Biomechanics of Traumatic Head and Neck Injuries on Women: A State-of-the-Art Review and Future Directions
Abstract
:Simple Summary
Abstract
1. Introduction
2. A Brief Recap on Brain and Neck Injuries
2.1. Microtubules Role in Axons
2.2. Chronic Traumatic Encephalopathy, CTE
2.3. Axonal Injury
2.4. Molecular Mechanism of CTE and Tau Pathology
2.5. Location of Tauopathies
2.6. Pituitary Dysfunction
3. The Particularities of HN Injuries for the Female Population
3.1. Sex Differences in Injury Outcome
3.2. Neuroanatomical Sex Differences
3.3. Sex Differences in Axonal Structure
3.4. Sex Effects on Cervical Spinal Cord Injury
3.5. Hormonal Differences between Sex in Context of HN Injury
3.6. Non-Hormonal Factors
3.7. Sex and Age Differences in Brain Swelling
4. Sex-Specific Numerical Approaches on HN Injuries Prediction
4.1. Finite Element Head Models
Authors | Year | Type | Model Description | Validation |
---|---|---|---|---|
Kenner and Goldsmith [161] | 1972 | 3D | Compressible
fluid in a spherical shell (with an elastic skull shell and a viscoelastic brain fluid). | |
Hardy and Marcal [147] | 1973 | 2D | Linear elastic isotropic skull. | |
Nickell and Marcal [148] | 1974 | 2D | Linear elastic skull used for a vibration response study. | |
Chan [162] | 1974 | 3D | Linear viscoelastic head bonded to a linear viscoelastic spherical shell and a prolate ellipsoid. | |
Shugar [163] | 1975 | 3D | Three-layered skull with brain matter, modelled as a nearly incompressible material. | |
Shugar and Katona [164] | 1975 | 3D | Thin layer replicating the sub-arachnoid space (that houses the CSF). | |
Ward and Thompson [165] | 1975 | 3D | Rigid skull with CSF and a linear elastic core. | |
Khalil and Hubbard [166] | 1977 | 3D | Single or multi layer circular and ellipsoidal shells with a fluid-filled cavity (elastic scalp and skull layers and viscoelastic brain fluid). | |
Nahum et al. [153] | 1977 | 3D | Linear elastic brain | Pressure |
Hosey and Liu [167] | 1982 | 3D | Homeomorphic HN model with skull and brain (also including falx, dura mater, scalp and CSF) and cervical spinal cord and column. | Initial inertial characteristics of the brain |
Ueno et al. [149,150] | 1989 | 2D | two-dimensional model with a rigid skull and a linear elastic brain | Pressure |
1991 | ||||
Ruan et al. [168,169] | 1993 | 3D | Layered skull, cerebral spinal fluid and brain modelled as brick elements with reduced integration. The thin elements such as dura mater, scalp and falx cerebri were modelled as membrane elements. Developed the WSUBIM version I, which including the scalp, a three-layer skull, dura mater, falx cerebri, brain and CSF. | Pressure (with Nahum et al. [153]’s frontal scenarios) |
1994 | ||||
Zhou et al. [170] | 1995 | 3D | Improved the WSUBIM version I, refining the mesh. | Pressure (with Nahum et al. [153]’s frontal scenarios); Relative brain motion magnitude |
Kumaresan and Radhakrishnan [171] | 1996 | 3D | Homeomorphic FEHM including skull, CSF, brain (with arachnoid, pia and dura mater) and neck. | |
Kang et al. [172,173] | 1997 | 3D | Developed the SUFEHM model. | Pressure (with Nahum et al. [153]’s and Trosseille et al. [154]’s frontal scenarios); Stress tests from motorcycle accident |
1999 | ||||
Zhang et al. [174] | 2001 | 3D | Developed
WSUBIM version II, with improved facial characteristics and introducing a sliding interface between the skull and brain. | Pressure (with Nahum et al. [153]’s frontal scenarios) |
Kleiven and Hardy [175] | 2002 | 3D | Developed the KTH-FEHM, consisting of scalp, skull, brain, meninges, CSF, bridging veins and a neck. Also included a sliding boundary condition between the skull and brain. | Pressure (with Nahum et al. [153]’s and Trosseille et al. [154]’s frontal scenarios); Relative brain motion (Hardy et al., 2001 [155]) |
King et al. [176] | 2003 | 3D | Final version of the
WSUBIM with a viscoelastic brain and elastic-plastic skull. | |
Horgan and Gilchrist [177] | 2003 | 3D | Developed the UCDBTM version I, including a scalp, skull, dura, all the main brain components and CSF. | Pressure (with Nahum et al. [153]’s frontal scenarios) |
Takhounts et al. [178,179] | 2003 | 3D | A fast computation model (SIMon FEHM), that didn’t include both cerebellum and midbrain. | Pressure (with Nahum et al. [153]’s and Trosseille et al. [154]’s frontal scenarios); Relative brain motion (Hardy et al. [155]) |
2008 | Advanced model with skull, dura, CSF and brain. | |||
Belingardi et al. [180] | 2005 | 3D | FEHM generated from CT and MRI data, which included the scalp, skull with facial bones, dura, CSF, brain, falx and tentorium. | Pressure (with Nahum et al. [153]’s frontal scenarios) |
Zong et al. [181] | 2006 | 3D | Simplified model with a
3-layer skull, incompressible CSF and brain. | Pressure (with Nahum et al. [153]’s and Trosseille et al. [154]’s frontal scenarios) |
McAllister et al. [182] | 2012 | 3D | Developed a model for sports-related concussion, the Dartmouth Subject-Specific Finite Element Head Model (DSS FEHM), using a MRI-segmented brain, falx and skull. | Relative brain motion (Hardy et al. [156]) |
Mao et al. [183] | 2013 | 3D | Developed the Global Human Body Models Consortium (GHBMC) FEHM version I. Using CT and MRI data, a high-quality, extensively validated FEHM composed of cerebrum, cerebellum, brainstem, CC, ventricles and thalamus. | Pressure (with Nahum et al. [153]’s and Trosseille et al. [154]’s frontal scenarios); Relative brain motion (Hardy et al. [155,156]) |
Yang et al. [184] | 2014 | 3D | FEHM developed for TBI prediction during vehicle collisions, using CT and MRI data. CSF is simulated as a fluid-filled cavity. | Pressure (with Nahum et al. [153]’s and Trosseille et al. [154]’s frontal scenarios); Relative brain motion (Hardy et al. [155]) |
