Evolvability in the Cephalothoracic Structural Complexity of Aegla araucaniensis (Crustacea: Decapoda) Determined by a Developmental System with Low Covariational Constraint
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gould, S.J. The Structure of Evolutionary Theory; Harvard University Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Breuker, C.J.; Debat, V.; Klingenberg, C.P. Functional evo-devo. Trends Ecol. Evol. 2006, 21, 488–492. [Google Scholar] [CrossRef]
- Olson, M.E. Spandrels and trait delimitation: No such thing as “architectural constraint”. Evol. Dev. 2019, 21, 59–71. [Google Scholar] [CrossRef]
- Arnold, S.J. Performance surfaces and adaptive landscapes. Integr. Comp. Biol. 2003, 43, 367–375. [Google Scholar] [CrossRef]
- Klingenberg, C.P. Developmental constraints, modules and evolvability. In Variation; Hallgrímsson, B., Hall, B.K., Eds.; Academic Press: San Diego, CA, USA, 2005; pp. 219–247. [Google Scholar]
- Klingenberg, C.P. Morphological integration and developmental modularity. In Annual Review of Ecology Evolution and Systematics; Annual Reviews: Palo Alto, CA, USA, 2008; Volume 39, pp. 115–132. [Google Scholar]
- Atchley, W.R.; Hall, B.K. A model for development and evolution of complex morphological structures. Biol. Rev. 1991, 66, 101–157. [Google Scholar] [CrossRef]
- Klingenberg, C.P. Integration, modules and development: Molecules to morphology to evolution. In Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes; Pigliucci, M., Preston, K., Eds.; Oxford University Press: New York, NY, USA, 2004; pp. 213–230. [Google Scholar]
- Abzhanov, A.; Kaufman, T.C. Homeotic genes and the arthropod head: Expression patterns of the labial, proboscipedia, and Deformed genes in crustaceans and insects. Proc. Natl. Acad. Sci. USA 1999, 96, 10224–10229. [Google Scholar] [CrossRef] [Green Version]
- Abzhanov, A.; Kaufman, T.C. Embryonic expression patterns of the Hox genes of the crayfish Procambarus clarkii (Crustacea, Decapoda). Evol. Dev. 2000, 2, 271–283. [Google Scholar] [CrossRef]
- Hallgrimsson, B.; Jamniczky, H.; Young, N.M.; Rolian, C.; Parsons, T.E.; Boughner, J.C.; Marcucio, R.S. Deciphering the palimpsest: Studying the relationship between morphological integration and phenotypic covariation. Evol. Biol. 2009, 36, 355–376. [Google Scholar] [CrossRef] [Green Version]
- Wagner, G.P. Homologues, natural kinds and the evolution of modularity. Am. Zool. 1996, 36, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Pigliucci, M. Is evolvability evolvable? Nat. Rev. Genet. 2008, 9, 75–82. [Google Scholar] [CrossRef]
- Barría, E.M.; Sepúlveda, R.D.; Jara, C.G. Morphologic variation in Aegla Leach (Decapoda: Reptantia: Aeglidae) from central-southern Chile: Interspecific differences, sexual dimorphism, and spatial segregation. J. Crustacean Biol. 2011, 31, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Sokolowicz, C.; López-Greco, L.; Gonçalves, R.; Bond-Buckup, G. The gonads of Aegla platensis Schmitt (Decapoda, Anomura, Aeglidae): A macroscopic and histological perspective. Acta Zool. 2007, 88, 71–79. [Google Scholar] [CrossRef]
- Barría, E.M.; Santos, S.; Jara, C.G.; Butler, C.J. Sexual dimorphism in the cephalothorax of freshwater crabs of genus Aegla Leach from Chile (Decapoda, Anomura, Aeglidae): An interspecific approach based on distance variables. Zoomorphology 2014, 133, 379–389. [Google Scholar] [CrossRef]
