Effects of a Single Bout of Endurance Exercise on Brain-Derived Neurotrophic Factor in Humans: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Eligibility Criteria and Study Selection
2.2. Search Strategy
2.3. Study Variables and Data Extraction
2.4. Risk of Bias Assessment
2.5. Quantitative Analysis
3. Results
3.1. Study Selection and Characteristics
3.2. Study Quality Assessment and Publication Evaluation
3.3. Subjects Characters
3.4. Characteristics of Endurance Exercise
3.5. Effect of Endurance Exercise on BDNF Expression
3.6. Subgroup Analysis for BDNF in Peripheral Blood
3.7. Subgroup Analysis for Subjects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferris, L.T.; Williams, J.S.; Shen, C.L. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med. Sci. Sports Exerc. 2007, 39, 728–734. [Google Scholar] [CrossRef]
- Meeusen, R. Exercise, nutrition and the brain. Sports Med. 2014, 44, S47–S56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lippi, G.; Mattiuzzi, C.; Sanchis-Gomar, F. Updated overview on interplay between physical exercise, neurotrophins, and cognitive function in humans. J. Sport Health Sci. 2020, 9, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Wrann, C.D.; White, J.P.; Salogiannnis, J.; Laznik-Bogoslavski, D.; Wu, J.; Ma, D.; Lin, J.D.; Greenberg, M.E.; Spiegelman, B.M. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013, 18, 649–659. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, R.D.; Zeni, L.; Haniu, M.; Talvenheimo, J.; Welcher, A.A. Purification and Identification of Brain-Derived Neurotrophic Factor from Human Serum. Protein Expres. Purif. 1995, 6, 465–471. [Google Scholar] [CrossRef]
- Seifert, T.; Brassard, P.; Wissenberg, M.; Rasmussen, P.; Nordby, P.; Stallknecht, B.; Adser, H.; Jakobsen, A.H.; Pilegaard, H.; Nielsen, H.B.; et al. Endurance training enhances BDNF release from the human brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, R372–R377. [Google Scholar] [CrossRef] [Green Version]
- Knaepen, K.; Goekint, M.; Heyman, E.M.; Meeusen, R.; Kristel, K. Neuroplasticity: The effect of acute and training on peripheral brain-derived neurotrophic factor. A systematic review of experimental studies in human subjects. Sports Med. 2010, 9, 765–801. [Google Scholar] [CrossRef] [PubMed]
- Molteni, R.; Ying, Z.; Gómez-Pinilla, F. Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. Eur. J. Neurosci. 2015, 16, 1107–1116. [Google Scholar] [CrossRef] [Green Version]
- Arazi, H.; Babaei, P.; Moghimi, M.; Asadi, A. Acute effects of strength and endurance exercise on serum BDNF and IGF-1 levels in older men. BMC Geriatr. 2021, 21, 50. [Google Scholar] [CrossRef]
- Erickson, K.I.; Voss, M.W.; Prakash, S.R.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef]
- Cariati, I.; Bonanni, R.; Pallone, G.; Romagnoli, C.; Rinaldi, A.M.; Annino, G.; D’Arcangelo, G.; Tancredi, V. Whole Body Vibration improves brain and musculoskeletal health by modulating the expression of tissue-specific markers: FNDC5 as a key regulator of vibration daptations. Int. J. Mol. Sci. 2022, 23, 10388. [Google Scholar] [CrossRef]
- Behrendt, T.; Kirschnick, F.; Kroger, L.; Beileke, P.; Rezepin, M.; Brigadski, T.; Lessmann, V.; Schega, L. Comparison of the effects of open vs. closed skill exercise on the acute and chronic BDNF, IGF-1 and IL-6 response in older healthy adults. BMC Neurosci. 2021, 22, 71. [Google Scholar] [CrossRef] [PubMed]
