Assessment of Specific Tumoral Markers, Inflammatory Status, and Vitamin D Metabolism before and after the First Chemotherapy Cycle in Patients with Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Exclusion Criteria
2.3. Sample Preparation and Determination
2.4. Statistical Analysis
3. Results
3.1. General Characteristics of the Study Group
3.2. Biochemical Parameters
Adenocarcinoma (N = 10) | Small Cell Lung Cancer and Squamous Cell Carcinoma (N = 10) | p Value | Effect Size (r) | |
---|---|---|---|---|
CHT (nmol/mL/h) post-treatment | 285.00 (213.75, 347.50) | 212.50 (192.50, 340.00) | 0.448 | 0.170 (s) |
25OHD3 (nmol/L) post-treatment | 55.03 (50.16, 66.96) | 56.80 (53.66, 63.87) | 0.940 | 0.016 (s) |
Neopterin (ng/mL) post-treatment | 1.18 (1.05, 1.22) | 1.07 (0.86, 1.14) | 0.344 | 0.211 (s) |
VDR (ng/mL) post-treatment | 0.27 (0.08, 0.52) | 0.32 (0.25, 0.48) | 0.761 | 0.060 (s) |
NSE (ng/mL) post-treatment | 11.74 (8.41, 13.79) | 11.95 (9.93, 15.63) | 1.000 | 0 (s) |
SCCA (ng/mL) post-treatment | 0.01 (0.00, 0.02) | 0.06 (0.00, 0.10) | 0.095 | 0.373 (m) |
Adenocarcinoma (N = 10) | Small Cell Lung Cancer (N = 4) | Squamous cell carcinoma (N = 6) | p Value | Effect Size (r) | |
---|---|---|---|---|---|
Median (Q1, Q3) | Median (Q1, Q3) | Median (Q1, Q3) | |||
CHT (nmol/mL/h) | 285.0 (213.75, 347.50) | 180.00 (120.0, 206.25) | 330.0 (227.50, 350.0) | 0.448 | 0.170 (s) |
Neopterin (ng/mL) | 1.18 (1.05, 1.22) | 0.96 (0.81, 1.09) | 1.10 (0.95, 1.18) | 0.344 | 0.211 (s) |
NSE (ng/mL) | 55.55 (13.54, 95.57) | 19.57 (10.46, 60.80) | 14.27 (10.75, 44.54) | 1.000 | 0 (s) |
SCCA (ng/mL) | 0.03 (0.0, 0.10) | 0.18 (0.08, 0.58) | 0.08 (0.02, 0.10) | 0.095 | 0.373 (m) |
VDR (ng/mL) | 0.27 (0.08, 0.52) | 0.25 (0.25, 0.36) | 0.40 (0.19, 0.48) | 0.761 | 0.060 (s) |
25OHD3 (nmol/L) | 55.03 (50.16, 66.96) | 56.80 (49.33, 62.41) | 56.71 (53.66, 63.87) | 0.940 | 0.016 (s) |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thandra, K.C.; Barsouk, A.; Saginala, K.; Aluru, J.S.; Barsouk, A. Epidemiology of Lung Cancer. Contemp. Oncol. 2021, 25, 45. [Google Scholar] [CrossRef]
- Dela Cruz, C.S.; Tanoue, L.T.; Matthay, R.A. Lung Cancer: Epidemiology, Etiology, and Prevention. Clin. Chest Med. 2011, 32, 605–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crintea, A.; Dutu, A.G.; Constantin, A.M.; Fekete, Z.; Samasca, G.; Lupan, I.; Florian, I.A.; Silaghi, C.N.; Craciun, A.M. The First Evaluation of Serum Levels of MGP, Gas6 and EGFR after First Dose of Chemotherapy in Lung Cancer. Biology 2022, 11, 82. [Google Scholar] [CrossRef] [PubMed]
- Boppart, S.A.; Richards-Kortum, R. Point-of-Care and Point-of-Procedure Optical Imaging Technologies for Primary Care and Global Health. Sci. Transl. Med. 2014, 6, 253rv2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maharjan, N.; Thapa, N.; Tu, J. Blood-Based Biomarkers for Early Diagnosis of Lung Cancer: A sReview Article. JNMA J. Nepal Med. Assoc. 2020, 58, 519. [Google Scholar] [CrossRef] [PubMed]
