Marine Autotroph-Herbivore Synergies: Unravelling the Roles of Macroalgae in Marine Ecosystem Dynamics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Marine Algae and Their Unique Attributes
2.1. Red Algae (Division Rhodophyta)
2.2. Brown Algae (Division Chromophyta)
2.3. Green Algae (Division Chlorophyta)
3. At a Glance: Key Defence Strategies of Marine Macroalgae against Herbivores
3.1. Physical Defences
3.2. Chemical Defences
4. Does Nutrient Acquisition in Algae Determine the Feeding Preferences of Marine Herbivores?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thuiller, W.; Richardson, D.M.; Midgley, G.F. Will climate change promote alien plant invasions? In Biological Invasions; Springer: Berlin, Germany, 2008; pp. 197–211. [Google Scholar]
- Seebens, H.; Essl, F.; Dawson, W.; Fuentes, N.; Moser, D.; Pergl, J.; Pyšek, P.; van Kleunen, M.; Weber, E.; Winter, M.; et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Chang. Biol. 2015, 21, 4128–4140. [Google Scholar] [CrossRef]
- Pyšek, P.; Jarošík, V.; Hulme, P.E.; Kühn, I.; Wild, J.; Arianoutsou, M.; Bacher, S.; Chiron, F.; Didžiulis, V.; Essl, F.; et al. Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc. Natl. Acad. Sci. USA 2010, 107, 12157–12162. [Google Scholar] [CrossRef]
- Richardson, D.M.; Holmes, P.M.; Esler, K.J.; Galatowitsch, S.M.; Stromberg, J.C.; Kirkman, S.P.; Pyšek, P.; Hobbs, R.J. Riparian vegetation: Degradation, alien plant invasions, and restoration prospects. Divers. Distrib. 2007, 13, 126–139. [Google Scholar] [CrossRef]
- Seebens, H.; Gastner, M.T.; Blasius, B. The risk of marine bioinvasion caused by global shipping. Ecol. Lett. 2013, 16, 782–790. [Google Scholar] [CrossRef]
- Didham, R.K.; Tylianakis, J.M.; Hutchison, M.A.; Ewers, R.M.; Gemmell, N.J. Are invasive species the drivers of ecological change? Trends Ecol. Evol. 2005, 20, 470–474. [Google Scholar] [CrossRef]
- Gilbert, B.; Levine, J.M. Plant invasions and extinction debts. Proc. Natl. Acad. Sci. USA 2013, 110, 1744–1749. [Google Scholar]
- Winter, M.; Schweiger, O.; Klotz, S.; Nentwig, W.; Andriopoulos, P.; Arianoutsou, M.; Basnou, C.; Delipetrou, P.; Didžiulis, V.; Hejda, M.; et al. Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. Proc. Natl. Acad. Sci. USA 2009, 106, 21721–21725. [Google Scholar] [CrossRef]
- Dong, L.J.; Yu, H.W.; He, W.M. What determines positive, neutral, and negative impacts of Solidago canadensis invasion on native plant species richness? Sci. Rep. UK 2015, 5, 16804. [Google Scholar]
- Stohlgren, T.J.; Rejmánek, M. No universal scale-dependent impacts of invasive species on native plant species richness. Biol. Lett. 2014, 10, 20130939. [Google Scholar] [CrossRef]
- Salimi, P.A.; Creed, J.C.; Esch, M.M.; Fenner, D.; Jaafar, Z.; Levesque, J.C.; Montgomery, A.D.; Salimi, M.A.; Edward, J.K.P.; Raj, K.D.; et al. A review of the diversity and impact of invasive non-native species in tropical marine ecosystems. Mar. Biodivers. Rec. 2021, 14, 11. [Google Scholar] [CrossRef]
- Grutters, B.M.C.; Roijendijk, Y.O.A.; Verberk, W.; Bakker, E. Plant traits and plant biogeography control the biotic resistance provided by generalist herbivores. Funct. Ecol. 2017, 31, 1184–1192. [Google Scholar] [CrossRef]
- Parker, J.D.; Burkepile, D.E.; Hay, M.E. Opposing Effects of Native and Exotic Herbivores on Plant Invasions. Science 2006, 311, 1459–1461. [Google Scholar] [CrossRef]
- Lyons, D.; Scheibling, R. Context-dependant survival of the invasive seaweed Codium fragile ssp. tomentosoides in kelp bed and urchin barren habitats off Nova Scotia. Aquat. Biol. 2008, 2, 17–27. [Google Scholar] [CrossRef]
- Cebrian, E.; Ballesteros, E.; Linares, C.; Tomas, F. Do native herbivores provide resistance to Mediterranean marine bioinvasions? A seaweed example. Biol. Invasions 2010, 13, 1397–1408. [Google Scholar] [CrossRef]
- Seastedt, T.R. Biological control of invasive plant species: A reassessment for the Anthropocene. New Phytol. 2015, 205, 490–502. [Google Scholar]
- Joshi, J.; Vrieling, K. The enemy release and EICA hypothesis revisited: Incorporating the fundamental difference between specialist and generalist herbivores. Ecol. Lett. 2005, 8, 704–714. [Google Scholar] [CrossRef]
- Shea, K.; Chesson, P. Community ecology theory as a framework for biological invasions. Trends Ecol. Evol. 2002, 17, 170–176. [Google Scholar]
- Münzbergová, Z.; Skuhrovec, J. Data on Herbivore Performance and Plant Herbivore Damage Identify the Same Plant Traits as the Key Drivers of Plant–Herbivore Interaction. Insects 2020, 11, 865. [Google Scholar] [CrossRef]
- Lee, R.E. Phycology; Cambridge University Press: Cambridge, UK, 2018; pp. 510–546. [Google Scholar]
- Behmer, S.T.; Simpson, S.J.; Raubenheimer, D. Herbivore foraging in chemically heterogeneous environments: Nutrients and secondary metabolites. Ecology 2002, 83, 2489–2501. [Google Scholar]
- Martinez, A.S.; Byrne, M.; Coleman, R.A. What and when to eat? Investigating the feeding habits of an intertidal herbivorous starfish. Mar. Biol. 2016, 163, 166. [Google Scholar] [CrossRef]
- Senft, R.L.; Coughenour, M.B.; Bailey, D.W.; Rittenhouse, L.R.; Sala, O.; Swift, D.M. Large Herbivore Foraging and Ecological Hierarchies. BioScience 1987, 37, 789–799. [Google Scholar] [CrossRef]