- Schiffer, T.; Schulte, S.; Hollmann, W.; Bloch, W.; Struder, H.K. Effects of strength and endurance training on brain-derived neurotrophic factor and insulin-like growth factor 1 in humans. Horm. Metab. Res. 2009, 41, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Banitalebi, E.; Ghahfarrokhi, M.M.; Negaresh, R.; Kazemi, A.; Faramarzi, M.; Motl, R.W.; Zimmer, P. Exercise improves neurotrophins in multiple sclerosis independent of disability status. Mult. Scler. Relat. Disord. 2020, 43, 102143. [Google Scholar] [CrossRef]
- Cho, H.C.; Kim, J.; Kim, S.; Son, Y.H.; Lee, N.; Jung, S.H. The concentrations of serum, plasma and platelet BDNF are all increased by treadmill VO₂max performance in healthy college men. Neurosci. Lett. 2012, 519, 78–83. [Google Scholar] [CrossRef]
- Zoladz, J.A.; Pilc, A. The effect of physical activity on the brain derived neurotrophic factor: From animal to human studies. J. Physiol. Pharmacol. 2010, 61, 533–541. [Google Scholar]
- Rodziewicz, E.; Król-Zielińska, M.; Zieliński, J.; Kusy, K.; Ziemann, E. Plasma Concentration of Irisin and Brain-Derived-Neurotrophic Factor and their association with the level of Erythrocyte Adenine Nucleotides in response to long-term endurance training at rest and after a single bout of exercise. Front. Physiol. 2020, 11, 923. [Google Scholar] [CrossRef] [PubMed]
- Arosio, B.; Guerini, F.R.; Voshaar, R.; Aprahamian, I. Blood Brain-Derived Neurotrophic Factor (BDNF) and Major Depression: Do We Have a Translational Perspective? Front. Behav. Neurosci. 2021, 15, 626906. [Google Scholar] [CrossRef]
- Page, M.J.; Mckenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Moher, D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 10, 72. [Google Scholar]
- Zlibinaite, L.; Skurvydas, A.; Kilikeviciene, S.; Solianik, R. Two Months of Using Global Recommendations for Physical Activity Had No Impact on Cognitive or Motor Functions in Overweight and Obese Middle-Aged Women. J. Phys. Act. Health 2020, 18, 52–60. [Google Scholar] [CrossRef]
- Bansi, J.; Bloch, W.; Gamper, U.; Kesselring, J. Training in MS: Influence of two different endurance training protocols (aquatic versus overland) on cytokine and neurotrophin concentrations during three week randomized controlled trial. Mult. Scler. 2013, 19, 613–621. [Google Scholar] [CrossRef]
- Cashin, A.G.; Mcauley, J.H. Clinimetrics: Physiotherapy Evidence Database (PEDro) Scale. J. Physiother. 2019, 1, 66. [Google Scholar] [CrossRef] [PubMed]
- Lang, P.O.; Enette, L.; Vogel, T.; Fanon, J.L. Effect of interval and continuous aerobic training on basal serum and plasma BDNF values in seniors A systematic review of intervention studies. Rejuvenation Res. 2017, 6, 473–483. [Google Scholar]
- Maczyńska-Sims, P.; Chalimoniuk, M.; Suek, A. The effect of endurance training on Brain-Derived Neurotrophic Factor and inflammatory markers in healthy people and Parkinson’s Disease. A Narrative Review. Front. Physiol. 2020, 11, 578981. [Google Scholar] [CrossRef] [PubMed]
- Górna, S.; Domaszewska, K. The effect of endurance training on serum BDNF levels in the chronic Post-Stroke Phase: Current evidence and qualitative systematic review. J. Clin. Med. 2022, 11, 3556. [Google Scholar] [CrossRef] [PubMed]