- Pikor, L.A.; Ramnarine, V.R.; Lam, S.; Lam, W.L. Genetic Alterations Defining NSCLC Subtypes and Their Therapeutic Implications. Lung Cancer 2013, 82, 179–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laczmanski, L.; Laczmanska, I.; Lwow, F. Association of Select Vitamin D Receptor Gene Polymorphisms with the Risk of Tobacco-Related Cancers—A Meta-Analysis. Sci. Rep. 2019, 9, 16026. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Liu, X.; Liu, N.; Yang, T.; Shi, P.; He, R.; Chen, M. Association between Polymorphisms of Vitamin D Receptor and Lung Cancer Susceptibility: Evidence from an Updated Meta-Analysis. J. Cancer 2019, 10, 3639. [Google Scholar] [CrossRef] [Green Version]
- El-Sharkawy, A.; Malki, A. Vitamin D Signaling in Inflammation and Cancer: Molecular Mechanisms and Therapeutic Implications. Molecules 2020, 25, 3219. [Google Scholar] [CrossRef]
- Shen, Y.; Li, C.; Zhou, L.; Huang, J.A. G Protein-coupled Oestrogen Receptor Promotes Cell Growth of Non-Small Cell Lung Cancer Cells via YAP1/QKI/CircNOTCH1/M6A Methylated NOTCH1 Signalling. J. Cell. Mol. Med. 2021, 25, 284. [Google Scholar] [CrossRef]
- La Marra, F.; Stinco, G.; Buligan, C.; Chiriacò, G.; Serraino, D.; Di Loreto, C.; Cauci, S. Immunohistochemical Evaluation of Vitamin D Receptor (VDR) Expression in Cutaneous Melanoma Tissues and Four VDR Gene Polymorphisms. Cancer Biol. Med. 2017, 14, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, M.; Parwani, A.V.; Hershberger, P.A.; Lenzner, D.E.; Weissfeld, J.L. Nuclear Vitamin D Receptor Expression Is Associated with Improved Survival in Non-Small Cell Lung Cancer. J. Steroid Biochem. Mol. Biol. 2011, 123, 30–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non–Small Cell Lung Cancer: Epidemiology, Risk Factors, Treatment, and Survivorship. Mayo Clin. Proc. 2008, 83, 584. [Google Scholar] [CrossRef]
- Sucher, R.; Schroecksnadel, K.; Weiss, G.; Margreiter, R.; Fuchs, D.; Brandacher, G. Neopterin, a Prognostic Marker in Human Malignancies. Cancer Lett. 2010, 287, 13–22. [Google Scholar] [CrossRef]
- Murr, C.; Widner, B.; Wirleitner, B.; Fuchs, D. Neopterin as a Marker for Immune System Activation. Curr. Drug Metab. 2002, 3, 175–187. [Google Scholar] [CrossRef]
- Kip, A.E.; Wasunna, M.; Alves, F.; Schellens, J.H.M.; Beijnen, J.H.; Musa, A.M.; Khalil, E.A.G.; Dorlo, T.P.C. Macrophage Activation Marker Neopterin: A Candidate Biomarker for Treatment Response and Relapse in Visceral Leishmaniasis. Front. Cell. Infect. Microbiol. 2018, 8, 181. [Google Scholar] [CrossRef] [Green Version]
- Kanneganti, M.; Kamba, A.; Mizoguchi, E. Role of Chitotriosidase (Chitinase 1) under Normal and Disease Conditions. J. Epithel. Biol. Pharmacol. 2012, 5, 1. [Google Scholar] [CrossRef]
- Duque, G.A.; Descoteaux, A. Macrophage Cytokines: Involvement in Immunity and Infectious Diseases. Front. Immunol. 2014, 5, 491. [Google Scholar] [CrossRef] [Green Version]
- Elieh Ali Komi, D.; Sharma, L.; Dela Cruz, C.S. Chitin and Its Effects on Inflammatory and Immune Responses. Clin. Rev. Allergy Immunol. 2018, 54, 213. [Google Scholar] [CrossRef] [Green Version]
- Eide, K.B.; Norberg, A.L.; Heggset, E.B.; Lindbom, A.R.; Varum, K.M.; Eijsink, V.G.H.; Sørlie, M. Human Chitotriosidase-Catalyzed Hydrolysis of Chitosan. Biochemistry 2012, 51, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Jain, K.K. Role of Biomarkers in Health Care. In The Handbook of Biomarkers; Humana Press: Totowa, NJ, USA, 2010; pp. 115–188. [Google Scholar] [CrossRef]