Sahoo et al. [185] | 2014 | 3D | Improvement on the SUFEHM with the implementation of FA, axonal fiber orientations using diffusion tensor imaging (DTI) and visco-hyperelastic brain material constitutive laws. | Pressure (with Nahum et al. [153]’s frontal scenarios); Relative brain motion (Hardy et al. [155,156]) |
Ji et al. [186] | 2015 | 3D | Developed the DHIM including the cerebrum, cerebellum, brainstem, CC, CSF, pia, dura, tentorium, falx, diploe, foramen magnum, cortical bones and scalp. | Pressure (with Nahum et al. [153]’s and Trosseille et al. [154]’s frontal scenarios); Relative brain motion (Hardy et al. [155,156]) |
Zhao et al. [187] | 2015 | |||
Atsumi et al. [188] | 2016 | 3D | Parametric FEHM created for the determination of factors causing brain tissue displacements and ICP in head impacts. Composed of cerebrum, Skull, CSF, cerebellum, falx, pia and superior sagittal sinus. | Pressure (with Nahum et al. [153]’s and Trosseille et al. [154]’s frontal scenarios); Relative brain motion (Hardy et al. [155]) |
Miller et al. [189] | 2016 | 3D | Developed the ABM, the first dynamic FEHM to include 3D gyri to study detailed brain deformations. | Relative brain motion (Hardy et al. [155,156]) |
Miyazaki et al. [190] | 2017 | 3D | Creation of a FEHM to correlate brain node motion with an anthropometric test device (ATD) head mounted on an AM50 Hybrid III dummy. | Relative brain motion (Hardy et al. [156]) |
Toma et al. [191,192,193] | 2018 | 3D | Developed the first Fluid–Structure Interaction (FSI) model, capable of simulating the CSF flow around the brain. | Pressure (with Nahum et al. [153]’s frontal scenarios) |
2020 | ||||
Fernandes et al. [194] Migueis et al. [195] Barbosa et al. [196] Costa et al. [197] | 2018–2020 | 3D | Developed Yet Another Head Model (YEAHM), a geometrically detailed finite element brain model, with a detailed sulci and gyri modelling. The skull model was later segmented with sutures, diploë and cortical bone and later completed with bridging veins (BV) to predict subdural haematoma. | Pressure (with Nahum et al. [153]’s frontal scenarios); Skull fracture prediction (Huang et al. [198]’s experiment); Subdural haematoma prediction (Depreitere et al. [199]’s experiment) |
Wu et al. [159] | 2019 | 3D | Developed the Global Human Body Models Consortium (GHBMC) FEHM version II. Embedded to the base model WM fibre tracts using 1D cable elements with hyper-viscoelastic constitutive models. | Relative brain motion (Hardy et al. [155,156]); Brain deformation (Alshareef et al. [157]) |
Khanuja and Unni [200] | 2020 | 3D | High-quality, comprehensive FEHM with detailed cerebral sulci and gyri structures. Composed of skull, CSF, cerebrum, cerebellum, and brainstem. | Pressure (with Nahum et al. [153]’s and Trosseille et al. [154]’s frontal scenarios) |
Hassan et al. [201] | 2020 | 3D | Developed a simplified FEHM with low computational cost. | Pressure (with Nahum et al. [153]’s frontal scenarios) |
Trotta et al. [202] | 2020 | 3D | Developed the UCDBTM version II with updated mechanical properties and a low friction coefficient between the skull and the scalp. | Relative brain motion (Hardy et al. [155,156]) |
Li et al. [203] | 2021 | 3D | Developed the ADAPT model, an anatomically detailed FEHM with conforming hexahedral meshes, with WM fiber tracts. This model also includes a mesh-morphing approach for subject-specific modelling. | Pressure (with Nahum et al. [153]’s frontal scenarios); Relative brain motion (Hardy et al. [156]) |
4.2. Finite Element Neck Models
5. Discussion
6. Wrap-Up and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. JNS 2019, 130, 1080–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johns Hopkins Medicine. Traumatic Brain Injury. Available online: https://www.hopkinsmedicine.org/health/conditions-and-diseases/traumatic-brain-injury (accessed on 18 November 2022).
- Valera, E.M.; Joseph, A.L.C.; Snedaker, K.; Breiding, M.J.; Robertson, C.L.; Colantonio, A.; Levin, H.; Pugh, M.J.; Yurgelun-Todd, D.; Mannix, R.; et al. Understanding Traumatic Brain Injury in Females: A State-of-the-Art Summary and Future Directions. J. Head Trauma Rehabil. 2021, 36, E1–E17. [Google Scholar] [CrossRef] [PubMed]
- Selassie, A.W.; Wilson, D.A.; Pickelsimer, E.E.; Voronca, D.C.; Williams, N.R.; Edwards, J.C. Incidence of sport-related traumatic brain injury and risk factors of severity: A population-based epidemiologic study. Ann. Epidemiol. 2013, 23, 750–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theadom, A.M.; Mahon, S.; Hume, P.; Starkey, N.; Barker-Collo, S.; Jones, K.; Majdan, M.; Feigin, V.L. Incidence of sports-related traumatic brain injury of all severities: A systematic review. Neuroepidemiology 2020, 54, 192–199. [Google Scholar] [CrossRef]
- Javouhey, E.; Guérin, A.C.; Chiron, M. Incidence and risk factors of severe traumatic brain injury resulting from road accidents: A population-based study. Accid. Anal. Prev. 2006, 38, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.A.; Bell, J.M.; Breiding, M.J.; Xu, L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths—United States, 2007 and 2013. MMWR Surveill. Summ. 2017, 66, 1–16. [Google Scholar] [CrossRef]
- Smith, S.G.; Basile, K.C.; Gilbert, L.K.; Merrick, M.T.; Patel, N.; Walling, M.; Jain, A. National Intimate Partner and Sexual Violence Survey (NISVS): 2010–2012 State Report; CDC: Atlanta, GA, USA, 2017.
- Centers for Disease Control and Prevention. Intimate Partner Violence. Available online: https://www.cdc.gov/violenceprevention/intimatepartnerviolence/index.html (accessed on 18 November 2022).