- Wahl, M.; Hay, M. Associational resistance and shared doom: Effects of epibiosis on herbivory. Oecologia 1995, 102, 329–340. [Google Scholar] [CrossRef]
- Duarte, C.; Navarro, J.; Acuña, K.; Gómez, I. Feeding preferences of the sandhopper Orchestoidea tuberculata: The importance of algal traits. Hydrobiologia 2010, 651, 291–303. [Google Scholar] [CrossRef]
- Johnson, J.S.; Clements, K.D.; Raubenheimer, D. The nutritional basis of seasonal selective feeding by a marine herbivorous fish. Mar. Biol. 2017, 164, 201. [Google Scholar] [CrossRef]
- Taylor, D.I.; Schiel, D.R. Algal populations controlled by fish herbivory across a wave exposure gradient on southern temperate shores. Ecology 2010, 91, 201–211. [Google Scholar] [CrossRef]
- Sagerman, J.; Enge, S.; Pavia, H.; Wikström, S.A. Low feeding preference of native herbivores for the successful non-native seaweed Heterosiphonia japonica. Mar. Biol. 2015, 162, 2471–2479. [Google Scholar] [CrossRef]
- Schwartz, N.; Rohde, S.; Hiromori, S.; Schupp, P.J. Understanding the invasion success of Sargassum muticum: Herbivore preferences for native and invasive Sargassum spp. Mar. Biol. 2016, 163, 181. [Google Scholar] [CrossRef]
- Thomas, M.B.; Reid, A.M. Are exotic natural enemies an effective way of controlling invasive plants? Trends Ecol. Evol. 2007, 22, 447–453. [Google Scholar] [CrossRef]
- Chavanich, S.; Harris, L.G. The influence of macroalgae on seasonal abundance and feeding preference of a subtidal snail, lacuna vincta (montagu) (littorinidae) in the gulf of maine. J. Molluscan Stud. 2002, 68, 73–78. [Google Scholar] [CrossRef]
- Molis, M.; Scrosati, R.A.; El-Belely, E.; Lesniowski, T.J.; Wahl, M. Wave-induced changes in seaweed toughness entail plastic modifications in snail traits maintaining consumption efficacy. J. Ecol. 2015, 103, 851–859. [Google Scholar] [CrossRef]
- Pennings, S.C.; Siska, E.L.; Bertness, M.D. Latitudinal differences in plant palatability in Atlantic coast salt marshes. Ecology 2001, 82, 1344–1359. [Google Scholar]
- Rodríguez, A.; Clemente, S.; Hernández, J.C.; Brito, A.; García, I.; Becerro, M.A. Nutritional, structural and chemical defenses of common algae species against juvenile sea urchins. Mar. Biol. 2017, 164, 127. [Google Scholar] [CrossRef]
- Sudatti, D.B.; Fujii, M.; Rodrigues, S.V.; Turra, A.; Pereira, R.C. Prompt induction of chemical defenses in the red seaweed Laurencia dendroidea: The role of herbivory and epibiosis. J. Sea Res. 2018, 138, 48–55. [Google Scholar] [CrossRef]
- Ianora, A.; Boersma, M.; Casotti, R.; Fontana, A.; Harder, J.; Hoffmann, F.; Pavia, H.; Potin, P.; Poulet, S.A.; Toth, G. New trends in marine chemical ecology. Estuaries Coasts 2006, 29, 531–551. [Google Scholar] [CrossRef]
- Nylund, G.M.; Enge, S.; Pavia, H. Costs and Benefits of Chemical Defence in the Red Alga Bonnemaisonia hamifera. PLoS ONE 2013, 8, e61291. [Google Scholar] [CrossRef]
- Maschek, J.A.; Baker, B.J. The Chemistry of Algal Secondary Metabolism. In Algal Chemical Ecology; Springer: Berlin, Germany, 2008; pp. 1–24. [Google Scholar] [CrossRef]
- Yin, L.W.; Eem, L.P.; Amri, A.Y.; Looi, S.S.; Cheng, A. Exploring the role of macroalgal traits on the feeding behaviour of a generalist herbivore in Malaysian waters. Bot. Mar. 2020, 63, 407–417. [Google Scholar] [CrossRef]
- Boyer, K.E.; Fong, P.; Armitage, A.R.; Cohen, R.A. Elevated nutrient content of tropical macroalgae increases rates of herbivory in coral, seagrass, and mangrove habitats. Coral Reefs 2004, 23, 530–538. [Google Scholar] [CrossRef]
- Clements, K.D.; Raubenheimer, D.; Choat, J.H. Nutritional ecology of marine herbivorous fishes: Ten years on. Funct. Ecol. 2009, 23, 79–92. [Google Scholar] [CrossRef]
- Wong, P.K.; Liang, Y.; Liu, N.Y.; Qiu, J.-W. Palatability of macrophytes to the invasive freshwater snail Pomacea canaliculata: Differential effects of multiple plant traits. Freshw. Biol. 2010, 55, 2023–2031. [Google Scholar] [CrossRef]
- Machado, G.B.; Leite, F.P.; Sotka, E.E. Nutrition of marine mesograzers: Integrating feeding behavior, nutrient intake and performance of an herbivorous amphipod. PeerJ 2018, 6, e5929. [Google Scholar] [CrossRef]
- Cock, J.M.; Coelho, S.M. Algal models in plant biology. J. Exp. Bot. 2011, 62, 2425–2430. [Google Scholar] [CrossRef]
- Gislason, S. Air and Breathing; Environmed Research Inc.: Vancouver, BC, Canada, 2018; Volume 5. [Google Scholar]
- Greenbaum, E.; Guillard, R.R.L.; Sunda, W.G. Hydrogen and Oxygen Photoproduction by Marine Algae. Photochem. Photobiol. 1983, 37, 649–655. [Google Scholar] [CrossRef]
- Souvorov, A.V. Marine Ecologonomics: The Ecology and Economics of Marine Natural Resources Management, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 1999; Volume 6. [Google Scholar]
- Arrigo, K.R. Carbon cycle: Marine manipulations. Nature 2007, 450, 491. [Google Scholar]
- Chung, I.K.; Beardall, J.; Mehta, S.; Sahoo, D.; Stojkovic, S. Using marine macroalgae for carbon sequestration: A critical appraisal. J. Appl. Phycol. 2010, 23, 877–886. [Google Scholar] [CrossRef]
- Moreira, D.; Pires, J.C. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path. Bioresour. Technol. 2016, 215, 371–379. [Google Scholar] [CrossRef]