- Rufino, M.; Abelló, P.; Yule, A.B. Male and female caparace shape differences in Liocarcinus depurator (Decapoda, Brachyura): An application of geometric morphometric analysis to crustaceans. Ital. J. Zool. 2004, 71, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Rufino, M.; Abelló, P.; Yule, A.B. Liocarcinus depurator (Brachyura: Portunidae) using geometric morphometrics and the influence of a digitizing method. J. Zool. 2006, 269, 458–465. [Google Scholar] [CrossRef]
- Almerão, M.; Bond-Buckup, G.; Mendoça, M.S., Jr. Mating behavior of Aegla platensis (Crustacea, Anomura, Aeglidae) under laboratory conditions. J. Ethol. 2010, 28, 87–94. [Google Scholar] [CrossRef]
- Ayres-Peres, L.; Araújo, P.B.; Santos, S. Description of the agonistic behavior of Aegla longirostri (Decapoda: Aeglidae). J. Crustacean Biol. 2011, 31, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Catchpole, S.; Barría, E.M.; González, P.S.; Rivera, R. Population and reproductive structure in the endangered and highly endemic freshwater crab Aegla concepcionensis (Decapoda: Pleocyemata: Aeglidae) from Chile. Acta Zool. 2021. [Google Scholar] [CrossRef]
- Jenner, R.A.; Wills, M.A. The choice of model organisms in evo–devo. Nat. Rev. Genet. 2007, 8, 311–314. [Google Scholar] [CrossRef]
- Wilkins, A. The Evolution of developmental pathways. Q. Rev. Biol. 2002, 77, 326–327. [Google Scholar] [CrossRef]
- Ostachuk, A. What is it like to be a crab? a complex network analysis of eucaridan evolution. Evol. Biol. 2019, 46, 179–206. [Google Scholar] [CrossRef]
- Klingenberg, C.P. Evolution and development of shape: Integrating quantitative approaches. Nat. Rev. Genet. 2010, 11, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Benítez, H.A.; Püschel, T.A.; Suazo, M.J. Drosophila wing integration and modularity: A multi-level approach to understand the history of morphological structures. Biology 2022, 11, 567. [Google Scholar] [CrossRef] [PubMed]
- Benítez, H.A.; Lemic, D.; Villalobos-Leiva, A.; Bažok, R.; Órdenes-Claveria, R.; Pajač Živković, I.; Mikac, K.M. Breaking symmetry: Fluctuating asymmetry and geometric morphometrics as tools for evaluating developmental instability under diverse agroecosystems. Symmetry 2020, 12, 1789. [Google Scholar] [CrossRef]
- Ivanković Tatalović, L.; Anđelić, B.; Jelić, M.; Kos, T.; Benítez, H.A.; Šerić Jelaska, L. Fluctuating asymmetry as a method of assessing environmental stress in two predatory carabid species within mediterranean agroecosystems. Symmetry 2020, 12, 1890. [Google Scholar] [CrossRef]
- Villalobos-Leiva, A.; Benítez, H.A. Morfometría geométrica y sus nuevas aplicaciones en ecología y biología evolutiva. Parte 2. Int. J. Morphol. 2020, 38, 1818–1836. [Google Scholar] [CrossRef]
- Goswami, A.; Finarelli, J.A. EMMLi: A maximum likelihood approach to the analysis of modularity. Evolution 2016, 70, 1622–1637. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.C. Evaluating modularity in morphometric data: Challenges with the RV coefficient and a new test measure. Methods Ecol. Evol. 2016, 7, 565–572. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.C.; Collyer, M.L. Comparing the strength of modular signal, and evaluating alternative modular hypotheses, using covariance ratio effect sizes with morphometric data. Evolution 2019, 73, 2352–2367. [Google Scholar] [CrossRef]
- Rohlf, F.J. TPSdig, V. 2.17.; State University at Stony Brook: Stony Brook, NY, USA, 2013.