- St. Ivany, A.; Schminkey, D. Intimate partner violence and traumatic brain injury. Fam. Community Health 2016, 39, 129–137. [Google Scholar] [CrossRef]
- Sosin, D.M.; Sniezek, J.E.; Thurman, D.J. Incidence of mild and moderate brain injury in the United States, 1991. Brain Inj. 1996, 10, 47–54. [Google Scholar] [CrossRef]
- Faulkner, J.W.; Snell, D.L.; Shepherd, D.; Theadom, A. Turning away from sound: The role of fear avoidance in noise sensitivity following mild traumatic brain injury. J. Psychosom. Res. 2021, 151, 110664. [Google Scholar] [CrossRef]
- Montgomery, M.C.; Baylan, S.; Gardani, M. Prevalence of insomnia and insomnia symptoms following mild-traumatic brain injury: A systematic review and meta-analysis. Sleep Med. Rev. 2022, 61, 101563. [Google Scholar] [CrossRef]
- Ozono, I.; Ikawa, F.; Hidaka, T.; Yoshiyama, M.; Kuwabara, M.; Matsuda, S.; Yamamori, Y.; Nagata, T.; Tomimoto, H.; Suzuki, M.; et al. Hypertension and Advanced Age Increase the Risk of Cognitive Impairment after Mild Traumatic Brain Injury: A Registry-Based Study. World Neurosurg. 2022, 162, e273–e280. [Google Scholar] [CrossRef] [PubMed]
- Kumar Das, N.; Das, M. Structural changes in retina (Retinal nerve fiber layer) following mild traumatic brain injury and its association with development of visual field defects. Clin. Neurol. Neurosurg. 2022, 212, 107080. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Yoo, R.E.; Seong, M.Y.; Oh, B.M. A systematic review and data synthesis of longitudinal changes in white matter integrity after mild traumatic brain injury assessed by diffusion tensor imaging in adults. Eur. J. Radiol. 2022, 147, 110117. [Google Scholar] [CrossRef]
- Krukowski, K. Short review: The impact of sex on neuroimmune and cognitive outcomes after traumatic brain injury. Brain Behav. Immun.-Health 2021, 16, 100327. [Google Scholar] [CrossRef] [PubMed]
- Richmond-Hacham, B.; Izchak, H.; Elbaum, T.; Qubty, D.; Bader, M.; Rubovitch, V.; Pick, C.G. Sex-specific cognitive effects of mild traumatic brain injury to the frontal and temporal lobes. Exp. Neurol. 2022, 352, 114022. [Google Scholar] [CrossRef] [PubMed]
- Gupte, R.; Brooks, W.; Vukas, R.; Pierce, J.; Harris, J. Sex Differences in Traumatic Brain Injury: What We Know and What We Should Know. J. Neurotrauma 2019, 36, 6171. [Google Scholar] [CrossRef] [PubMed]
- Carstensen, T.; Frostholm, L.; Oernboel, E.; Kongsted, A.; Kasch, H.; Jensen, T.; Fink, P. Are there gender differences in coping with neck pain following acute whiplash trauma? A 12-month follow-up study. Eur. J. Pain 2012, 16, 49–60. [Google Scholar] [CrossRef]
- Jonsson, B.; Tingvall, C.; Krafft, M.; Bjornstig, U. The risk of whiplash-induced medical impairment in rear-end impacts for males and females in driver seat compared to front passenger seat. IATSS Res. 2013, 37, 8–11. [Google Scholar] [CrossRef] [Green Version]
- Ryan, A.; Knodler, M. Influential crash conditions leading to injury differences experienced by female and male drivers. J. Transp. Health 2022, 24, 101293. [Google Scholar] [CrossRef]
- Bhushan, R.; Ravichandiran, V.; Kumar, N. 1—An overview of the anatomy and physiology of the brain. In Nanocarriers for Drug-Targeting Brain Tumors; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2022; pp. 3–29. [Google Scholar] [CrossRef]
- Paulsen, F.J.W. Sobotta: Atlas of Anatomy; Urban & Fischer: Munchen, Germany, 2018; pp. 271–295. [Google Scholar]
- Forstmann, B.U.; Keuken, M.C.; Alkemade, A. An Introduction to Human Brain Anatomy. In An Introduction to Model-Based Cognitive Neuroscience; Springer: New York, NY, USA, 2015; pp. 71–89. [Google Scholar]
- Lawrenson, C.; Bares, M.; Kamondi, A.; Kovács, A.; Lumb, B.; Apps, R.; Filip, P.; Manto, M. The mystery of the cerebellum: Clues from experimental and clinical observations. Cerebellum Ataxias 2018, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Barnett, M.W.; Larkman, P.M. The action potential. Pract. Neurol. 2007, 7, 192–197. [Google Scholar] [PubMed]
- Clark, B.D.; Goldberg, E.M.; Rudy, B. Electrogenic tuning of the axon initial segment. Neuroscientist 2009, 15, 651–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conde, C.; Cáceres, A. Microtubule assembly, organization and dynamics in axons and dendrites. Nat. Rev. Neurosci. 2009, 10, 319–332. [Google Scholar] [CrossRef] [PubMed]
- van den Bedem, H.; Kuhl, E. Tau-ism: The Yin and Yang of Microtubule Sliding, Detachment, and Rupture. Biophys. J. 2015, 109, 2215–2217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadavath, H.; Hofele, R.V.; Biernat, J.; Kumar, S.; Tepper, K.; Urlaub, H.; Mandelkow, E.; Zweckstetter, M. Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc. Natl. Acad. Sci. USA 2015, 112, 7501–7506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Bedem, H.; Kuhl, E. Molecular mechanisms of chronic traumatic encephalopathy. Curr. Opin. Biomed. Eng. 2017, 1, 23–30. [Google Scholar] [CrossRef]
- Chung, P.J.; Choi, M.C.; Miller, H.P.; Feinstein, H.E.; Raviv, U.; Li, Y.; Wilson, L.; Feinstein, S.C.; Safinya, C.R. Direct force measurements reveal that protein Tau confers short-range attractions and isoform-dependent steric stabilization to microtubules. Proc. Natl. Acad. Sci. USA 2015, 112, E6416–E6425. [Google Scholar] [CrossRef] [Green Version]
- Méphon-Gaspard, A.; Boca, M.; Pioche-Durieu, C.; Desforges, B.; Burgo, A.; Hamon, L.; Piétrement, O.; Pastré, D. Role of tau in the spatial organization of axonal microtubules: Keeping parallel microtubules evenly distributed despite macromolecular crowding. Cell Mol. Life Sci. 2016, 73, 3745–3760. [Google Scholar] [CrossRef] [Green Version]