- Bocanegra, A.; Bastida, S.; Benedi, J.; Ródenas, S.; Sánchez-Muniz, F.J. Characteristics and Nutritional and Cardiovascular-Health Properties of Seaweeds. J. Med. Food 2009, 12, 236–258. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Giger-Reverdin, S.; Lessire, M.; Lebas, F.; Ankers, P. Seaweeds for livestock diets: A review. Anim. Feed Sci. Technol. 2016, 212, 1–17. [Google Scholar] [CrossRef]
- Rothäusler, E.; Macaya, E.; Molis, M.; Wahl, M.; Thiel, M. Laboratory experiments examining inducible defense show variable responses of temperate brown and red macroalgae. Rev. Chil. Hist. Nat. 2005, 78, 603–614. [Google Scholar] [CrossRef]
- Dawczynski, C.; Schubert, R.; Jahreis, G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem. 2007, 103, 891–899. [Google Scholar] [CrossRef]
- Wang, J.T.; Douglas, A.E. Essential amino acid synthesis and nitrogen recycling in an alga-invertebrate symbiosis. Mar. Biol. 1999, 135, 219–222. [Google Scholar] [CrossRef]
- Douglas, A.E. Host benefit and the evolution of specialization in symbiosis. Heredity 1998, 81, 599. [Google Scholar]
- Barsanti, L.; Gualtieri, P. Algae: Anatomy, Biochemistry, and Biotechnology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Frenkel, J.; Vyverman, W.; Pohnert, G. Pheromone signaling during sexual reproduction in algae. Plant J. 2014, 79, 632–644. [Google Scholar] [CrossRef]
- Clifton, K.E.; Clifton, L.M. The Phenology of Sexual Reproduction by Green Algae (Bryopsidales) on Caribbean Coral Reefs. J. Phycol. 1999, 35, 24–34. [Google Scholar] [CrossRef]
- Gantt, E.; Grabowski, B.; Cunningham, F.X. Antenna Systems of Red Algae: Phycobilisomes with Photosystem ll and Chlorophyll Complexes with Photosystem I. In Light-Harvesting Antennas in Photosynthesis; Springer: Dordrecht, The Netherlands, 2003; pp. 307–322. [Google Scholar] [CrossRef]
- Masarin, F.; Cedeno, F.R.P.; Chavez, E.G.S.; De Oliveira, L.E.; Gelli, V.C.; Monti, R. Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process. Biotechnol. Biofuels 2016, 9, 122. [Google Scholar] [CrossRef]
- Michel, G.; Helbert, W.; Kahn, R.; Dideberg, O.; Kloareg, B. The structural bases of the processive degradation of ι-carrageenan, a main cell wall polysaccharide of red algae. J. Mol. Biol. 2003, 334, 421–433. [Google Scholar]
- Usov, A.I. Polysaccharides of the red algae. In Advances in Carbohydrate Chemistry and Biochemistry; Elsevier: Amsterdam, The Netherlands, 2011; Volume 65, pp. 115–217. [Google Scholar]
- Vreeland, V.; Kloareg, B. Cell wall biology in red algae: Divide and conquer. J. Phycol. 2000, 36, 793–797. [Google Scholar]
- Schubert, N.; García-Mendoza, E.; Pacheco-Ruiz, I. Carotrnoid composition of marine red algae. J. Phycol. 2006, 42, 1208–1216. [Google Scholar]
- Squires, A.H.; Moerner, W.E. Direct single-molecule measurements of phycocyanobilin photophysics in monomeric C-phycocyanin. Proc. Natl. Acad. Sci. USA 2017, 114, 9779–9784. [Google Scholar] [CrossRef]
- Rioux, L.-E.; Beaulieu, L.; Turgeon, S.L. Seaweeds: A traditional ingredients for new gastronomic sensation. Food Hydrocoll. 2017, 68, 255–265. [Google Scholar] [CrossRef]
- Trius, A.; Sebranek, J.G.; Lanier, T. Carrageenans and their use in meat products. Crit. Rev. Food Sci. Nutr. 1996, 36, 69–85. [Google Scholar]
- Blouin, N.A.; Brodie, J.A.; Grossman, A.C.; Xu, P.; Brawley, S.H. Porphyra: A marine crop shaped by stress. Trends Plant Sci. 2011, 16, 29–37. [Google Scholar] [CrossRef]
- Fleurence, J. Seaweed proteins: Biochemical, nutritional aspects and potential uses. Trends Food Sci. Technol. 1999, 10, 25–28. [Google Scholar] [CrossRef]
- Fleurence, J.; Morançais, M.; Dumay, J. Seaweed proteins. In Proteins in Food Processing; Elsevier: Amsterdam, The Netherlands, 2018; pp. 245–262. [Google Scholar]
- Cock, J.M.; Sterck, L.; Rouzé, P.; Scornet, D.; Allen, A.; Amoutzias, G.; Anthouard, V.; Artiguenave, F.; Aury, J.-M.; Badger, J.H.; et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 2010, 465, 617–621. [Google Scholar] [CrossRef]
- Westermeier, R.; Patiño, D.J.; Müller, H.; Müller, D.G. Towards domestication of giant kelp (Macrocystis pyrifera) in Chile: Selection of haploid parent genotypes, outbreeding, and heterosis. J. Appl. Phycol. 2009, 22, 357–361. [Google Scholar] [CrossRef]
- Aven, J.A.R.; Johnston, A.M.; Kübler, J.E.; Orb, R.E.K.; Cinroy, S.G.M.; Andley, L.I.L.H.; Crimgeour, C.H.M.S.; Alker, D.I.W.; Beardall, J.; Layton, M.N.C.; et al. Seaweeds in Cold Seas: Evolution and Carbon Acquisition. Ann. Bot. 2002, 90, 525–536. [Google Scholar] [CrossRef]
- Wei, N.; Quarterman, J.; Jin, Y.-S. Marine macroalgae: An untapped resource for producing fuels and chemicals. Trends Biotechnol. 2013, 31, 70–77. [Google Scholar] [CrossRef]
- Wernberg, T.; Thomsen, M.S. The effect of wave exposure on the morphology of Ecklonia radiata. Aquat. Bot. 2005, 83, 61–70. [Google Scholar] [CrossRef]
- Koehl, M.A.R.; Silk, W.K.; Liang, H.; Mahadevan, L. How kelp produce blade shapes suited to different flow regimes: A new wrinkle. Integr. Comp. Biol. 2008, 48, 834–851. [Google Scholar] [CrossRef]
- Stewart, H.L.; Carpenter, R.C. The Effects of Morphology and Water Flow on Photosynthesis of Marine Macroalgae. Ecology 2003, 84, 2999–3012. [Google Scholar] [CrossRef]