- Seibold, M.A.; Donnelly, S.; Solon, M.; Innes, A.; Woodruff, P.G.; Boot, R.G.; Burchard, E.G.; Fahy, J.V. Chitotriosidase Is the Primary Active Chitinase in the Human Lung and Is Modulated by Genotype and Disease. J. Allergy Clin. Immunol. 2008, 122, 944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, D.; Zingone, A.; Yu, Y.; Zhu, B.; Candia, J.; Cao, L.; Ryan, B.M. Relationship between Circulating Inflammation Proteins and Lung Cancer Diagnosis in the National Lung Screening Trial. Cancer Epidemiol. Biomark. Prev. 2019, 28, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kammer, M.N.; Massion, P.P. Noninvasive Biomarkers for Lung Cancer Diagnosis, Where Do We Stand? J. Thorac. Dis. 2020, 12, 3317. [Google Scholar] [CrossRef] [PubMed]
- Kzhyshkowska, J.; Larionova, I.; Liu, T. YKL-39 as a Potential New Target for Anti-Angiogenic Therapy in Cancer. Front. Immunol. 2019, 10, 2930. [Google Scholar] [CrossRef] [PubMed]
- Kzhyshkowska, J.; Yin, S.; Liu, T.; Riabov, V.; Mitrofanova, I. Role of Chitinase-like Proteins in Cancer. Biol. Chem. 2016, 397, 231–247. [Google Scholar] [CrossRef]
- Pingle, S.; Tumane, R.; Jawade, A. Neopterin: Biomarker of Cell-Mediated Immunity and Potent Usage as Biomarker in Silicosis and Other Occupational Diseases. Indian J. Occup. Environ. Med. 2008, 12, 107. [Google Scholar] [CrossRef] [Green Version]
- Havel, J.J.; Chowell, D.; Chan, T.A. The Evolving Landscape of Biomarkers for Checkpoint Inhibitor Immunotherapy. Nat. Rev. Cancer 2019, 19, 133. [Google Scholar] [CrossRef]
- Rech, A.J.; Balli, D.; Mantero, A.; Ishwaran, H.; Nathanson, K.L.; Stanger, B.Z.; Vonderheide, R.H. Tumor Immunity and Survival as a Function of Alternative Neopeptides in Human Cancer. Cancer Immunol. Res. 2018, 6, 276–287. [Google Scholar] [CrossRef] [Green Version]
- Yavuz, F.; Kesikburun, B.; Öztürk, Ö.; Güzelküçük, Ü. Serum chitotriosidase and neopterin levels in patients with ankylosing spondylitis. Ther. Adv. Musculoskelet. Dis. 2019, 11, 1759720X1983232. [Google Scholar] [CrossRef] [Green Version]
- Pichler, R.; Fritz, J.; Heidegger, I.; Steiner, E.; Culig, Z.; Klocker, H.; Fuchs, D. Predictive and Prognostic Role of Serum Neopterin and Tryptophan Breakdown in Prostate Cancer. Cancer Sci. 2017, 108, 663. [Google Scholar] [CrossRef]
- Kraaijvanger, R.; Janssen Bonás, M.; Vorselaars, A.D.M.; Veltkamp, M. Biomarkers in the Diagnosis and Prognosis of Sarcoidosis: Current Use and Future Prospects. Front. Immunol. 2020, 11, 1443. [Google Scholar] [CrossRef]
- Lanser, L.; Kink, P.; Egger, E.M.; Willenbacher, W.; Fuchs, D.; Weiss, G.; Kurz, K. Inflammation-Induced Tryptophan Breakdown Is Related with Anemia, Fatigue, and Depression in Cancer. Front. Immunol. 2020, 11, 249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haque, A.; Ray, S.K.; Cox, A.; Banik, N.L. Neuron Specific Enolase: A Promising Therapeutic Target in Acute Spinal Cord Injury. Metab. Brain Dis. 2016, 31, 487. [Google Scholar] [CrossRef] [Green Version]