- Marinus, N.; Hansen, D.; Feys, P.; Meesen, R.; Spildooren, J. The impact of different types of exercise training on peripheral blood Brain-Derived Neurotrophic Factor concentrations in older adults: A meta-analysis. Sports Med. 2019, 49, 1529–1546. [Google Scholar] [CrossRef]
- Feter, N.; Alt, R.; Dias, M.; Rombaldi, A. How do different physical exercise parameters modulate brain-derived neurotrophic factor in healthy and non-healthy adults? A systematic review, meta-analysis and meta-regression. Sci. Sports 2019, 34, 293–304. [Google Scholar] [CrossRef]
- Ruiz-González, D.; Hernández-Martínez, A.; Valenzuela, P.L.; Morales, J.S.; Soriano-Maldonado, A. Effects of physical exercise on plasma brain-derived neurotrophic factor in neurodegenerative disorders: A systematic review and meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev. 2021, 128, 394–405. [Google Scholar] [CrossRef]
- Mackay, C.P.; Kuys, S.S.; Brauer, S.G. The effect of aerobic exercise on Brain-Derived Neurotrophic Factor in people with neurological disorders: A systematic review and meta-analysis. Neural Plast. 2017, 2017, 4716197. [Google Scholar] [CrossRef] [Green Version]
- Numakawa, T.; Odaka, H.; Adachi, N. Actions of Brain-Derived Neurotrophin Factor in the Neurogenesis and Neuronal Function, and Its Involvement in the Pathophysiology of Brain Diseases. Int. J. Mol. Sci. 2018, 19, 3650. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, M.A.; Wegen, E.V.; Newman, M.A.; Heyn, P.C. Exercise-induced increase in brain-derived neurotrophic factor in human Parkinson’s disease: A systematic review and meta-analysis. Transl. Neurodegener. 2018, 7, 7–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bansi, J.; Bloch, W.; Gamper, U.; Riedel, S.; Kesselring, J. Endurance training in MS: Short-term immune responses and their relation to cardiorespiratory fitness, health-related quality of life, and fatigue. J. Neurol. 2013, 260, 2993–3001. [Google Scholar] [CrossRef] [PubMed]
- Saucedo Marquez, C.M.; Vanaudenaerde, B.; Troosters, T.; Wenderoth, N. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. J. Appl. Physiol. 2015, 119, 1363–1373. [Google Scholar] [CrossRef]
- Wewege, M.; Ward, R.E.; Keech, A.; van den Berg, R. The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: A systematic review and meta-analysis. Obes. Rev. 2017, 18, 635–646. [Google Scholar] [CrossRef]
- Ross, L.M.; Porter, R.R.; Durstine, J.L. High-intensity interval training (HIIT) for patients with chronic diseases. J. Sport Health Sci. 2016, 2, 139–144. [Google Scholar] [CrossRef] [PubMed]
Study | Subjects (Female) | Age (y) ± SD | Height (cm) ± SD | Weight (kg) ± SD | BDNF | Volume (mL) | Location | Exercise Type (Treatment) | Time (min) | Sports Intensity | Main Outcome (BDNF pg/mL) ± SD |
---|---|---|---|---|---|---|---|---|---|---|---|
Ferris et al. [1] | 15(11) | 25.4 ± 1.0 | 174.7 ± 1.9 | 71.0 ± 3.1 | Serum | 10 | Antecubital vein | Cycling (treatment) | 30 | Vth plus 10% vs. Vth minus 20% | 10%: 21,000 ± 2000) |
20%: 20,000(2000) | |||||||||||
Erickson et al. [10] | WE: 60 (44) ST: 60 (36) | 67.6 ± 5.81 65.5 ± 5.44 | - | - | Serum | - | Antecubital vein | Walk (treatment) vs. Stretching | 40 | 50–6 0% to 60–7 5% MHRR | E: 23.77 ± 8.04 |