- Toohey, B.; Kendrick, G.A.; Wernberg, T.; Phillips, J.C.; Malkin, S.; Prince, J. The effects of light and thallus scour from Ecklonia radiata canopy on an associated foliose algal assemblage: The importance of photoacclimation. Mar. Biol. 2004, 144, 1019–1027. [Google Scholar] [CrossRef]
- Bidigare, R.R. Photosynthetic pigment composition of the brown tide alga: Unique chlorophyll and carotenoid derivatives. In Novel Phytoplankton Blooms; Springer: Berlin/Heidelberg, Germany, 1989; pp. 57–75. [Google Scholar]
- Maria, A.G.; Graziano, R.; Nicolantonio, D.O. Anti-Obesity Activity of the Marine Carotenoid Fucoxanthin. Mar. Drugs 2015, 13, 2196–2214. [Google Scholar] [CrossRef]
- Fu, G.; Nagasato, C.; Oka, S.; Cock, J.M.; Motomura, T. Proteomics Analysis of Heterogeneous Flagella in Brown Algae (Stramenopiles). Protist 2014, 165, 662–675. [Google Scholar] [CrossRef]
- Horn, S.J.; Aasen, I.M.; Østgaard, K. Production of ethanol from mannitol by Zymobacter palmae. J. Ind. Microbiol. Biotechnol. 2000, 24, 51–57. [Google Scholar]
- Amachi, S. Microbial Contribution to Global Iodine Cycling: Volatilization, Accumulation, Reduction, Oxidation, and Sorption of Iodine. Microbes Environ. 2008, 23, 269–276. [Google Scholar] [CrossRef]
- Patron, N.J.; Keeling, P.J. Common evolutionary origin of starch biosynthetic enzymes in green and red algae1. J. Phycol. 2005, 41, 1131–1141. [Google Scholar] [CrossRef]
- Kılınç, B.; Cirik, S.; Turan, G.; Tekogul, H.; Koru, E. Seaweeds for Food and Industrial Applications; IntechOpen: London, UK, 2013. [Google Scholar]
- Lewis, L.A.; McCourt, R.M. Green algae and the origin of land plants. Am. J. Bot. 2004, 91, 1535–1556. [Google Scholar] [CrossRef]
- Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef]
- Moreira, A.; Cruz, S.; Marques, R.; Cartaxana, P. The underexplored potential of green macroalgae in aquaculture. Rev. Aquac. 2021, 14, 5–26. [Google Scholar] [CrossRef]
- Pinheiro, C.; Azevedo, J.; Campos, A.; Loureiro, S.; Vasconcelos, V. Absence of negative allelopathic effects of cylindrospermopsin and microcystin-LR on selected marine and freshwater phytoplankton species. Hydrobiologia 2012, 705, 27–42. [Google Scholar] [CrossRef]
- Nozaki, H.; Mahakham, W.; Heman, W.; Matsuzaki, R.; Kawachi, M. A new preferentially outcrossing monoicous species of Volvox sect. Volvox (Chlorophyta) from Thailand. PLoS ONE 2020, 15, e0235622. [Google Scholar] [CrossRef]
- García-Casal, M.N.; Ramirez, J.; Leets, I.; Pereira, A.C.; Quiroga, M.F. Antioxidant capacity, polyphenol content and iron bioavailability from algae (Ulva sp., Sargassum sp. and Porphyra sp.) in human subjects. Br. J. Nutr. 2008, 101, 79–85. [Google Scholar]
- Li, Y.; Horsman, M.; Wang, B.; Wu, N.; Lan, C.Q. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 2008, 81, 629–636. [Google Scholar] [CrossRef]
- Michalak, A.M.; Anderson, E.J.; Beletsky, D.; Boland, S.; Bosch, N.S.; Bridgeman, T.B.; Chaffin, J.D.; Cho, K.; Confesor, R.; Daloğlu, I.; et al. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 6448–6452. [Google Scholar] [CrossRef]
- Maberly, S.C.; Pitt, J.-A.; Davies, P.S.; Carvalho, L. Nitrogen and phosphorus limitation and the management of small productive lakes. Inland Waters 2020, 10, 159–172. [Google Scholar] [CrossRef]
- Bindoff, N.L.; Cheung, W.W.L.; Kairo, J.G.; Arístegui, J.; Guinder, V.A.; Hallberg, R.; Hilmi, N.; Jiao, N.; Karim, M.S.; Levin, L.; et al. Changing Ocean, Marine Ecosystems, and Dependent Communities. In The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate; Cambridge University Press: Cambridge, UK, 2022; pp. 447–588. [Google Scholar]
- Jorda, G.; Marbà, N.; Bennett, S.; Santana-Garcon, J.; Agusti, S.; Duarte, C.M. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 2019, 4, 109–114. [Google Scholar] [CrossRef]
- Sorte, C.J.B.; Williams, S.L.; Carlton, J.T. Marine range shifts and species introductions: Comparative spread rates and community impacts. Glob. Ecol. Biogeogr. 2010, 19, 303–316. [Google Scholar] [CrossRef]
- Wabnitz, C.C.C.; Lam, V.W.Y.; Reygondeau, G.; Teh, L.C.L.; Al-Abdulrazzak, D.; Khalfallah, M.; Pauly, D.; Palomares, M.L.D.; Zeller, D.; Cheung, W.W.L. Climate change impacts on marine biodiversity, fisheries and society in the Arabian Gulf. PLoS ONE 2018, 13, e0194537. [Google Scholar] [CrossRef]
- Currin, C.; Newell, S.; Paerl, H. The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: Considerations based on multiple stable isotope analysis. Mar. Ecol. Prog. Ser. 1995, 121, 99–116. [Google Scholar] [CrossRef]
- Chapman, R.L. Algae: The world’s most important “plants”—An introduction. Mitig. Adapt. Strat. Glob. Chang. 2010, 18, 5–12. [Google Scholar] [CrossRef]
- Burkepile, D.E.; Parker, J.D. Recent advances in plant-herbivore interactions. F1000Research 2017, 6, 119. [Google Scholar] [CrossRef]
- Jormalainen, V.; Honkanen, T. Macroalgal Chemical Defenses and Their Roles in Structuring Temperate Marine Communities. In Algal Chemical Ecology; Springer: Berlin/Heidelberg, Germany, 2008; pp. 57–89. [Google Scholar] [CrossRef]
- Kinlan, B.P.; Gaines, S.D. Propagule dispersal in marine and terrestrial environments: A community perspective. Ecology 2003, 84, 2007–2020. [Google Scholar] [CrossRef]
- Wallentinus, I. Introduced Marine Algae and Vascular Plants in European Aquatic Environments. In Invasive Aquatic Species of Europe. Distribution, Impacts and Management; Springer: Dordrecht, The Netherlands, 2002; pp. 27–52. [Google Scholar] [CrossRef]