- Coles, C.; Bradke, F. Coordinating Neuronal actin-Microtubule Dynamics. Curr. Biol. 2015, 25, R677–R691. [Google Scholar] [CrossRef]
- Katsumoto, A.; Takeuchi, H.; Tanaka, F. Tau Pathology in Chronic Traumatic Encephalopathy and Alzheimer’s Disease: Similarities and Differences. Front. Neurol. 2019, 10, 980. [Google Scholar] [CrossRef]
- Graham, D.; Gennarelli, T.; McIntosh, T. Greenfields neuropathology. In Greenfields Neuropathology; Greenfield: London, UK, 2002; pp. 823–898. [Google Scholar]
- Agha, A.; Thompson, C.J. High Risk of Hypogonadism After Traumatic Brain Injury: Clinical Implications. Pituitary 2005, 8, 245–249. [Google Scholar] [CrossRef] [PubMed]
- McKee, A.C.; Cairns, N.J.; Dickson, D.W.; Folkerth, R.D.; Keene, C.D.; Litvan, I.; Perl, D.P.; Stein, T.D.; Vonsattel, J.P.; Stewart, W.; et al. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol. 2016, 131, 75–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, N.J.; Yao, K.R.; Alford, P.W.; Liao, D. Mechanical injuries of neurons induce tau mislocalization to dendritic spines and tau-dependent synaptic dysfunction. Proc. Natl. Acad. Sci. USA 2020, 117, 29069–29079. [Google Scholar] [CrossRef] [PubMed]
- Shively, S.B.; Edgerton, S.L.; Iacono, D.; Purohit, D.P.; Qu, B.X.; Haroutunian, V.; Davis, K.L.; Diaz-Arrastia, R.; Perl, D.P. Localized cortical chronic traumatic encephalopathy pathology after single, severe axonal injury in human brain. Acta Neuropathol. 2017, 133, 353–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenney, K.; Iacono, D.; Edlow, B.L.; Katz, D.I.; Diaz-Arrastia, R.; Dams-O’Connor, K.; Daneshvar, D.H.; Stevens, A.; Moreau, A.L.; Tirrell, L.S.; et al. Dementia After Moderate-Severe Traumatic Brain Injury: Coexistence of Multiple Proteinopathies. J. Neuropathol. Exp. Neurol. 2017, 77, 50–63. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci. 2016, 17, 5–21. [Google Scholar] [CrossRef]
- McKee, A.C.; Stern, R.A.; Nowinski, C.J.; Stein, T.D.; Alvarez, V.E.; Daneshvar, D.H.; Lee, H.S.; Wojtowicz, S.M.; Hall, G.; Baugh, C.M.; et al. The spectrum of disease in chronic traumatic encephalopathy. Brain 2013, 136, 43–64. [Google Scholar] [CrossRef]
- Ruigrok, A.N.; Salimi-Khorshidi, G.; Lai, M.C.; Baron-Cohen, S.; Lombardo, M.V.; Tait, R.J.; Suckling, J. A meta-analysis of sex differences in human brain structure. Neurosci. Biobehav. Rev. 2014, 39, 34–50. [Google Scholar] [CrossRef] [Green Version]
- Holland, M.A.; Miller, K.E.; Kuhl, E. Emerging Brain Morphologies from Axonal Elongation. Ann. Biomed. Eng. 2015, 43, 1640–1653. [Google Scholar] [CrossRef]
- Ahmadzadeh, H.; Smith, D.H.; Shenoy, V.B. Mechanical Effects of Dynamic Binding between Tau Proteins on Microtubules during Axonal Injury. Biophys. J. 2015, 109, 2328–2337. [Google Scholar] [CrossRef] [Green Version]
- Tang-Schomer, M.D.; Patel, A.R.; Baas, P.W.; Smith, D.H. Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. FASEB J. 2010, 24, 1401–1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, D.H.; Johnson, V.E.; Stewart, W. Chronic neuropathologies of single and repetitive TBI: Substrates of dementia? Nat. Rev. Neurol. 2013, 9, 211–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, V.E.; Stewart, W.; Smith, D.H. Axonal pathology in traumatic brain injury. Exp. Neurol. 2013, 246, 35–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spires-Jones, T.L.; Stoothoff, W.H.; de Calignon, A.; Jones, P.B.; Hyman, B.T. Tau pathophysiology in neurodegeneration: A tangled issue. Trends Neurosci. 2009, 32, 150–159. [Google Scholar] [CrossRef]
- Morris, M.; Maeda, S.; Vossel, K.; Mucke, L. The Many Faces of Tau. Neuron 2011, 70, 410–426. [Google Scholar] [CrossRef] [Green Version]
- Spillantini, M.G.; Goedert, M. Tau pathology and neurodegeneration. Lancet Neurol. 2013, 12, 609–622. [Google Scholar] [CrossRef]
- Weickenmeier, J.; de Rooij, R.; Budday, S.; Steinmann, P.; Ovaert, T.; Kuhl, E. Brain stiffness increases with myelin content. Acta Biomater. 2016, 42, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Budday, S.; Nay, R.; de Rooij, R.; Steinmann, P.; Wyrobek, T.; Ovaert, T.C.; Kuhl, E. Mechanical properties of gray and white matter brain tissue by indentation. J. Mech. Behav. Biomed. Mater. 2015, 46, 318–330. [Google Scholar] [CrossRef] [Green Version]
- Ghajari, M.; Hellyer, P.J.; Sharp, D.J. Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology. Brain 2017, 140, 333–343. [Google Scholar] [CrossRef]
- McKee, A.C.; Cantu, R.C.; Nowinski, C.J.; Hedley-Whyte, E.T.; Gavett, B.E.; Budson, A.E.; Santini, V.E.; Lee, H.S.; Kubilus, C.A.; Stern, R.A. Chronic traumatic encephalopathy in athletes: Progressive tauopathy after repetitive head injury. J. Neuropathol. Exp. Neurol. 2009, 68, 709–735. [Google Scholar] [CrossRef]
- McKee, A.C.; Stein, T.D.; Kiernan, P.T.; Alvarez, V.E. The neuropathology of chronic traumatic encephalopathy. Brain Pathol. 2015, 25, 350–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montenigro, P.H.; Corp, D.T.; Stein, T.D.; Cantu, R.C.; Stern, R.A. Chronic traumatic encephalopathy: Historical origins and current perspective. Annu. Rev. Clin. Psychol. 2015, 11, 309–330. [Google Scholar] [CrossRef] [PubMed]
