Pharmacological History of Missing Subjects: Perspective of a Correction Factor to Aid in the Study of Bone Remains
Abstract
:Simple Summary
Abstract
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brinkmann, B. Forensic anthropology. Int. J. Legal Med. 2007, 121, 431–432. [Google Scholar] [CrossRef] [PubMed]
- Park, D.-K.; Park, K.-H.; Ko, J.-S.; Kim, Y.-S.; Chung, N.-E.; Ahn, Y.-W.; Han, S.-H. The Role of Forensic Anthropology in the Examination of the Daegu Subway Disaster (2003, Korea). J. Forensic Sci. 2009, 54, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Porta, D.; Poppa, P.; Regazzola, V.; Gibelli, D.; Schillaci, D.R.; Amadasi, A.; Magli, F.; Cattaneo, C. The importance of an anthropological scene of crime investigation in the case of burnt remains in vehicles: 3 case studies. Am. J. Forensic Med. Pathol. 2013, 34, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Sehrawat, J.S.; Sankhyan, D. Forensic Anthropology in Investigations of Crimes Against Humanity: Global Dimensions and the Mid-19th-Century Ajnala (India) Massacre. Forensic Sci. Rev. 2021, 33, 37–65. [Google Scholar]
- Ubelaker, D.H. A history of forensic anthropology. Am. J. Phys. Anthr. 2018, 165, 915–923. [Google Scholar] [CrossRef] [Green Version]
- Omari, R.; Hunt, C.; Coumbaros, J.; Chapman, B. Virtual anthropology? Reliability of three-dimensional photogrammetry as a forensic anthropology measurement and documentation technique. Int. J. Legal Med. 2020, 135, 939–950. [Google Scholar] [CrossRef]
- Thurzo, A.; Kosnáčová, H.S.; Kurilová, V.; Kosmeľ, S.; Beňuš, R.; Moravanský, N.; Kováč, P.; Kuracinová, K.M.; Palkovič, M.; Varga, I. Use of Advanced Artificial Intelligence in Forensic Medicine, Forensic Anthropology and Clinical Anatomy. Healthcare 2021, 9, 1545. [Google Scholar] [CrossRef]
- Moritsugui, D.S.; Fugiwara, F.V.G.; Vassallo, F.N.S.; Mazzilli, L.E.N.; Beaini, T.L.; Melani, R.F.H. Facial soft tissue thickness in forensic facial reconstruction: Impact of regional differences in Brazil. PLoS ONE 2022, 17, e0270980. [Google Scholar] [CrossRef]
- Márquez-Grant, N.; Baldini, E.; Jeynes, V.; Biehler-Gomez, L.; Aoukhiyad, L.; Passalacqua, N.V.; Giordano, G.; Di Candia, D.; Cattaneo, C. How Do Drugs Affect the Skeleton? Implications for Forensic Anthropology. Biology 2022, 11, 524. [Google Scholar] [CrossRef]
- Papastavrou, A.; Schmidt, I.; Deng, K.; Steinmann, P. On age-dependent bone remodeling. J. Biomech. 2020, 103, 109701. [Google Scholar] [CrossRef]
- Barkaoui, A.; Ben Kahla, R.; Merzouki, T.; Hambli, R. Age and gender effects on bone mass density variation: Finite elements simulation. Biomech. Model. Mechanobiol. 2016, 16, 521–535. [Google Scholar] [CrossRef]
- Wang, X.; Puram, S. The Toughness of Cortical Bone and Its Relationship with Age. Ann. Biomed. Eng. 2004, 32, 123–135. [Google Scholar] [CrossRef]
- Koester, K.; Barth, H.; Ritchie, R. Effect of aging on the transverse toughness of human cortical bone: Evaluation by R-curves. J. Mech. Behav. Biomed. Mater. 2011, 4, 1504–1513. [Google Scholar] [CrossRef]
- Zimmermann, E.A.; Schaible, E.; Bale, H.; Barth, H.D.; Tang, S.Y.; Reichert, P.; Busse, B.; Alliston, T.; Ager, J.W., 3rd; Ritchie, R.O. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc. Natl. Acad. Sci. USA 2011, 108, 14416–14421. [Google Scholar] [CrossRef] [Green Version]
- Zioupos, P.; Currey, J.D. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 1998, 22, 57–66. [Google Scholar] [CrossRef]
- Dempsey, N.; Blau, S. Evaluating the evidentiary value of the analysis of skeletal trauma in forensic research: A review of research and practice. Forensic Sci. Int. 2020, 307, 110140. [Google Scholar] [CrossRef]