- Parra, C.; Barria, E.; Jara, C. Behavioural variation and competitive status in three taxa of Aegla (Decapoda: Anomura: Aeglidae) from two-community settings in Southern Chile. N. Z. J. Mar. Freshw. Res. 2011, 45, 249–262. [Google Scholar] [CrossRef] [Green Version]
- Dryden, I.L.; Mardia, K.V. Statistical Shape Analysis; Wiley: Chichester, UK, 1998; Volume 4. [Google Scholar]
- Klingenberg, C.P.; Barluenga, M.; Meyer, A. Shape analysis of symmetric structures: Quantifying variation among individuals and asymmetry. Evolution 2002, 56, 1909–1920. [Google Scholar] [CrossRef] [Green Version]
- Bravi, R.; Benítez, H.A. Left-right asymmetries and shape analysis on Ceroglossus chilensis (Coleoptera: Carabidae). Acta Oecol.-Int. J. Ecol. 2013, 52, 57–62. [Google Scholar] [CrossRef]
- Klingenberg, C.P.; McIntyre, G.S. Geometric morphometrics of developmental instability: Analyzing patterns of fluctuating asymmetry with procrustes methods. Evolution 1998, 52, 1363–1375. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, C.P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 2011, 11, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.C.; Otárola-Castillo, E. Geomorph: An R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 2013, 4. [Google Scholar] [CrossRef]
- Baken, E.K.; Collyer, M.L.; Kaliontzopoulou, A.; Adams, D.C. Geomorph v4. 0 and gmShiny: Enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods Ecol. Evol. 2021, 12, 2355–2363. [Google Scholar] [CrossRef]
- Collyer, M.L.; Adams, D.C. RRPP: An r package for fitting linear models to high-dimensional data using residual randomization. Methods Ecol. Evol. 2018, 9, 1772–1779. [Google Scholar] [CrossRef] [Green Version]
- Arnholt, A.T.; Evans, B. BSDA: Basic Statistics and Data Analysis, Version 1.2.0. 2022. Available online: https://CRAN.R-project.org/package=BSDA (accessed on 1 May 2022).
- Zar, J.H. Biostatistical Analysis; Pearson Education India: Noida, India, 1999. [Google Scholar]
- Goslee, S.C.; Urban, D.L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 2007, 22, 1–19. [Google Scholar] [CrossRef]
- Goslee, S.C. Correlation analysis of dissimilarity matrices. Plant Ecol. 2010, 206, 279–286. [Google Scholar] [CrossRef]
- Rohlf, F.J.; Slice, D. Extensions of the Procustes methods for the optimal superimposition of landmarks. Syst. Zool. 1990, 39, 40–59. [Google Scholar] [CrossRef] [Green Version]
- Rohlf, F.J. tpsRelw, Relative Warps Analysis, Version 1.49; Department of Ecology and Evolution, State University at Stony Brook: Stony Brook, NY, USA, 2010.
- Collyer, M.L.; Sekora, D.J.; Adams, D.C. A method for analysis of phenotypic change for phenotypes described by high-dimensional data. Heredity 2015, 115, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, L.R. Multivariate regression models and geometric morphometrics: The search for causal factors in the analysis of shape. Syst. Biol. 1999, 48, 192–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chippindale, A.K.; Palmer, A.R. Persistence of subtle departures from symmetry over multiple molts in individual brachyuran crabs: Relevance to developmental stability. In Developmental Instability: Its Origins and Evolutionary Implications; Springer: Dordrecht, The Netherlands, 1994; pp. 187–201. [Google Scholar]
- Klingenberg, C.P. Phenotypic plasticity, developmental instability, and robustness: The concepts and how they are connected. Front. Ecol. Evol. 2019, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, V.M.; Shadrina, E.G.; Trofimov, I.E. Fluctuating asymmetry, developmental noise and developmental stability: Future prospects for the population developmental biology approach. Symmetry 2020, 12, 1376. [Google Scholar] [CrossRef]
- Klingenberg, C.P. Developmental instability as a research tool: Using patterns of fluctuating asymmetry to infer the developmental origins of morphological integration. In Developmental Instability: Causes and Consequences; Polak, M., Ed.; Oxford University Press: New York, NY, USA, 2003; pp. 427–442. [Google Scholar]