- Vizin, T.; Kos, J. Gamma-Enolase: A Well-Known Tumour Marker, with a Less-Known Role in Cancer. Radiol. Oncol. 2015, 49, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Ramos, À.; Roig-Borrellas, A.; García-Melero, A.; López-Alemany, R. α-Enolase, a Multifunctional Protein: Its Role on Pathophysiological Situations. J. Biomed. Biotechnol. 2012, 2012, 156795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isgrò, M.A.; Bottoni, P.; Scatena, R. Neuron-Specific Enolase as a Biomarker: Biochemical and Clinical Aspects. Adv. Exp. Med. Biol. 2015, 867, 125–143. [Google Scholar] [CrossRef] [PubMed]
- Rekhtman, N. Lung Neuroendocrine Neoplasms: Recent Progress and Persistent Challenges. Mod. Pathol. 2022, 35, 36. [Google Scholar] [CrossRef]
- Wadowska, K.; Bil-Lula, I.; Trembecki, Ł.; Śliwińska-Mossoń, M. Genetic Markers in Lung Cancer Diagnosis: A Review. Int. J. Mol. Sci. 2020, 21, 4569. [Google Scholar] [CrossRef]
- Chechlinska, M.; Kowalewska, M.; Brzoska-Wojtowicz, E.; Radziszewski, J.; Ptaszynski, K.; Rys, J.; Kaminska, J.; Nowak, R. Squamous Cell Carcinoma Antigen 1 and 2 Expression in Cultured Normal Peripheral Blood Mononuclear Cells and in Vulvar Squamous Cell Carcinoma. Tumour Biol. 2010, 31, 559. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Tian, L.; Chen, J.; Sun, P.; Han, R.; Wu, X.; Dai, S. Evaluation of 2 Commercially Systems for Detection of Serum Squamous Cell Carcinoma Antigen in Pan Squamous Cell Carcinoma. Cancer Control 2020, 27, 1073274820983025. [Google Scholar] [CrossRef]
- Derakhshan, S.; Poosti, A.; Razavi, A.E.; Moosavi, M.A.; Mahdavi, N.; Naieni, F.B.; Hesari, K.K.; Rahpeima, A. Evaluation of Squamous Cell Carcinoma Antigen 1 Expression in Oral Squamous Cell Carcinoma (Tumor Cells and Peritumoral T-Lymphocytes) and Verrucous Carcinoma and Comparison with Normal Oral Mucosa. J. Appl. Oral Sci. 2021, 29, e20210374. [Google Scholar] [CrossRef] [PubMed]
- Hollak, C.E.M.; Van Weely, S.; Van Oers, M.H.J.; Aerts, J.M.F.G. Marked Elevation of Plasma Chitotriosidase Activity. A Novel Hallmark of Gaucher Disease. J. Clin. Investig. 1994, 93, 1288–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrigno, D.; Buccheri, G.; Giordano, C. Neuron-Specific Enolase Is an Effective Tumour Marker in Non-Small Cell Lung Cancer (NSCLC). Lung Cancer 2003, 41, 311–320. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Z.; Hu, Y. Neuron—Specific Enolase Predicts the Prognosis in Advanced Small Cell Lung Cancer Patients Treated with First-Line PD-1/PD-L1 Inhibitors. Medicine 2021, 100, e27029. [Google Scholar] [CrossRef]
- Yan, P.; Han, Y.; Tong, A.; Liu, J.; Wang, X.; Liu, C. Prognostic Value of Neuron-Specific Enolase in Patients with Advanced and Metastatic Non-Neuroendocrine Non-Small Cell Lung Cancer. Biosci. Rep. 2021, 41, BSR20210866. [Google Scholar] [CrossRef]
- Melichar, B.; Spisarová, M.; Bartoušková, M.; Krcmová, L.K.; Javorská, L.; Študentová, H. Neopterin as a Biomarker of Immune Response in Cancer Patients. Ann. Transl. Med. 2017, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Dal Bello, M.G.; Filiberti, R.A.; Alama, A.; Orengo, A.M.; Mussap, M.; Coco, S.; Vanni, I.; Boccardo, S.; Rijavec, E.; Genova, C.; et al. The role of CEA, CYFRA21-1 and NSE in monitoring tumor response to Nivolumab in advanced non-small cell lung cancer (NSCLC) patients. J. Transl. Med. 2019, 17, 74. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, D.; Sui, A.; Jiao, W.; Luo, Y.; Wang, M.; Yang, R.; Wang, Z.; Shen, Y. Prognostic significance of NSE mRNA in advanced NSCLC treated with gefitinib. Clin. Transl. Oncol. 2013, 15, 384–390. [Google Scholar] [CrossRef]