- Van Donk, E.; Ianora, A.; Vos, M. Induced defences in marine and freshwater phytoplankton: A review. Hydrobiologia 2010, 668, 3–19. [Google Scholar] [CrossRef]
- Zamzow, J.; Amsler, C.; McClintock, J.; Baker, B. Habitat choice and predator avoidance by Antarctic amphipods: The roles of algal chemistry and morphology. Mar. Ecol. Prog. Ser. 2010, 400, 155–163. [Google Scholar] [CrossRef]
- Sakanishi, Y.; Tanaka, K.; Kasai, H.; Tanaka, J. Characterization of thallus mechanical and physiological traits of tropical fucoids: A preliminary study. Phycol. Res. 2020, 68, 208–215. [Google Scholar] [CrossRef]
- War, A.R.; Paulraj, M.G.; Ahmad, T.; Buhroo, A.A.; Hussain, B.; Ignacimuthu, S.; Sharma, H.C. Mechanisms of plant defense against insect herbivores. Plant Signal. Behav. 2012, 7, 1306–1320. [Google Scholar] [CrossRef]
- Arimura, G.-I.; Matsui, K.; Takabayashi, J. Chemical and Molecular Ecology of Herbivore-Induced Plant Volatiles: Proximate Factors and Their Ultimate Functions. Plant Cell Physiol. 2009, 50, 911–923. [Google Scholar] [CrossRef]
- Dicke, M.; van Poecke, R.M.; de Boer, J.G. Inducible indirect defence of plants: From mechanisms to ecological functions. Basic Appl. Ecol. 2003, 4, 27–42. [Google Scholar]
- Russ, G.R.; Alcala, A.C. MARINE RESERVES: RATES AND PATTERNS OF RECOVERY AND DECLINE OF PREDATORY FISH, 1983–2000. Ecol. Appl. 2003, 13, 1553–1565. [Google Scholar] [CrossRef]
- Floeter, S.R.; Behrens, M.D.; Ferreira, C.E.L.; Paddack, M.J.; Horn, M.H. Geographical gradients of marine herbivorous fishes: Patterns and processes. Mar. Biol. 2005, 147, 1435–1447. [Google Scholar] [CrossRef]
- Paddack, M.J.; Cowen, R.K.; Sponaugle, S. Grazing pressure of herbivorous coral reef fishes on low coral-cover reefs. Coral Reefs 2006, 25, 461–472. [Google Scholar] [CrossRef]
- Castellanos-Galindo, G.A.; Giraldo, A. Food resource use in a tropical eastern Pacific tidepool fish assemblage. Mar. Biol. 2008, 153, 1023–1035. [Google Scholar] [CrossRef]
- Kopp, D.; Bouchon-Navaro, Y.; Louis, M.; Mouillot, D.; Bouchon, C. Juvenile Fish Assemblages in Caribbean Seagrass Beds: Does Nearby Habitat Matter? J. Coast. Res. 2010, 26, 1133–1141. [Google Scholar]
- Jessen, C.; Wild, C. Herbivory effects on benthic algal composition and growth on a coral reef flat in the Egyptian Red Sea. Mar. Ecol. Prog. Ser. 2013, 476, 9–21. [Google Scholar] [CrossRef]
- Vergés, A.; Steinberg, P.D.; Hay, M.E.; Poore, A.G.B.; Campbell, A.H.; Ballesteros, E.; Heck, K.L., Jr.; Booth, D.J.; Coleman, M.A.; Feary, D.A.; et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 2014, 281, 20140846. [Google Scholar] [CrossRef]
- Martínez-Crego, B.; Arteaga, P.; Tomas, F.; Santos, R. The Role of Seagrass Traits in Mediating Zostera noltei Vulnerability to Mesograzers. PLoS ONE 2016, 11, e0156848. [Google Scholar] [CrossRef]
- Kornijów, R.; Karpowicz, M.; Ejsmont-Karabin, J.; Nawrocka, L.; De Eyto, E.; Grzonkowski, K.; Magnuszewski, A.; Jakubowska, A.; Wodzinowski, T.; Woźniczka, A. Patchy distribution of phyto- and zooplankton in large and shallow lagoon under ice cover and resulting trophic interactions. Mar. Freshw. Res. 2020, 71, 1327–1341. [Google Scholar] [CrossRef]
- Amsler, C.D. Induced defenses in macroalgae: The herbivore makes a difference. J. Phycol. 2001, 37, 353–356. [Google Scholar] [CrossRef]
- Borell, E.M.; Foggo, A.; Coleman, R.A. Induced resistance in intertidal macroalgae modifies feeding behaviour of herbivorous snails. Oecologia 2004, 140, 328–334. [Google Scholar] [CrossRef]
- Hemmi, A.; Jormalainen, V. Geographic covariation of chemical quality of the host alga Fucus vesiculosus with fitness of the herbivorous isopod Idotea baltica. Mar. Biol. 2003, 145, 759–768. [Google Scholar] [CrossRef]
- Cabrita, M.T.; Vale, C.; Rauter, A.P. Halogenated Compounds from Marine Algae. Mar. Drugs 2010, 8, 2301–2317. [Google Scholar] [CrossRef]
- Pavia, H.; Toth, G.B.; Åberg, P. Optimal defense theory: Elasticity analysis as a tool to predict intraplant variation in defenses. Ecology 2002, 83, 891–897. [Google Scholar]
- Paul, C.; Pohnert, G. Production and role of volatile halogenated compounds from marine algae. Nat. Prod. Rep. 2011, 28, 186–195. [Google Scholar] [CrossRef]
- Gaubert, J.; Payri, C.E.; Vieira, C.; Solanki, H.; Thomas, O.P. High metabolic variation for seaweeds in response to environmental changes: A case study of the brown algae Lobophora in coral reefs. Sci. Rep. 2019, 9, 993. [Google Scholar] [CrossRef]
- Baker, B.J.; Amsler, C.D.; McClintock, J.B. Macroalgal Chemical Defenses in Polar Marine Communities. In Algal Chemical Ecology; Amsler, C.D., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 91–103. [Google Scholar] [CrossRef]
- Kooke, R.; Keurentjes, J.J.B. Multi-dimensional regulation of metabolic networks shaping plant development and performance. J. Exp. Bot. 2011, 63, 3353–3365. [Google Scholar] [CrossRef]
- Dell, C.; Hay, M.E. Induced defence to grazing by vertebrate herbivores: Uncommon or under-investigated? Mar. Ecol. Prog. Ser. 2016, 561, 137–145. [Google Scholar]
- Jerković, I.; Marijanović, Z.; Roje, M.; Kuś, P.M.; Jokić, S.; Čož-Rakovac, R. Phytochemical study of the headspace volatile organic compounds of fresh algae and seagrass from the Adriatic Sea (single point collection). PLoS ONE 2018, 13, e0196462. [Google Scholar] [CrossRef]