- Bondanelli, M.; De Marinis, L.; Ambrosio, M.R.; Monesi, M.; Valle, D.; Zatelli, M.C.; Fusco, A.; Bianchi, A.; Farneti, M.; degli Uberti, E.C. Occurrence of pituitary dysfunction following traumatic brain injury. J. Neurotrauma 2004, 21, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Schneider, H.J.; Stalla, G.K. Anterior pituitary hormone abnormalities following traumatic brain injury. J. Neurotrauma 2005, 22, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Schneider, H.J.; Yassouridis, A.; Saller, B.; von Rosen, F.; Stalla, G.K. Predictors of anterior pituitary insufficiency after traumatic brain injury. Clin. Endocrinol. 2008, 68, 206–212. [Google Scholar] [CrossRef]
- Sav, A.; Rotondo, F.; Syro, L.V.; Serna, C.A.; Kovacs, K. Pituitary pathology in traumatic brain injury: A review. Pituitary 2019, 22, 201–211. [Google Scholar] [CrossRef]
- Bavisetty, S.; Bavisetty, S.; McArthur, D.L.; Dusick, J.R.; Wang, C.; Cohan, P.; Boscardin, W.J.; Swerdloff, R.; Levin, H.; Chang, D.J.; et al. Chronic hypopituitarism after traumatic brain injury: Risk assessment and relationship to outcome. Neurosurgery 2008, 62, 1080–1093. [Google Scholar] [CrossRef]
- Molaie, A.M.; Maguire, J. Neuroendocrine Abnormalities Following Traumatic Brain Injury: An Important Contributor to Neuropsychiatric Sequelae. Front. Endocrinol. 2018, 9, 176. [Google Scholar] [CrossRef] [Green Version]
- Taylor, A.N.; Rahman, S.U.; Sanders, N.C.; Tio, D.L.; Prolo, P.; Sutton, R.L. Injury severity differentially affects short- and long-term neuroendocrine outcomes of traumatic brain injury. J. Neurotrauma 2008, 25, 311–323. [Google Scholar] [CrossRef]
- Caturegli, P. Autoimmune hypophysitis: An underestimated disease in search of its autoantigen(s). J. Clin. Endocrinol. Metab. 2007, 92, 2038–2040. [Google Scholar] [CrossRef] [Green Version]
- Berry, C.; Ley, E.J.; Tillou, A.; Cryer, G.; Margulies, D.R.; Salim, A. The effect of gender on patients with moderate to severe head injuries. J. Trauma 2009, 67, 950–953. [Google Scholar] [CrossRef] [PubMed]
- Devitt, R.; Colantonio, A.; Dawson, D.; Teare, G.; Ratcliff, G.; Chase, S. Prediction of long-term occupational performance outcomes for adults after moderate to severe traumatic brain injury. Disabil. Rehabil. 2006, 28, 547–559. [Google Scholar] [CrossRef] [PubMed]
- Groswasser, Z.; Cohen, M.; Keren, O. Female TBI patients recover better than males. Brain Inj. 1998, 12, 805–808. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.W.; Ashman, T.A.; Cantor, J.B.; Krinick, R.J.; Spielman, L.A. Does gender influence cognitive outcome after traumatic brain injury? Neuropsychol. Rehabil. 2010, 20, 340–354. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, J.S.; McCunn, M.; Stein, D.M.; Simoni-Wastila, L.; Smith, G.S. Sex differences in mortality following isolated traumatic brain injury among older adults. J. Trauma Acute Care Surg. 2016, 81, 486–492. [Google Scholar] [CrossRef] [Green Version]
- Baum, J.; Entezami, P.; Shah, K.; Medhkour, A. Predictors of Outcomes in Traumatic Brain Injury. World Neurosurg. 2016, 90, 525–529. [Google Scholar] [CrossRef]
- Coimbra, R.; Hoyt, D.B.; Potenza, B.M.; Fortlage, D.; Hollingsworth-Fridlund, P. Does sexual dimorphism influence outcome of traumatic brain injury patients? The answer is no! J. Trauma 2003, 54, 689–700. [Google Scholar] [CrossRef]
- Davis, D.P.; Douglas, D.J.; Smith, W.; Sise, M.J.; Vilke, G.M.; Holbrook, T.L.; Kennedy, F.; Eastman, A.B.; Velky, T.; Hoyt, D.B. Traumatic brain injury outcomes in pre- and post- menopausal females versus age-matched males. J. Neurotrauma 2006, 23, 140–148. [Google Scholar] [CrossRef]
- Mushkudiani, N.A.; Engel, D.C.; Steyerberg, E.W.; Butcher, I.; Lu, J.; Marmarou, A.; Slieker, F.; McHugh, G.S.; Murray, G.D.; Maas, A.I. Prognostic value of demographic characteristics in traumatic brain injury: Results from the IMPACT study. J. Neurotrauma 2007, 24, 259–269. [Google Scholar] [CrossRef]
- Ng, D.I.; Lee, K.K.; Lim, J.H.G.; Wong, H.B.; Yan, X.Y. Investigating gender differences in outcome following severe traumatic brain injury in a predominantly Asian population. Br. J. Neurosurg. 2006, 20, 73–78. [Google Scholar] [CrossRef]
- Sarajuuri, J.M.; Kaipio, M.L.; Koskinen, S.K.; Niemel, M.R.; Servo, A.R.; Vilkki, J.S. Outcome of a Comprehensive Neurorehabilitation Program for Patients With Traumatic Brain Injury. Arch. Phys. Med. Rehabil. 2005, 86, 2296–2302. [Google Scholar] [CrossRef] [PubMed]
- Slewa-Younan, S.; Green, A.M.; Baguley, I.J.; Gurka, J.A.; Marosszeky, J.E. Sex differences in injury severity and outcome measures after traumatic brain injury11No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit on the author(s) or on any organization with which the author(s) is/are affiliated. Arch. Phys. Med. Rehabil. 2004, 85, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Slewa-Younan, S.; van den Berg, S.; Baguley, I.J.; Nott, M.; Cameron, I.D. Towards an understanding of sex differences in functional outcome following moderate to severe traumatic brain injury: A systematic review. J. Neurol. Neurosurg. Psychiatry 2008, 79, 1197–1201. [Google Scholar] [CrossRef]
- Tsushima, W.T.; Lum, M.; Geling, O. Sex differences in the long-term neuropsychological outcome of mild traumatic brain injury. Brain Inj. 2009, 23, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Farace, E.; Alves, W.M. Do women fare worse: A metaanalysis of gender differences in traumatic brain injury outcome. J. Neurosurg. 2000, 93, 539–545. [Google Scholar] [CrossRef] [Green Version]
- Kirkness, C.J.; Burr, R.L.; Mitchell, P.H.; Newell, D.W. Is there a sex difference in the course following traumatic brain injury? Biol. Res. Nurs. 2004, 5, 299–310. [Google Scholar] [CrossRef]