- Xu, F.Z.; Zhang, Y.B. Correlation analysis between serum neuron-specific enolase and the detection of gene mutations in lung adenocarcinoma. J. Thorac. Dis. 2021, 13, 552. [Google Scholar] [CrossRef]
- Huang, J.Y.; Larose, T.L.; Luu, H.N.; Wang, R.; Fanidi, A.; Alcala, K.; Stevens, V.L.; Weinstein, S.J.; Albanes, D.; Caporaso, N.E.; et al. Circulating Markers of Cellular Immune Activation in Prediagnostic Blood Sample and Lung Cancer Risk in the Lung Cancer Cohort Consortium (LC3). Int. J. Cancer 2020, 146, 2394–2405. [Google Scholar] [CrossRef]
- El-Akawi, Z.J.; Abu-Awad, A.M.; Sharara, A.M.; Khader, Y.S. The Importance of Alpha-1 Antitrypsin (Alpha1-AT) and Neopterin Serum Levels in the Evaluation of Non-Small Cell Lung and Prostate Cancer Patients. Neuro Endocrinol. Lett. 2010, 31, 113–116. [Google Scholar] [PubMed]
- El-Akawi, Z.J.; Abu-awad, A.M.; Khouri, N.A. Alpha-1 Antitrypsin Blood Levels as Indicator for the Efficacy of Cancer Treatment. World J. Oncol. 2013, 4, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, K.H.; Mobasher, A.A.M.T.; Yousef, A.R.I.; Salah, A.; El-Naggar, I.Z.; Ghoneim, A.H.A.; Light, R.W. BAL Neopterin: A Novel Marker for Cell-Mediated Immunity in Patients with Pulmonary Tuberculosis and Lung Cancer. Chest 2001, 119, 776–780. [Google Scholar] [CrossRef] [PubMed]
- von Ingersleben, G.; Souchon, R.; Fitzner, R. Serum Neopterin Levels in Lung and Breast Cancer Patients Undergoing Radiotherapy and/or Chemotherapy. Int. J. Biol. Mark. 1988, 3, 135–139. [Google Scholar] [CrossRef]
- Lissoni, P.; Barni, S.; Rovelli, F.; Pittalis, S.; Ardizzoia, A.; Tancini, G.; Tisi, E.; Rescaldani, R.; Vigoré, L.; Biondi, A. In Vivo Biological Results of the Association between Interleukin-2 and Interleukin-3 in the Immunotherapy of Cancer. Eur. J. Cancer 1993, 29, 1127–1132. [Google Scholar] [CrossRef]
- Olencki, T.; Finke, J.; Tubbs, R.; Elson, P.; McLain, D.; Herzog, P.; Budd, G.T.; Gunn, H.; Bukowski, R.M. Phase 1 Trial of Subcutaneous IL-6 in Patients with Refractory Cancer: Clinical and Biologic Effects. J. Immunother. 2000, 23, 549–556. [Google Scholar] [CrossRef]
- Kleinerman, E.S.; Meyers, P.A.; Raymond, A.K.; Gano, J.B.; Jia, S.-F.; Jaffe, N. Combination Therapy with Ifosfamide and Liposome-Encapsulated Muramyl Tripeptide: Tolerability, Toxicity, and Immune Stimulation. J. Immunother. Emphas. Tumor Immunol. 1995, 17, 181–193. [Google Scholar] [CrossRef]
- Prommegger, R.; Widner, B.; Murr, C.; Unger, A.; Fuchs, D.; Salzer, G.M. Neopterin: A prognostic variable in operations for lung cancer. Ann. Thorac. Surg. 2000, 70, 1861–1864. [Google Scholar] [CrossRef]
- Zezulová, M.; Bartoušková, M.; Hlídková, E.; Juráňová, J.; Červinková, B.; Kasalová, E.; Adam, T.; Krčmová, L.K.; Solichová, D.; Cwiertka, K.; et al. Prognostic Significance of Serum and Urinary Neopterin Concentrations in Patients with Rectal Carcinoma Treated with Chemoradiation. Anticancer Res. 2016, 36, 287–292. Available online: https://pubmed.ncbi.nlm.nih.gov/26722055/ (accessed on 26 June 2022).