C: 24.04 ± 10.83 | |||||||||||
Arazi et al. [9] | E: 10 (0) S: 10 (0) | 60.7 ± 1.7 60.8 ± 1.8 | 181 ± 5.4 177.8 ± 8.9 | 85.9 ± 13.4 90.6 ± 16 | Serum | 10 | Antecubital vein | Running (treatment) vs. Resistance training | 30 | 65–70% MHR | E: 4.68 ± 3.9 |
C: 3.21 ± 0.29 | |||||||||||
Behrendt et al. [12] | AG: 24 (12) CG: 14 (6) | 65.83 ± 5.98 67.07 ± 2.37 | 173 ± 10 168 ± 8 | 84.05 ± 16.51 76.84 ± 12.69 | Plasma | - | Median cubital vein or Cephalic vein | Badminton (OSE) Bicycling Control | 30 | 60 ± 5% HRR | aOSE: 1894.63 ± 780 |
aCSE: 1682.04 ± 807.15 | |||||||||||
CG: 1950.14 ± 1043.07 | |||||||||||
Seifert et al. [6] | E: 7 (0) CG: 5 (0) | 29 ± 6.0 31 ± 7.0 | 181 ± 6 184 ± 7 | 90.1 ± 7.7 96.2 ± 7.7 | Plasma | - | Arterial and internal jugular venous | Cycling, running, swimming, and rowing (treatment) vs. Sedentary lifestyle | 60 | 70% of MHR or 65% of VO2max | E: 4.4 ± 2.4 |
C: 1.3 ± 0.3 | |||||||||||
Schiffer et al. [13] | E: 9 (0) S: 9 (0) CG: 9 (0) | 23 ± 1.7 22 ± 1.6 22 ± 2.3 | 184 ± 2.7 183 ± 6.6 183 ± 7.5 | 82 ± 8.6 77 ± 6.8 75 ± 8.2 | Plasma | - | Cubital vein | Running vs. Strength training vs. Control group | 45 | 80% of HR | E: 128.4 ± 90.2 |
S: 136 ± 109 | |||||||||||
C: 102.2 ± 108.7 | |||||||||||
Zlibinaite et al. [20] | E: 17 (0) | 44.8 ± 6.5 | 94.3 ± 12.3 | Serum | 5 | Vein | Graded increased cycling exercise | 4–1 3 | 100% of MHR | E: 1500 ± 200 | |
CG: 16 (0) | 48.8 ± 5.3 | 91.3 ± 19.9 | C: 1200 ± 900 | ||||||||
Bansi et al. [21] | ELG: 28 (13) EWG: 24 (17) | 51.64 ± 7.49 49.89 ± 8.27 | 166.14 ± 3.4 169.57 ± 4.7 | 69.11 ± 6.95 69.36 ± 9.61 | Serum | - | Antecubital vein | Cycling vs. Aquatic cycling | 30 | 70% of MHR or 60% of VO2max | E: 17,138.13 ± 7284.54 |
C: 16,520.1 ± 6326.37 | |||||||||||
C: 1200 ± 900 | |||||||||||
Age group | |||||||||||
Young adults | 60 (11) | 24.85 ± 4.51 | 180.69 ± 6.53 | 79.81 ± 10.81 | |||||||
Experimental group | 31 (11) | 25.52 ± 3.75 | 178.82 ± 5.39 | 78.51 ± 10.03 | |||||||
Control group | 29 (11) | 25.31 ± 4.43 | 178.88 ± 6.83 | 76.89 ± 10.92 | |||||||
Middle adults | 85 (30) | 49.24 ± 7.58 | 167.72 ± 4.40 | 78.40 ± 16.74 | |||||||
Experimental group | 45 (13) | 49.05 ± 7.87 | 166.14 ± 3.4 | 78.63 ± 15.37 | |||||||
Control group | 40 (17) | 49.45 ± 7.25 | 169.57 ± 4.7 | 78.14 ± 8.15 | |||||||
Older adults | 178 (98) | 65.84 ± 5.57 | 174 ± 9.78 | 83.76 ± 15.72 | |||||||
Experimental group | 94 (56) | 66.41 ± 5.95 | 175.35 ± 9.62 | 84.59 ± 15.68 | |||||||
Control group | 84 (42) | 65.20 ± 5.04 | 172.08 ± 9.68 | 82.57 ± 15.7 | |||||||
Group | |||||||||||
Experimental group | 170 (80) | 54.36 ± 16.65 | 173.55 ± 9.00 | 81.90 ± 15.03 | |||||||
Control group | 153 (70) | 40.52 ± 16.17 | 172.71 ± 8.72 | 80.33 ± 13.47 | |||||||
Overall | 323 (150) | 54.41 ± 16.30 | 173.46 ± 9.17 | 81.65 ± 15.48 |
Author Year | Random Allocation | Concealed Allocation | Baseline Comparability | Blind Subjects | Blind Therapists | Blind Assessors | Adequate Following-Up | Intention-to-Treat Analysis | Between-Group Comparison | Point Estimates and Variability | Total (0–10 Score) |
---|---|---|---|---|---|---|---|---|---|---|---|
Young adults | |||||||||||
Ferris et al. [1] | Yes | No | No | Yes | No | Yes | No | Yes | Yes | Yes | 6 |
Schiffer et al. [13] | Yes | Yes | Yes | Yes | No | Yes | No | Yes | Yes | Yes | 8 |