- Nielsen, B.; Maneein, S.; Farid, A.; Milledge, J. The Effects of Halogenated Compounds on the Anaerobic Digestion of Macroalgae. Fermentation 2020, 6, 85. [Google Scholar] [CrossRef]
- Küpper, F.C.; Miller, E.P.; Andrews, S.J.; Hughes, C.; Carpenter, L.J.; Meyer-Klaucke, W.; Toyama, C.; Muramatsu, Y.; Feiters, M.C.; Carrano, C.J. Emission of volatile halogenated compounds, speciation and localization of bromine and iodine in the brown algal genome model Ectocarpus siliculosus. JBIC J. Biol. Inorg. Chem. 2018, 23, 1119–1128. [Google Scholar] [CrossRef]
- Diaz-Pulido, G.; McCook, L.J.; Larkum, A.W.; Lotze, H.K.; Raven, J.A.; Schaffelke, B.; Smith, J.E.; Steneck, R.S. Vulnerability of macroalgae of the Great Barrier Reef to climate change. Phycologia 2007, 46, 131–136. [Google Scholar]
- Lewis, S.M.; Norris, J.N.; Searles, R.B. The Regulation of Morphological Plasticity in Tropical Reef Algae by Herbivory. Ecology 1987, 68, 636–641. [Google Scholar] [CrossRef]
- Bittick, S.J.; Clausing, R.J.; Fong, C.R.; Fong, P. Bolstered physical defences under nutrient-enriched conditions may facilitate a secondary foundational algal species in the South Pacific. J. Ecol. 2016, 104, 646–653. [Google Scholar] [CrossRef]
- Hay, M. The Functional Morphology of Turf-Forming Seaweeds: Persistence in Stressful Marine Habitats. Ecology 1981, 62, 739–750. [Google Scholar] [CrossRef]
- Yñiguez, A.; McManus, J.; Collado-Vides, L. Capturing the dynamics in benthic structures: Environmental effects on morphology in the macroalgal genera Halimeda and Dictyota. Mar. Ecol. Prog. Ser. 2010, 411, 17–32. [Google Scholar] [CrossRef]
- Charrier, B.; Le Bail, A.; de Reviers, B. Plant Proteus: Brown algal morphological plasticity and underlying developmental mechanisms. Trends Plant Sci. 2012, 17, 468–477. [Google Scholar] [CrossRef]
- Schaum, C.E.; Collins, S. Plasticity predicts evolution in a marine alga. Proc. R. Soc. B Biol. Sci. 2014, 281, 20141486. [Google Scholar]
- Graham, M.H.; Vasquez, J.A.; Buschmann, A.H. Global ecology of the giant kelp Macrocystis: From ecotypes to ecosystems. Oceanogr. Mar. Biol. 2007, 45, 39. [Google Scholar]
- Yun, H.Y.; Molis, M. Comparing the ability of a non-indigenous and a native seaweed to induce anti-herbivory defenses. Mar. Biol. 2012, 159, 1475–1484. [Google Scholar] [CrossRef]
- Fordyce, J.A. The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. J. Exp. Biol. 2006, 209, 2377–2383. [Google Scholar] [CrossRef]
- Steneck, R.S. Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology 1983, 9, 44–61. [Google Scholar] [CrossRef]
- Kennish, R.; Williams, G.A.; Lee, S.Y. Algal seasonality on an exposed rocky shore in Hong Kong and the dietary implications for the herbivorous crab Grapsus albolineatus. Mar. Biol. 1996, 125, 55–64. [Google Scholar] [CrossRef]
- Johnson, M.D.; Carpenter, R.C. Ocean acidification and warming decrease calcification in the crustose coralline alga Hydrolithon onkodes and increase susceptibility to grazing. J. Exp. Mar. Biol. Ecol. 2012, 434, 94–101. [Google Scholar]
- Borowitzka, M.A.; Vesk, M. Ultrastructure of the corallinaceae. I. The vegetative cells of Corallina officinalis and C. cuvierii. Mar. Biol. 1978, 46, 295–304. [Google Scholar] [CrossRef]
- Van Alstyne, K.L.; Pelletreau, K.N.; Kirby, A. Nutritional preferences override chemical defenses in determining food choice by a generalist herbivore, Littorina sitkana. J. Exp. Mar. Biol. Ecol. 2009, 379, 85–91. [Google Scholar] [CrossRef]
- Schai-Braun, S.C.; Reichlin, T.S.; Ruf, T.; Klansek, E.; Tataruch, F.; Arnold, W.; Hackländer, K. The European Hare (Lepus europaeus): A Picky Herbivore Searching for Plant Parts Rich in Fat. PLoS ONE 2015, 10, e0134278. [Google Scholar] [CrossRef]
- Cebrian, J.; Shurin, J.B.; Borer, E.; Cardinale, B.J.; Ngai, J.T.; Smith, M.D.; Fagan, W.F. Producer Nutritional Quality Controls Ecosystem Trophic Structure. PLoS ONE 2009, 4, e4929. [Google Scholar] [CrossRef]
- Angell, A.R.; Pirozzi, I.; De Nys, R.; Paul, N.A. Feeding Preferences and the Nutritional Value of Tropical Algae for the Abalone Haliotis asinina. PLoS ONE 2012, 7, e38857. [Google Scholar] [CrossRef]
- Lemoine, N.P.; Giery, S.T.; Burkepile, D.E. Differing nutritional constraints of consumers across ecosystems. Oecologia 2014, 174, 1367–1376. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Dai, Z.; Li, D.; Wang, J.; Wu, Z. Amino Acid Nutrition in Animals: Protein Synthesis and Beyond. Annu. Rev. Anim. Biosci. 2014, 2, 387–417. [Google Scholar] [CrossRef]
- Shepherd, S.A.; Steinberg, P.D. Food preferences of three abalone species with a review of the food of abalone. In Abalone of The World: Biology, Fisheries and Culture; Shepherd, S.A., Tegner, M.J., Guzman del Proo, S.A., Eds.; Blackwell Scientific: Oxford, UK, 1992; pp. 169–181. [Google Scholar]
- Adin, R.; Riera, P. Preferential food source utilization among stranded macroalgae by Talitrus saltator (Amphipod, Talitridae): A stable isotopes study in the northern coast of Brittany (France). Estuar. Coast. Shelf Sci. 2003, 56, 91–98. [Google Scholar] [CrossRef]