- Kraus, J.F.; Peek-Asa, C.; McArthur, D. The independent effect of gender on outcomes following traumatic brain injury: A preliminary investigation. Neurosurg. Focus 2000, 8, e5. [Google Scholar] [CrossRef]
- Ottochian, M.; Salim, A.; Berry, C.; Chan, L.S.; Wilson, M.T.; Margulies, D.R. Severe traumatic brain injury: Is there a gender difference in mortality? Am. J. Surg. 2009, 197, 155–158. [Google Scholar] [CrossRef]
- Ponsford, J.L.; Myles, P.S.; Cooper, D.J.; Mcdermott, F.T.; Murray, L.J.; Laidlaw, J.; Cooper, G.; Tremayne, A.B.; Bernard, S.A. Gender differences in outcome in patients with hypotension and severe traumatic brain injury. Injury 2008, 39, 67–76. [Google Scholar] [CrossRef]
- Scholten, A.; Haagsma, J.; Andriessen, T.; Vos, P.; Steyerberg, E.; van Beeck, E.; Polinder, S. Health-related quality of life after mild, moderate and severe traumatic brain injury: Patterns and predictors of suboptimal functioning during the first year after injury. Injury 2015, 46, 616–624. [Google Scholar] [CrossRef]
- Whelan-Goodinson, R.; Ponsford, J.L.; Schönberger, M.; Johnston, L. Predictors of psychiatric disorders following traumatic brain injury. J. Head Trauma Rehabil. 2010, 25, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Martinez, K.; Janssen, J.; Pineda-Pardo, J.A.; Carmona, S.; Román, F.J.; Alemán-Gómez, Y.; Garcia-Garcia, D.; Escorial, S.; Quiroga, M.A.; Santarnecchi, E.; et al. Individual differences in the dominance of interhemispheric connections predict cognitive ability beyond sex and brain size. Neuroimage 2017, 155, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Escorial, S.; Román, F.J.; Martínez, K.; Burgaleta, M.; Karama, S.; Colom, R. Sex differences in neocortical structure and cognitive performance: A surface-based morphometry study. Neuroimage 2015, 104, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Luders, E.; Narr, K.L.; Zaidel, E.; Thompson, P.M.; Toga, A.W. Gender effects on callosal thickness in scaled and unscaled space. Neuroreport 2006, 17, 1103–1106. [Google Scholar] [CrossRef]
- Biegon, A.; Eberling, J.L.; Richardson, B.C.; Roos, M.S.; Wong, S.T.; Reed, B.R.; Jagust, W.J. Human corpus callosum in aging and Alzheimer’s disease: A magnetic resonance imaging study. Neurobiol. Aging 1994, 15, 393–397. [Google Scholar] [CrossRef]
- Aboitiz, F.; Scheibel, A.B.; Fisher, R.S.; Zaidel, E. Fiber composition of the human corpus callosum. Brain Res. 1992, 598, 143–153. [Google Scholar] [CrossRef]
- Sundermann, E.E.; Biegon, A.; Rubin, L.H.; Lipton, R.B.; Mowrey, W.; Landau, S.; Maki, P.M.; Weiner, M.; Aisen, P.; Weiner, M.; et al. Better verbal memory in women than men in MCI despite similar levels of hippocampal atrophy. Neurology 2016, 86, 1368–1376. [Google Scholar] [CrossRef] [Green Version]
- Pruessner, J.C.; Collins, D.L.; Pruessner, M.; Evans, A.C. Age and gender predict volume decline in the anterior and posterior hippocampus in early adulthood. J. Neurosci. 2001, 21, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Brun, C.C.; Leporé, N.; Luders, E.; Chou, Y.Y.; Madsen, S.K.; Toga, A.W.; Thompson, P.M. Sex differences in brain structure in auditory and cingulate regions. Neuroreport 2009, 20, 930–935. [Google Scholar] [CrossRef]
- Good, C.D.; Johnsrude, I.; Ashburner, J.; Henson, R.N.; Friston, K.J.; Frackowiak, R.S. Cerebral asymmetry and the effects of sex and handedness on brain structure: A voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage 2001, 14, 685–700. [Google Scholar] [CrossRef] [Green Version]
- Leong, D.F.; Balcer, L.J.; Galetta, S.L.; Evans, G.; Gimre, M.; Watt, D. The King-Devick test for sideline concussion screening in collegiate football. J. Optom. 2015, 8, 131–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mainland, B.J.; Shulman, K.I. Clock Drawing Test. In Cognitive Screening Instruments: A Practical Approach; Springer: London, UK, 2013; pp. 79–109. [Google Scholar] [CrossRef]
- Miles, T.P.; Briscoe, B.T.; Kim, S.H. Age, gender, and impaired clock drawing in the generalist primary care setting. J. Ky. Med. Assoc. 2007, 105, 59–65. [Google Scholar] [PubMed]
- Stewart, R.; Richards, M.; Brayne, C.; Mann, A. Cognitive function in UK community-dwelling African Caribbean elders: Normative data for a test battery. Int. J. Geriatr. Psychiatry 2001, 16, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Bozikas, V.P.; Giazkoulidou, A.; Hatzigeorgiadou, M.; Karavatos, A.; Kosmidis, M.H. Do age and education contribute to performance on the clock drawing test? Normative data for the Greek population. J. Clin. Exp. Neuropsychol. 2008, 30, 199–203. [Google Scholar] [CrossRef]
- Dollé, J.P.; Jaye, A.; Anderson, S.A.; Ahmadzadeh, H.; Shenoy, V.B.; Smith, D.H. Newfound sex differences in axonal structure underlie differential outcomes from in vitro traumatic axonal injury. Exp. Neurol. 2018, 300, 121–134. [Google Scholar] [CrossRef]
- Ahuja, C.S.; Wilson, J.R.; Nori, S.; Kotter, M.R.N.; Druschel, C.; Curt, A.; Fehlings, M.G. Traumatic spinal cord injury. Nat. Rev. Dis. Prim. 2017, 3, 17018. [Google Scholar] [CrossRef] [Green Version]
- Catenaccio, E.; Mu, W.; Kaplan, A.; Fleysher, R.; Kim, N.; Bachrach, T.; Zughaft Sears, M.; Jaspan, O.; Caccese, J.; Kim, M.; et al. Characterization of Neck Strength in Healthy Young Adults. PM&R 2017, 9, 884–891. [Google Scholar] [CrossRef]
- Collins, C.L.; Fletcher, E.N.; Fields, S.K.; Kluchurosky, L.; Rohrkemper, M.K.; Comstock, R.D.; Cantu, R.C. Neck strength: A protective factor reducing risk for concussion in high school sports. J. Prim. Prev. 2014, 35, 309–319. [Google Scholar] [CrossRef]