Seifert et al. [6] | Yes | Yes | Yes | Yes | No | Yes | No | Yes | Yes | Yes | 8 |
Middle adults | |||||||||||
Bansi et al. [21] | Yes | Yes | Yes | No | No | Yes | Yes | No | Yes | Yes | 7 |
Zlibinaite et al. [20] | Yes | No | Yes | No | No | No | Yes | No | Yes | Yes | 5 |
Older adults | |||||||||||
Erickson et al. [10] | Yes | Yes | No | No | No | No | No | No | Yes | Yes | 4 |
Arazi et al. [9] | Yes | Yes | Yes | No | No | No | No | No | Yes | Yes | 5 |
Behrendt et al. [12] | Yes | Yes | Yes | Yes | No | Yes | No | Yes | Yes | Yes | 8 |
Experimental | Control | Std. Mean Difference | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Study or Subgroup | Mean | SD | Total | Mean | SD | Total | Weight | IV, Random, 95% CI | |||
Arazi et al. [9] | 4.68 | 3.9 | 10 | 3.21 | 0.29 | 10 | 6.20% | 0.51 | [−0.38, 1.40] | ||
Bansi et al. [21] 2012 | 17,138.1 | 4662.6 | 28 | 16,520.1 | 44,013.9 | 24 | 16.50% | 0.14 | [−0.41, 0.69] | ||
Behrendt et al. [12] | 1894.63 | 780 | 24 | 19,540.14 | 1043.07 | 14 | 11.30% | −0.06 | [−0.72, 0.60] | ||
Erickson et al. [10] | 23.77 | 8.04 | 60 | 21.32 | 9.32 | 60 | 38.10% | 0.28 | [−0.08, 0.64] | ||
Ferris et al. [1] | 21,000 | 2000 | 15 | 20,000 | 2000 | 15 | 9.30% | 0.49 | [−0.24, 1.21] | ||
Schiffer et al. [13] | 128.4 | 90.2 | 9 | 102.2 | 108.7 | 9 | 5.70% | 0.25 | [−0.68, 1.18] | ||
Seifert et al. [6] | 4.4 | 2.4 | 7 | 1.3 | 0.3 | 5 | 2.6 | 1.53 | [0.16, 2.90] | ||
Zlibinaite et al. [20] | 1500 | 200 | 17 | 1200 | 900 | 16 | 10.30% | 0.46 | [−0.24, 1.15] | ||
Total (95% CI) | 170 | 153 | 100.00% | 0.3 | [0.08, 0.52] | ||||||
Heterogeneity: Tau2 = 0.00; Chi2 = 5.27, df = 7 (p = 0.63); I2 = 0% | |||||||||||
Test for overall effect: Z = 2.65 (p = 0.008) |
Experimental | Control | Std.Mean Difference | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Study or Subgroup | Mean | SD | Total | Mean | SD | Total | Weight | IV, Random, 95% CI | ||||
1.1.1 Serum | ||||||||||||
Arazi et al. [9] | 4.68 | 3.9 | 10 | 3.21 | 0.29 | 10 | 6.20% | 0.51 | [−0.38, 1.40] | |||
Behrendt et al. [12] | 1894.63 | 780 | 24 | 19,540.14 | 1043.07 | 14 | 11.30% | −0.06 | [−0.72, 0.60] | |||
Erickson et al. [10] | 23.77 | 8.04 | 60 | 21.32 | 9.32 | 60 | 38.10% | 0.28 | [−0.08, 0.64] | |||
Ferris et al. [1] | 21,000 | 2000 | 15 | 20,000 | 2000 | 15 | 9.30% | 0.49 | [−0.24, 1.21] | |||
Zlibinaite et al. [20] | 1500 | 200 | 17 | 1200 | 900 | 16 | 10.30% | 0.46 | [−0.24, 1.15] | |||
Subtotal (95% CI) | 126 | 115 | 75.10% | 0.3 | [0.04, 0.55] | |||||||
Heterogeneity: Chi2 = 1.82, df = 4 (p = 0.77); I2 = 0% | ||||||||||||
Test for overall effect: Z = 2.27 (p = 0.02) | ||||||||||||
1.1.2 Plasma | ||||||||||||
Bansi et al. [21] | 17,138.1 | 4662.6 | 28 | 16,520.1 | 44,013.9 | 24 | 16.50% | 0.14 | [−0.41, 0.69] | |||
Schiffer et al [13] | 128.4 | 90.2 | 9 | 102.2 | 108.7 | 9 | 5.70% | 0.25 | [−0.68, 1.18] | |||
Seifert et al [6] | 4.4 | 2.4 | 7 | 1.3 | 0.3 | 5 | 2.6 | 1.53 | [0.16, 2.90] | |||
Subtotal (95% CI) | 44 | 38 | 24,9% | 0.31 | [−0.13, 0.76] | |||||||
Heterogeneity: Chi2 = 3.45, df = 2 (p = 0.18); I2 = 42% | ||||||||||||
Test for overall effect: Z = 1.37 (p = 0.17) | ||||||||||||
Total (95% CI) | 170 | 153 | 100.00% | 0.3 | [0.08, 0.52] | |||||||
Heterogeneity: Chi2 = 5.27, df = 7 (p = 0.63); I2 = 0% | ||||||||||||