- Barile, P.J.; E Lapointe, B.; Capo, T.R. Dietary nitrogen availability in macroalgae enhances growth of the sea hare Aplysia californica (Opisthobranchia: Anaspidea). J. Exp. Mar. Biol. Ecol. 2004, 303, 65–78. [Google Scholar] [CrossRef]
- Quintanilla-Ahumada, D.; Quijón, P.A.; Navarro, J.M.; Pulgar, J.; Duarte, C. Living on a trophic subsidy: Algal quality drives an upper-shore herbivore’s consumption, preference and absorption but not growth rates. PLoS ONE 2018, 13, e0196121. [Google Scholar]
- Renaud, S.M.; Luong-Van, J.T. Seasonal variation in the chemical composition of tropical Australian marine macroalgae. Proc. Eighteenth Int. Seaweed Symp. 2006, 1, 155–161. [Google Scholar] [CrossRef]
- Bleakley, S.; Hayes, M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods 2017, 6, 33. [Google Scholar] [CrossRef]
- Endo, H.; Suehiro, K.; Kinoshita, J.; Agatsuma, Y. Combined Effects of Temperature and Nutrient Enrichment on Palatability of the Brown Alga Sargassum yezoense (Yamada) Yoshida & T. Konno. Am. J. Plant Sci. 2015, 6, 275–282. [Google Scholar] [CrossRef]
- Hauxwell, J.; McClelland, J.; Behr, P.J.; Valiela, I. Relative Importance of Grazing and Nutrient Controls of Macroalgal Biomass in Three Temperate Shallow Estuaries. Estuaries 1998, 21, 347–360. [Google Scholar] [CrossRef]
- Vergés, A.; Alcoverro, T.; Romero, J. Plant defences and the role of epibiosis in mediating within-plant feeding choices of seagrass consumers. Oecologia 2010, 166, 381–390. [Google Scholar] [CrossRef]
- Jiménez-Ramos, R.; Brun, F.G.; Egea, L.G.; Vergara, J.J. Food choice effects on herbivory: Intra-specific seagrass palatability and inter-specific macrophyte palatability in seagrass communities. Estuarine, Coast. Shelf Sci. 2018, 204, 31–39. [Google Scholar] [CrossRef]
- Bradley, D.J.; Boada, J.; Gladstone, W.; Glasby, T.M.; Gribben, P.E. Sublethal effects of a rapidly spreading native alga on a key herbivore. Ecol. Evol. 2021, 11, 12605–12616. [Google Scholar] [CrossRef]
- Duarte, C.; Acuña, K.; Navarro, J.M.; Gómez, I.; Jaramillo, E.; Quijón, P. Variable feeding behavior in Orchestoidea tuberculata (Nicolet 1849): Exploring the relative importance of macroalgal traits. J. Sea Res. 2014, 87, 1–7. [Google Scholar] [CrossRef]
- Lyons, D.A.; Scheibling, R.E. Effect of dietary history and algal traits on feeding rate and food preference in the green sea urchin Strongylocentrotus droebachiensis. J. Exp. Mar. Biol. Ecol. 2007, 349, 194–204. [Google Scholar] [CrossRef]
- Duarte, C.; Acuña, K.; Navarro, J.M.; Gómez, I. Intra-plant differences in seaweed nutritional quality and chemical defenses: Importance for the feeding behavior of the intertidal amphipod Orchestoidea tuberculata. J. Sea Res. 2011, 66, 215–221. [Google Scholar] [CrossRef]
- You, C.; Zeng, F.; Wang, S.; Li, Y. Preference of the herbivorous marine teleost Siganus canaliculatus for different macroalgae. J. Ocean Univ. China 2014, 13, 516–522. [Google Scholar] [CrossRef]
- Tomas, F.; Box, A.; Terrados, J. Effects of invasive seaweeds on feeding preference and performance of a keystone Mediterranean herbivore. Biol. Invasions 2010, 13, 1559–1570. [Google Scholar] [CrossRef]
- Chan, A.; Lubarsky, K.; Judy, K.; Fong, P. Nutrient addition increases consumption rates of tropical algae with different initial palatabilities. Mar. Ecol. Prog. Ser. 2012, 465, 25–31. [Google Scholar] [CrossRef]
- Shantz, A.; Ladd, M.; Burkepile, D. Algal nitrogen and phosphorus content drive inter- and intraspecific differences in herbivore grazing on a Caribbean reef. J. Exp. Mar. Biol. Ecol. 2017, 497, 164–171. [Google Scholar] [CrossRef]
- Cacabelos, E.; Olabarria, C.; Incera, M.; Troncoso, J.S. Do grazers prefer invasive seaweeds? J. Exp. Mar. Biol. Ecol. 2010, 393, 182–187. [Google Scholar]
Major Groups | Pigments | Cell Wall | Storage Components |
---|---|---|---|
Red algae (Rhodophytes) | Chlorophyll a (d in some Florideophyceae), R- and C- phycocyanin, allophycocyanin, R- and B-phycoerythrin, Alpha- and Beta-carotene, xanthophylls | Cellulose, xylans, galactan, alginate in corallinaceae | Floridean starch |
Brown algae (Phaeophytes) | Chlorophyll a, c, Beta-carotene, fucoxanthin, xanthophylls | Cellulose, alginic acid, fucoidan | Laminaran, mannitol |
Green algae (Chlorophytes) | Chlorophyll a, b, Alpha-, Beta- and Gamma- carotene, xantophylls | Cellulose, hydroxyproline glucosides, xylans, mannans, absent wall, calcified in some | Starch, oil |
Location | Autotroph(s) | Herbivore(s) | Key Findings | Reference |
---|---|---|---|---|
Australia | Algal turfs | Herbivorous fishes (Acanthuridae, Scaridae and Siganidae) | Fish response mechanisms to habitat-specific differences in food production remain unclear | [112] |
Caribbean and Brazil | Macroscopic algae | Herbivorous fishes (Acanthuridae and Scaridae) | Temperature-related feeding processes are most likely involved in the distribution patterns of herbivores | [113] |
Caribbean-Florida | Sea grass beds | Herbivorous fishes (Acanthuridae, Scaridae, and Pomacentridae) | Robust herbivorous fish assemblages can limit reefs from further macroalgal domination | [114] |
Colombia | Macroalgae | Herbivorous fishes (Gobiidae, Pomacentridae, Labridae, Mugilidae, Labrisomidae, Gobiesocidae and Muraenidae) | Small crustacean prey items dominated the diets of most species. Macroalgae and diatoms consumption by a significant number of species was also observed | [115] |
