactation and growth of young animals, structure and development of bone tissue | |
Cl− | Sperm motility, capacitation, acrosomal reaction, volume regulation | related to progesterone concentrations in mares and women; correlation with follicle diameter and estrogen concentration in buffaloes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gałęska, E.; Wrzecińska, M.; Kowalczyk, A.; Araujo, J.P. Reproductive Consequences of Electrolyte Disturbances in Domestic Animals. Biology 2022, 11, 1006. https://doi.org/10.3390/biology11071006
Gałęska E, Wrzecińska M, Kowalczyk A, Araujo JP. Reproductive Consequences of Electrolyte Disturbances in Domestic Animals. Biology. 2022; 11(7):1006. https://doi.org/10.3390/biology11071006
Chicago/Turabian StyleGałęska, Elżbieta, Marcjanna Wrzecińska, Alicja Kowalczyk, and Jose P. Araujo. 2022. "Reproductive Consequences of Electrolyte Disturbances in Domestic Animals" Biology 11, no. 7: 1006. https://doi.org/10.3390/biology11071006
APA StyleGałęska, E., Wrzecińska, M., Kowalczyk, A., & Araujo, J. P. (2022). Reproductive Consequences of Electrolyte Disturbances in Domestic Animals. Biology, 11(7), 1006. https://doi.org/10.3390/biology11071006