- Melichar, B.; Urbánek, L.; Krčmová, L.; Kalábová, H.; Melicharová, K.; Malírová, E.; Hornychová, H.; Ryska, A.; Hyspler, R.; Solichová, D. Urinary neopterin, hemoglobin and peripheral blood cell counts in breast carcinoma patients treated with dose-dense chemotherapy. Anticancer Res. 2008, 28, 2389–2396. Available online: https://pubmed.ncbi.nlm.nih.gov/18751424/ (accessed on 26 June 2022).
- Holečková, P.; Krčmová, L.; Létal, J.; Svobodník, A.; Kalábová, H.; Kašparová, M.; Plíšek, J.; Pála, M.; Vítek, P.; Solichová, D.; et al. Urinary neopterin concentration and toxicity of radiotherapy in patients with head and neck carcinoma during external beam radiation. Anticancer Res. 2013, 33, 4097–4102. Available online: https://pubmed.ncbi.nlm.nih.gov/24023355/ (accessed on 26 June 2022). [PubMed]
- Vuolo, L.; Di Somma, C.; Faggiano, A.; Colao, A. Vitamin D and Cancer. Front. Endocrinol. 2012, 3, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gromowski, T.; Gapska, P.; Scott, R.J.; Kąklewski, K.; Marciniak, W.; Durda, K.; Lener, M.; Górski, B.; Cybulski, C.; Sukiennicki, G.; et al. Serum 25(OH)D Concentration, Common Variants of the VDR Gene and Lung Cancer Occurrence. Int. J. Cancer 2017, 141, 336–341. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.; Albanes, D.; Berndt, S.I.; Peters, U.; Chatterjee, N.; Freedman, N.D.; Abnet, C.C.; Huang, W.Y.; Kibel, A.S.; Crawford, D.E.; et al. Vitamin D-Related Genes, Serum Vitamin D Concentrations and Prostate Cancer Risk. Carcinogenesis 2009, 30, 769–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, A.M.; McGowan, L.; Millen, A.; Rajesh, P.; Webster, C.; Langman, G.; Rock, G.; Tachibana, I.; Tomlinson, M.G.; Berditchevski, F.; et al. Circulating DBP Level and Prognosis in Operated Lung Cancer: An Exploration of Pathophysiology. Eur. Respir. J. 2013, 41, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Haznadar, M.; Krausz, K.W.; Margono, E.; Diehl, C.M.; Bowman, E.D.; Manna, S.K.; Robles, A.I.; Ryan, B.M.; Gonzalez, F.J.; Harris, C.C. Inverse Association of Vitamin D 3 Levels with Lung Cancer Mediated by Genetic Variation. Cancer Med. 2018, 7, 2764–2775. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Chen, G.; King, A.N.; Jeon, C.K.; Christensen, P.J.; Zhao, L.; Simpson, R.U.; Thomas, D.G.; Giordano, T.J.; Brenner, D.E.; et al. Characterization of Vitamin D Receptor (VDR) in Lung Adenocarcinoma. Lung Cancer 2012, 77, 265–271. [Google Scholar] [CrossRef] [Green Version]
- Buttigliero, C.; Monagheddu, C.; Petroni, P.; Saini, A.; Dogliotti, L.; Ciccone, G.; Berruti, A. Prognostic Role of Vitamin d Status and Efficacy of Vitamin D Supplementation in Cancer Patients: A Systematic Review. Oncologist 2011, 16, 1215–1227. [Google Scholar] [CrossRef] [Green Version]
- Heist, R.S.; Zhou, W.; Wang, Z.; Liu, G.; Neuberg, D.; Su, L.; Asomaning, K.; Hollis, B.W.; Lynch, T.J.; Wain, J.C.; et al. Circulating 25-Hydroxyvitamin D, VDR Polymorphisms, and Survival in Advanced Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2008, 26, 5596–5602. [Google Scholar] [CrossRef] [Green Version]