- Sabet, F.A.; Najafi, A.R.; Hamed, E.; Jasiuk, I. Modelling of bone fracture and strength at different length scales: A review. Interface Focus 2016, 6, 20150055. [Google Scholar] [CrossRef] [Green Version]
- Michael, A.R.; Bengtson, J.D. Chronic alcoholism and bone remodeling processes: Caveats and considerations for the forensic anthropologist. J. Forensic Leg. Med. 2016, 38, 87–92. [Google Scholar] [CrossRef]
- Sorg, M.H. Differentiating trauma from taphonomic alterations. Forensic Sci. Int. 2019, 302, 109893. [Google Scholar] [CrossRef]
- Cattaneo, C.; Porta, D. Trauma analysis of skeletal remains. In Wiley Encyclopedia of Forensic Science; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 1–9. [Google Scholar]
- Ubelaker, D.H.; Shamlou, A.; Kunkle, A.E. Forensic anthropology in the global investigation of humanitarian and human rights abuse: Perspective from the published record. Sci. Justice 2019, 59, 203–209. [Google Scholar] [CrossRef]
- Bostwick, J.R.; Guthrie, S.K.; Ellingrod, V.L. Antipsychotic-induced hyperprolactinemia. Pharmacotherapy 2009, 29, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Kostrzak, A.; Męczekalski, B. Wpływ hiperprolaktynemii na gęstość mineralną kości [Hyperprolactinaemia and bone mineral density]. Pol. Merkur. Lekarski. 2015, 39, 122–125. [Google Scholar]
- Zhang, Y.-S.; Zheng, Y.-D.; Yuan, Y.; Chen, S.-C.; Xie, B.-C. Effects of Anti-Diabetic Drugs on Fracture Risk: A Systematic Review and Network Meta-Analysis. Front. Endocrinol. 2021, 12, 5824. [Google Scholar] [CrossRef]
- Fan, H.-C.; Lee, H.-S.; Chang, K.-P.; Lee, Y.-Y.; Lai, H.-C.; Hung, P.-L.; Lee, H.-F.; Chi, C.-S. The Impact of Anti-Epileptic Drugs on Growth and Bone Metabolism. Int. J. Mol. Sci. 2016, 17, 1242. [Google Scholar] [CrossRef] [Green Version]
- Vestergaard, P. Drugs Causing Bone Loss. Handb. Exp. Pharmacol. 2020, 262, 475–497. [Google Scholar] [CrossRef]
- Pérez-Sáez, M.J.; Herrera, S.; Prieto-Alhambra, D.; Vilaplana, L.; Nogués, X.; Vera, M.; Redondo-Pachón, D.; Mir, M.; Güerri, R.; Crespo, M.; et al. Maintenance low dose systemic glucocorticoids have limited impact on bone strength and mineral density among incident renal allograft recipients: A pilot prospective cohort study. Bone 2018, 116, 290–294. [Google Scholar] [CrossRef] [Green Version]
- Vestergaard, P.; Rejnmark, L.; Mosekilde, L. Fracture Risk Associated with Different Types of Oral Corticosteroids and Effect of Termination of Corticosteroids on the Risk of Fractures. Calcif. Tissue Res. 2008, 82, 249–257. [Google Scholar] [CrossRef]
- Rubin, K. The manifestation of cocaine-induced midline destructive lesion in bone tissue and its identification in human skeletal remains. Forensic Sci. Int. 2013, 231, 408.e1–408.e11. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cecannecchia, C.; Baldari, B.; Cioffi, A. Pharmacological History of Missing Subjects: Perspective of a Correction Factor to Aid in the Study of Bone Remains. Biology 2022, 11, 1128. https://doi.org/10.3390/biology11081128
Cecannecchia C, Baldari B, Cioffi A. Pharmacological History of Missing Subjects: Perspective of a Correction Factor to Aid in the Study of Bone Remains. Biology. 2022; 11(8):1128. https://doi.org/10.3390/biology11081128
Chicago/Turabian StyleCecannecchia, Camilla, Benedetta Baldari, and Andrea Cioffi. 2022. "Pharmacological History of Missing Subjects: Perspective of a Correction Factor to Aid in the Study of Bone Remains" Biology 11, no. 8: 1128. https://doi.org/10.3390/biology11081128
APA StyleCecannecchia, C., Baldari, B., & Cioffi, A. (2022). Pharmacological History of Missing Subjects: Perspective of a Correction Factor to Aid in the Study of Bone Remains. Biology, 11(8), 1128. https://doi.org/10.3390/biology11081128