Test for overall effect: Z = 2.65 (p = 0.008) | ||||||||||||
Test for subgroup differerence: Chi2 = 0.00, df = 1 (p = 0.95); I2 = 0% |
Experimental | Control | Std. Mean Difference | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Study or Subgroup | Mean | SD | Total | Mean | SD | Total | Weight | IV, Random, 95% CI | ||||
1.2.1 Yong adult | ||||||||||||
Ferris et al. [1] | 21,000 | 2000 | 15 | 20,000 | 2000 | 15 | 9.30% | 0.49 | [−0.24, 1.21] | |||
Schiffer et al. [13] | 128.4 | 90.2 | 9 | 102.2 | 108.7 | 9 | 5.70% | 0.25 | [−0.68, 1.18] | |||
Seifert et al. [6] | 4.4 | 2.4 | 7 | 1.3 | 0.3 | 5 | 2.6 | 1.53 | [0.16, 2.90] | |||
Subtotal (95% CI) | 31 | 29 | 19.90% | 0.59 | [−0.01, 1.18] | |||||||
Heterogeneity: Tau2 = 0.05; Chi2 = 2.40, df = 2 (p = 0.30); I2 = 17% | ||||||||||||
Test for overall effect: Z = 1.93 (p = 0.05) | ||||||||||||
1.2.2 Middle adult | ||||||||||||
Bansi et al. [21] | 17,138.1 | 4662.6 | 28 | 16,520.1 | 44,013.9 | 24 | 16.50% | 0.14 | [−0.41, 0.69] | |||
Zlibinaite et al. [20] | 1500 | 200 | 17 | 1200 | 900 | 16 | 10.30% | 0.46 | [−0.24, 1.15] | |||
Subtotal (95% CI) | 45 | 40 | 30.20% | 0.26 | [−0.17, 0.69] | |||||||
Heterogeneity: Tau2 = 0.00; Chi2 = 0.49, df = 1 (p = 0.48); I2 = 0% | ||||||||||||
Test for overall effect: Z = 1.19 (p = 0.23) | ||||||||||||
1.2.3 Older adult | ||||||||||||
Arazi et al. [9] | 4.68 | 3.9 | 10 | 3.21 | 0.29 | 10 | 6.20% | 0.51 | [−0.38, 1.40] | |||
Behrendt et al. [12] | 1894.63 | 780 | 24 | 19,540.14 | 1043.07 | 14 | 11.30% | −0.06 | [−0.72, 0.60] | |||
Erickson et al. [10] | 23.77 | 8.04 | 60 | 21.32 | 9.32 | 60 | 38.10% | 0.28 | [−0.08, 0.64] | |||
Subtotal (95% CI) | 70 | 70 | 49.90% | 0.31 | [−0.02, 0.65] | |||||||
Heterogeneity: Tau2 = 0.00; Chi2 = 0.22, df = 1 (p = 0.64); I2 = 0% | ||||||||||||
Test for overall effect: Z = 1.83 (P = 0.07) | ||||||||||||
Total (95% CI) | 170 | 153 | 100.00% | 0.30 | [0.08, 0.52] | |||||||
Heterogeneity: Tau2 = 0.00; Chi2 = 3.97, df = 6 (p = 0.68); I2 = 0% | ||||||||||||
Test for overall effect: Z = 2.88 (p = 0.008) | ||||||||||||
Test for subgroup difference: Chi2 = 0.82, df = 2 (p = 0.66); I2 = 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Zhang, Z.; Qi, S.; Yu, J.; Wei, Z. Effects of a Single Bout of Endurance Exercise on Brain-Derived Neurotrophic Factor in Humans: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Biology 2023, 12, 126. https://doi.org/10.3390/biology12010126
Liang Z, Zhang Z, Qi S, Yu J, Wei Z. Effects of a Single Bout of Endurance Exercise on Brain-Derived Neurotrophic Factor in Humans: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Biology. 2023; 12(1):126. https://doi.org/10.3390/biology12010126
Chicago/Turabian StyleLiang, Zhiqiang, Zheng Zhang, Shuo Qi, Jinglun Yu, and Zhen Wei. 2023. "Effects of a Single Bout of Endurance Exercise on Brain-Derived Neurotrophic Factor in Humans: A Systematic Review and Meta-Analysis of Randomized Controlled Trials" Biology 12, no. 1: 126. https://doi.org/10.3390/biology12010126
APA StyleLiang, Z., Zhang, Z., Qi, S., Yu, J., & Wei, Z. (2023). Effects of a Single Bout of Endurance Exercise on Brain-Derived Neurotrophic Factor in Humans: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Biology, 12(1), 126. https://doi.org/10.3390/biology12010126