- Malaguarnera, L. Chitotriosidase: The Yin and Yang. Cell. Mol. Life Sci. 2006, 63, 3018–3029. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target Ther. 2021, 6, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Qu, T.; Zhang, J.; Xu, N.; Liu, B.; Li, M.; Liu, A.; Li, A.; Tang, H. Diagnostic Value Analysis of Combined Detection of Trx, CYFRA21-1 and SCCA in Lung Cancer. Oncol. Lett. 2019, 17, 4293–4298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Cao, Y.; He, S.; Cai, W. Technical and Clinical Performance of Two Methods to Detect Squamous Cell Carcinoma Antigen Levels for Comparing Pathological Diagnosis Coincidence Rates in Lung, Cervical, and Head and Neck Cancers. Clin. Lab. 2020, 66, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Yu, H.; Han, Z.; Gao, N.; Xue, J.; Wang, Y. Clinical Significance of Joint Detection of Serum CEA, SCCA, and BFGF in the Diagnosis of Lung Cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 9506. [Google Scholar]
- Yang, D.; Wang, J.; Zhang, L. Serum SCCA Levels in Patients Suffering Cancers or Other Diseases. Prog. Mol. Biol. Transl. Sci. 2019, 162, 165–175. [Google Scholar] [CrossRef]
Pre-Treatment (N = 20) | Post-Treatment (N = 20) | p Value | Effect Size (r) | |
---|---|---|---|---|
CHT (nmol/mL/h) | 240 (205, 305) | 242.50 (197.50, 350) | 0.337 | 0.129 (s) |
Neopterin (ng/mL) | 1.20 (0.94, 1.79) | 1.10 (0.91, 1.20) | 0.069 | 0.326 (m) |
NSE (ng/mL) | 15.84 (12.99, 19.72) | 21.89 (11.79, 84.12) | 0.031 | 0.459 (m) |
SCCA (ng/mL) | 0.02 (0.0, 0.09) | 0.08 (0.0, 0.10) | 0.136 | 0.101 (s) |
VDR (ng/mL) | 0.29 (0.11, 0.43) | 0.27 (0.12, 0.51) | 0.284 | 0.147 (s) |
25OHD3 (nmol/L) | 56.62 (44.63, 62.72) | 55.74 (52.01, 66.12) | 0.894 | 0.025 (s) |
1–7 Days (N = 6) | 14–21 Days (N = 14) | p Value | Effect Size (r) | |
---|---|---|---|---|
CHT (nmol/mL/h) post-treatment | 267.50 (176.25, 340.0) | 242.50 (200, 347.50) | 0.772 | 0.064 (s) |
Neopterin (ng/mL) post-treatment | 0.99 (0.86, 1.11) | 1.15 (1.05, 1.20) | 0.409 | 0.185 (s) |
NSE (ng/mL) post-treatment | 20.91 (10.82, 47.86) | 26.12 (12.23, 95.57) | 0.409 | 0.018 (s) |
SCCA (ng/mL) post-treatment | 0.18 (0.02, 0.37) | 0.06 (0.0, 0.10) | 0.269 | 0.303 (m) |
VDR (ng/mL) post-treatment | 0.33 (0.25, 0.61) | 0.27 (0.09, 0.49) | 0.709 | 0.083 (s) |
25OHD3 (nmol/L) post-treatment | 55.74 (53.66, 64.04) | 56.45 (50.16, 64.58) | 1.000 | 0 (s) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crintea, A.; Drugan, C.; Constantin, A.-M.; Lupan, I.; Fekete, Z.; Silaghi, C.N.; Crăciun, A.M. Assessment of Specific Tumoral Markers, Inflammatory Status, and Vitamin D Metabolism before and after the First Chemotherapy Cycle in Patients with Lung Cancer. Biology 2022, 11, 1033. https://doi.org/10.3390/biology11071033
Crintea A, Drugan C, Constantin A-M, Lupan I, Fekete Z, Silaghi CN, Crăciun AM. Assessment of Specific Tumoral Markers, Inflammatory Status, and Vitamin D Metabolism before and after the First Chemotherapy Cycle in Patients with Lung Cancer. Biology. 2022; 11(7):1033. https://doi.org/10.3390/biology11071033
Chicago/Turabian StyleCrintea, Andreea, Cristina Drugan, Anne-Marie Constantin, Iulia Lupan, Zsolt Fekete, Ciprian Nicolae Silaghi, and Alexandra Mărioara Crăciun. 2022. "Assessment of Specific Tumoral Markers, Inflammatory Status, and Vitamin D Metabolism before and after the First Chemotherapy Cycle in Patients with Lung Cancer" Biology 11, no. 7: 1033. https://doi.org/10.3390/biology11071033
APA StyleCrintea, A., Drugan, C., Constantin, A.-M., Lupan, I., Fekete, Z., Silaghi, C. N., & Crăciun, A. M. (2022). Assessment of Specific Tumoral Markers, Inflammatory Status, and Vitamin D Metabolism before and after the First Chemotherapy Cycle in Patients with Lung Cancer. Biology, 11(7), 1033. https://doi.org/10.3390/biology11071033