Caribbean | Algal turfs | Herbivorous fishes (Acanthuridae and Scaridae) | Herbivores in promoting reef recovery and resilience may depend on their feeding preferences, abundance, and biomass | [116] |
Red Sea | Macroalgae | Sea urchins and herbivorous fish | Herbivores as a crucial top-down factor in controlling both benthic algal biomass and composition | [117] |
Japan | Algal beds (kelp) | Herbivorous fishes (Acanthuridae and Scaridae) | The importance of temperature-mediated fish herbivory in limiting the development of kelp populations in southern Japan is confirmed | [118] |
Mediterranean Sea | Algae | Herbivorous fishes (Acanthuridae) | Expansion of tropical rabbitfishes poses a major threat to shallow water Mediterranean ecosystems | [118] |
Portugal | Seagrass | Mesograzers (Amphipod and isopod) | Intraspecific variation should not be ignored when classifying a single seagrass species with respect to herbivory vulnerability. Seagrass structural traits confer mechanical resistance | [119] |
Baltic Sea | Phytoplankton | Predatory zooplankton | Role of zooplankton filter feeders in controlling the development of phytoplankton | [120] |
Malaysia | Macroalgae | Herbivorous fish (Chanidae) | Feeding behaviour of a herbivore could be influenced by the nutritional quality, morphology, and geography of the autotrophs | [39] |
Nutrient | Marine Autotroph(s) | Marine Herbivore(s) | Ref(s) |
---|---|---|---|
Protein | Bull kelp (Durvillaea antarctica) | Talitrid amphipod (Orchestoidea tuberculate) | [25] |
Blade tissue of bull kelp (Durvillaea antarctica) | Talitrid amphipod (Orchestoidea tuberculate) | [167] | |
Red algae (Asparagopsis taxiformis) | Abalone (Haliotis asinina) | [151] | |
Grey weed (Lessonia nigrescens) | Talitrid amphipod (Orchestoidea tuberculate) | [48] | |
Green seaweeds | White-spotted rabbitfish (Siganus canaliculatus) | [168] | |
Brown algae (Sargassum spp.) | Marine isopod (Idotea baltica), periwinkle (Littorina littorea), and green sea urchin (Psammechinus miliaris) | [29] | |
Epiphytic red algae | Butterfish (Odax pullus) | [26] | |
Bull kelp (Durvillea antarctica) | Sea snail (Diloma nigerrima) | [157] | |
Nitrogen | Sea grapes (Caulerpa racemosa) | Purple sea urchin (Paracentrotus lividus) | [169] |
Brown forkweed (Dictyota dichotoma) | Long-spined sea urchin (Diadema antillarum) and herbivorous fishes | [170] | |
Brown algae (Sargassum yezoense) | Sea urchin (Hemicetrotus pulcherrimus) | [160] | |
Apical portions of brown algae fronds (Sargassum spp.) | Parrotfish (Sparisoma aurofrenatum and Sparisoma chrysopterum) | [171] | |
Green algae (Ulva spp.) | Purple sea urchin (Paracentrotus lividus) | [163] | |
Marine macroalgal species near Malaysian waters | Milkfish (Chanos chanos) | [39] | |
Carbon | Sea grapes (Caulerpa racemosa) | Purple sea urchin (Paracentrotus lividus) | [169] |
Macrophyte species in Northwestern Europe | Ringed China-mark (Parapoynx stratiotata | [12] | |
Seagrass (Cymodocea nodosa) | Purple sea urchin (Paracentrotus lividus) | [163] | |
Phosphorus | Macrophyte species in Northwestern Europe | Ringed China-mark (Parapoynx stratiotata | [12] |
Apical portions of brown algae fronds (Sargassum spp.) | Surgeonfish (Acanthurus coeruleus) and parrotfish (Sparisoma rubripinne and Sparisoma chrysopterum) | [171] | |
Marine macroalgal species near Malaysian waters | Milkfish (Chanos chanos) | [39] | |
Total phenolic | Bull kelp (Durvillaea antarctica) | Talitrid amphipod (Orchestoidea tuberculate) | [25] |
Bladder wrack (Fucus vesiculosus) | Flat periwinkle (Littorina obtusata) | [172] | |
Bull kelp (Durvillaea antarctica) | Talitrid amphipod (Orchestoidea tuberculate) | [25] | |
Marine macroalgal species near Malaysian waters | Milkfish (Chanos chanos) | [39] | |
Secondary metabolites | Bull kelp (Durvillaea antarctica) | Talitrid amphipod (Orchestoidea tuberculate) | [25] |
Brown algae (Sargassum yezoense) | Sea urchin (Hemicetrotus pulcherrimus) | [160] | |
Brown algae (Sargassum muticum) | Periwinkle (Littorina littorea), and green sea urchin (Psammechinus miliaris) | [29] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, A.; Lim, W.Y.; Lim, P.-E.; Yang Amri, A.; Poong, S.-W.; Song, S.-L.; Ilham, Z. Marine Autotroph-Herbivore Synergies: Unravelling the Roles of Macroalgae in Marine Ecosystem Dynamics. Biology 2022, 11, 1209. https://doi.org/10.3390/biology11081209
Cheng A, Lim WY, Lim P-E, Yang Amri A, Poong S-W, Song S-L, Ilham Z. Marine Autotroph-Herbivore Synergies: Unravelling the Roles of Macroalgae in Marine Ecosystem Dynamics. Biology. 2022; 11(8):1209. https://doi.org/10.3390/biology11081209
Chicago/Turabian StyleCheng, Acga, Wai Yin Lim, Phaik-Eem Lim, Affendi Yang Amri, Sze-Wan Poong, Sze-Looi Song, and Zul Ilham. 2022. "Marine Autotroph-Herbivore Synergies: Unravelling the Roles of Macroalgae in Marine Ecosystem Dynamics" Biology 11, no. 8: 1209. https://doi.org/10.3390/biology11081209
APA StyleCheng, A., Lim, W. Y., Lim, P.-E., Yang Amri, A., Poong, S.-W., Song, S.-L., & Ilham, Z. (2022). Marine Autotroph-Herbivore Synergies: Unravelling the Roles of Macroalgae in Marine Ecosystem Dynamics. Biology, 11(8), 1209. https://doi.org/10.3390/biology11081209