- Klingenberg, C.P.; Mebus, K.; Auffray, J.C. Developmental integration in a complex morphological structure: How distinct are the modules in the mouse mandible? Evol. Dev. 2003, 5, 522–531. [Google Scholar] [CrossRef]
- Rhodes, W.R. A comparative study of thoracic and cheliped muscle asymmetry in male fiddler crabs (Genus: Uca). Biol. Bull. 1986, 170, 335–349. [Google Scholar] [CrossRef]
- Pavlicev, M.; Wagner, G.P. Coming to grips with evolvability. Evol. Educ. Outreach 2012, 5, 231–244. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, P.A.; Lemaitre, R.; Sorhannus, U. Hermit crab phylogeny: A reappraisal and its “fall-out”. J. Crustacean Biol. 2007, 27, 97–115. [Google Scholar] [CrossRef] [Green Version]
- Richter, S.; Scholz, G. Morphological evidence for a hermit crab ancestry of lithodids (Crustace, Decapoda, Anomala, Paguroidea). Zool. Anz. 1994, 233, 187. [Google Scholar]
- Zaklan, S. A case of reversed asymmetry in Lithodes maja (Linnaeus, 1758) (Decapoda, Anomura, Lithodidae). Crustaceana 2000, 73, 1019–1022. [Google Scholar] [CrossRef]
- Spani, F.; Scalici, M.; Crandall, K.A.; Piras, P. Claw asymmetry in crabs: Approaching an old issue from a new point of view. Biol. J. Linn. Soc. 2020, 129, 162–176. [Google Scholar] [CrossRef]
- Nogueira, C.S.; da Silva, A.R.; Palaoro, A.V. Fighting does not influence the morphological integration of crustacean claws (Decapoda: Aeglidae). Biol. J. Linn. Soc. 2022, 136, 173–186. [Google Scholar] [CrossRef]
- Bracken-Grissom, H.D.; Cannon, M.E.; Cabezas, P.; Feldmann, R.M.; Schweitzer, C.E.; Ahyong, S.T.; Felder, D.L.; Lemaitre, R.; Crandall, K.A. A comprehensive and integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda). BMC Evol. Biol. 2013, 13, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsang, L.M.; Chan, T.-Y.; Ahyong, S.T.; Chu, K.H. Hermit to king, or hermit to all: Multiple transitions to crab-like forms from hermit crab ancestors. Syst. Biol. 2011, 60, 616–629. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, J.M.; Luque, J.; Bracken-Grissom, H.D. How to become a crab: Phenotypic constraints on a recurring body plan. Bioessays 2021, 43, 2100020. [Google Scholar] [CrossRef] [PubMed]
Source of Variation | df | SS | MS | F | p-Value (RRPP) |
---|---|---|---|---|---|
Among individuals (Symmetry component) | 1 | 0.025 | 0.025 | 18.632 | <0.0001 |
Within individuals (Directional asymmetry) | 1 | 0.024 | 0.024 | 17.681 | <0.0001 |
Among×Within individual interaction (Fluctuating asymmetry) | 1 | 0.001 | 0.001 | 1.019 | 0.408 |
Error | 408 | 0.53 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barría, E.M.; Benítez, H.A.; Hernández, C.E. Evolvability in the Cephalothoracic Structural Complexity of Aegla araucaniensis (Crustacea: Decapoda) Determined by a Developmental System with Low Covariational Constraint. Biology 2022, 11, 958. https://doi.org/10.3390/biology11070958
Barría EM, Benítez HA, Hernández CE. Evolvability in the Cephalothoracic Structural Complexity of Aegla araucaniensis (Crustacea: Decapoda) Determined by a Developmental System with Low Covariational Constraint. Biology. 2022; 11(7):958. https://doi.org/10.3390/biology11070958
Chicago/Turabian StyleBarría, Erwin M., Hugo A. Benítez, and Cristián E. Hernández. 2022. "Evolvability in the Cephalothoracic Structural Complexity of Aegla araucaniensis (Crustacea: Decapoda) Determined by a Developmental System with Low Covariational Constraint" Biology 11, no. 7: 958. https://doi.org/10.3390/biology11070958
APA StyleBarría, E. M., Benítez, H. A., & Hernández, C. E. (2022). Evolvability in the Cephalothoracic Structural Complexity of Aegla araucaniensis (Crustacea: Decapoda) Determined by a Developmental System with Low Covariational Constraint. Biology, 11(7), 958. https://doi.org/10.3390/biology11070958