- Hildenbrand, K.J.; Vasavada, A.N. Collegiate and high school athlete neck strength in neutral and rotated postures. J. Strength Cond. Res. 2013, 27, 3173–3182. [Google Scholar] [CrossRef] [Green Version]
- Salo, P.K.; Ylinen, J.J.; Mälkiä, E.A.; Kautiainen, H.; Häkkinen, A.H. Isometric strength of the cervical flexor, extensor, and rotator muscles in 220 healthy females aged 20 to 59 years. J. Orthop. Sport Phys. Ther. 2006, 36, 495–502. [Google Scholar] [CrossRef]
- Cagnie, B.; Cools, A.; De Loose, V.; Cambier, D.; Danneels, L. Differences in isometric neck muscle strength between healthy controls and women with chronic neck pain: The use of a reliable measurement. Arch. Phys. Med. Rehabil. 2007, 88, 1441–1445. [Google Scholar] [CrossRef] [PubMed]
- Elkin, B.S.; Elliott, J.M.; Siegmund, G.P. Whiplash Injury or Concussion? A Possible Biomechanical Explanation for Concussion Symptoms in Some Individuals Following a Rear-End Collision. J. Orthop. Sport Phys. Ther. 2016, 46, 874–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hynes, L.M.; Dickey, J.P. Is there a relationship between whiplash-associated disorders and concussion in hockey? A preliminary study. Brain Inj. 2006, 20, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, K.P.; Annest, J.L.; Myers, B.; Ryan, G.; Hill, H. Neck strains and sprains among motor vehicle occupants-United States, 2000. Accid Anal. Prev. 2004, 36, 21–27. [Google Scholar] [CrossRef]
- Stemper, B.D.; Corner, B.D. Whiplash-Associated Disorders: Occupant Kinematics and Neck Morphology. J. Orthop. Sport Phys. Ther. 2016, 46, 834–844. [Google Scholar] [CrossRef] [Green Version]
- Walton, D.M.; Pretty, J.; MacDermid, J.C.; Teasell, R.W. Risk factors for persistent problems following whiplash injury: Results of a systematic review and meta-analysis. J. Orthop. Sport Phys. Ther. 2009, 39, 334–350. [Google Scholar] [CrossRef] [Green Version]
- Sutton, M.; Chan, V.; Escobar, M.; Mollayeva, T.; Hu, Z.; Colantonio, A. Neck Injury Comorbidity in Concussion-Related Emergency Department Visits: A Population-Based Study of Sex Differences Across the Life Span. J. Womens Health 2019, 28, 473–482. [Google Scholar] [CrossRef]
- Hasler, R.M.; Exadaktylos, A.K.; Bouamra, O.; Benneker, L.M.; Clancy, M.; Sieber, R.; Zimmermann, H.; Lecky, F. Epidemiology and predictors of cervical spine injury in adult major trauma patients: A multicenter cohort study. J. Trauma Acute Care Surg. 2012, 72, 975–981. [Google Scholar] [CrossRef]
- Fujii, T.; Faul, M.; Sasser, S. Risk factors for cervical spine injury among patients with traumatic brain injury. J. Emerg. Trauma Shock 2013, 6, 252–258. [Google Scholar] [CrossRef]
- McCarthy, M.M.; Arnold, A.P. Reframing sexual differentiation of the brain. Nat. Neurosci. 2011, 14, 677–683. [Google Scholar] [CrossRef] [Green Version]
- Tanopolsky, M.R.N.C. Gender Differences in Metabolism; Routledge: London, UK, 1999; pp. 19–25. [Google Scholar]
- Clevenger, A.C.; Kim, H.; Salcedo, E.; Yonchek, J.C.; Rodgers, K.M.; Orfila, J.E.; Dietz, R.M.; Quillinan, N.; Traystman, R.J.; Herson, P.S. Endogenous Sex Steroids Dampen Neuroinflammation and Improve Outcome of Traumatic Brain Injury in Mice. J. Mol. Neurosci. 2018, 64, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Emelifeonwu, J.A.; Flower, H.; Loan, J.J.; McGivern, K.; Andrews, P.J.D. Prevalence of Anterior Pituitary Dysfunction Twelve Months or More following Traumatic Brain Injury in Adults: A Systematic Review and Meta-Analysis. J. Neurotrauma 2020, 37, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.H.; Chen, P.C.; Wang, T.C.; Kuo, T.Y.; Cheng, C.Y.; Yang, Y.H. Endocrine dysfunction following traumatic brain injury: A 5-year follow-up nationwide-based study. Sci. Rep. 2016, 6, 32987. [Google Scholar] [CrossRef] [PubMed]
- Skolnick, B.E.; Maas, A.I.; Narayan, R.K.; van der Hoop, R.G.; MacAllister, T.; Ward, J.D.; Nelson, N.R.; Stocchetti, N.; Marmarou, A.; Maas, A.I.; et al. A clinical trial of progesterone for severe traumatic brain injury. N. Engl. J. Med. 2014, 371, 2467–2476. [Google Scholar] [CrossRef] [Green Version]
- Carruth, L.L.; Reisert, I.; Arnold, A.P. Sex chromosome genes directly affect brain sexual differentiation. Nat. Neurosci. 2002, 5, 933–934. [Google Scholar] [CrossRef]
- Lyon, M.F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 1961, 190, 372–373. [Google Scholar] [CrossRef]
- Berletch, J.B.; Yang, F.; Xu, J.; Carrel, L.; Disteche, C.M. Genes that escape from X inactivation. Hum. Genet. 2011, 130, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Prothero, K.E.; Stahl, J.M.; Carrel, L. Dosage compensation and gene expression on the mammalian X chromosome: One plus one does not always equal two. Chromosome Res. 2009, 17, 637–648. [Google Scholar] [CrossRef]
- Xu, J.; Disteche, C.M. Sex differences in brain expression of X- and Y-linked genes. Brain Res. 2006, 1126, 50–55. [Google Scholar] [CrossRef]
- Lentini, E.; Kasahara, M.; Arver, S.; Savic, I. Sex differences in the human brain and the impact of sex chromosomes and sex hormones. Cereb. Cortex 2013, 23, 2322–2336. [Google Scholar] [CrossRef] [Green Version]
- Gobinath, A.R.; Mahmoud, R.; Galea, L.A. Influence of sex and stress exposure across the lifespan on endophenotypes of depression: Focus on behavior, glucocorticoids, and hippocampus. Front. Neurosci. 2014, 8, 420. [Google Scholar] [CrossRef] [PubMed]
- Frommer, L.J.; Gurka, K.K.; Cross, K.M.; Ingersoll, C.D.; Comstock, R.D.; Saliba, S.A. Sex differences in concussion symptoms of high school athletes. J. Athl. Train. 2011, 46, 76–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattson, M.P.; Gleichmann, M.; Cheng, A. Mitochondria in neuroplasticity and neurological disorders. Neuron 2008, 60, 748–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manole, M.D.; Tehranian-DePasquale, R.; Du, L.; Bayir, H.; Kochanek, P.M.; Clark, R.S. Unmasking sex-based disparity in neuronal metabolism. Curr. Pharm. Des. 2011, 17, 3854–3860. [Google Scholar] [CrossRef] [PubMed]
- Irwin, R.W.; Yao, J.; Hamilton, R.T.; Cadenas, E.; Brinton, R.D.; Nilsen, J. Progesterone and estrogen regulate oxidative metabolism in brain mitochondria. Endocrinology 2008, 149, 3167–3175. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.S.; Nevai, J.; Freeman, M.P.; McNinch, D.E. Emergency department presentation of idiopathic intracranial hypertension. Am. J. Emerg. Med. 1999, 17, 517–521. [Google Scholar] [CrossRef]
- Wall, M. Idiopathic intracranial hypertension: Mechanisms of visual loss and disease management. Semin. Neurol. 2000, 20, 89–95. [Google Scholar]
- Silberstein, S.D.; Merriam, G.R. Physiology of the menstrual cycle. Cephalalgia 2000, 20, 148–154. [Google Scholar] [CrossRef]
- Sheth, K.N.; Stein, D.M.; Aarabi, B.; Hu, P.; Kufera, J.A.; Scalea, T.M.; Hanley, D.F. Intracranial pressure dose and outcome in traumatic brain injury. Neurocrit. Care 2013, 18, 26–32. [Google Scholar] [CrossRef]
- Yao, X.; Uchida, K.; Papadopoulos, M.C.; Zador, Z.; Manley, G.T.; Verkman, A.S. Mildly Reduced Brain Swelling and Improved Neurological Outcome in Aquaporin-4 Knockout Mice following Controlled Cortical Impact Brain Injury. J. Neurotrauma 2015, 32, 1458–1464. [Google Scholar] [CrossRef] [Green Version]
- Liang, F.; Luo, C.; Xu, G.; Su, F.; He, X.; Long, S.; Ren, H.; Liu, Y.; Feng, Y.; Pei, Z. Deletion of aquaporin-4 is neuroprotective during the acute stage of micro traumatic brain injury in mice. Neurosci. Lett. 2015, 598, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Biegon, A. Considering biological sex in traumatic brain injury. Front. Neurol. 2021, 12, 576366. [Google Scholar] [CrossRef] [PubMed]
- Tse, K.M.; Lim, S.P.; Tan, V.B.C.; Lee, H.P. A review of head injury and finite element head models. Am. J. Eng. Technol. Soc. 2014, 1, 28–52. [Google Scholar]
- Carlsson, A.; Chang, F.; Lemmen, P.; Kullgren, A.; Schmitt, K.U.; Linder, A.; Svensson, M. EvaRID—A 50th Percentile Female Rear Impact Finite Element Dummy Model. In Proceedings of the 2012 IRCOBI Conference, Dublin, Ireland, 12–14 September 2012. [Google Scholar]
- Bose, D.; Segui-Gomez, M.; Crandall, J.R. Vulnerability of female drivers involved in motor vehicle crashes: An analysis of US population at risk. Am. J. Public Health 2011, 101, 2368–2373. [Google Scholar] [CrossRef] [PubMed]
- Abrams, M.Z.; Bass, C.R. Female vs. Male relative fatality risk in fatal crashes. In Proceedings of the 2020 IRCOBI Conference, Beijing, China, 11–14 October 2020; pp. 47–85. [Google Scholar]
- Thomée, V. From finite differences to finite elements: A short history of numerical analysis of partial differential equations. J. Comput. Appl. Math. 2001, 128, 1–54. [Google Scholar] [CrossRef] [Green Version]
- Hardy, C.H.; Marcal, P.V. Elastic Analysis of a Skull. J. Appl. Mech. 1973, 40, 838–842. [Google Scholar] [CrossRef]
- Nickell, R.E.; Marcal, P.V. In-Vacuo Modal Dynamic Response of the Human Skull. J. Eng. Ind. 1974, 96, 490–494. [Google Scholar] [CrossRef]
- Ueno, K.; Melvin, J.; Lundquist, E.; Lee, M. Two-dimensional finite element analysis of human Brain Impact Responses: Application of a Scaling Law. Crashworthiness Occupant Prot. Transp. Syst. 1989, 106, 123–124. [Google Scholar]
- Ueno, K. Two-dimentional finite element model of the cortical impact method for mechanical brain injury. Crash-worthiness and Occupant Protection in Transportation System. SAME 1991, 19, 121–147. [Google Scholar]
- McGill, K.; Teixeira-Dias, F.; Callanan, A. A Review of Validation Methods for the Intracranial Response of FEHM to Blunt Impacts. Appl. Sci. 2020, 10, 7227. [Google Scholar] [CrossRef]
- Nahum, A.; Smith, R.W. Experimental model for closed head impact injury. SAE Trans. 1976, 85, 2638–2651. [Google Scholar]
- Nahum, A.M.; Smith, R.; Ward, C.C. Intracranial Pressure Dynamics during Head Impact; SAE Technical Paper 770922; SAE: Warrendale, PA, USA, 1977. [Google Scholar] [CrossRef]
- Trosseille, X.; Tarriere, C.; Lavaste, F.; Guillon, F.; Domont, A. Development of a FEM of the Human Head according to a Specific Test Protocol; SAE Technical Paper 922527; SAE: Warrendale, PA, USA, 1992. [Google Scholar] [CrossRef]
- Hardy, W.N.; Foster, C.D.; Mason, M.J.; Yang, K.H.; King, A.I.; Tashman, S. Investigation of Head Injury Mechanisms Using Neutral Density Technology and High-Speed Biplanar X-ray; SAE Technical Report; SAE: Warrendale, PA, USA, 2001. [Google Scholar] [CrossRef]
- Hardy, W.N.; Mason, M.J.; Foster, C.D.; Shah, C.S.; Kopacz, J.M.; Yang, K.H.; King, A.I.; Bishop, J.; Bey, M.; Anderst, W.; et al. A study of the response of the human cadaver head to impact. Stapp Car Crash J. 2007, 51, 17. [Google Scholar] [CrossRef]
- Alshareef, A.; Giudice, J.S.; Forman, J.; Salzar, R.S.; Panzer, M.B. A Novel Method for Quantifying Human In Situ Whole Brain Deformation under Rotational Loading Using Sonomicrometry. J. Neurotrauma 2018, 35, 780–789. [Google Scholar] [CrossRef]
- Alshareef, A.; Giudice, J.S.; Forman, J.; Shedd, D.F.; Reynier, K.A.; Wu, T.; Sochor, S.; Sochor, M.R.; Salzar, R.S.; Panzer, M.B. Biomechanics of the Human Brain during Dynamic Rotation of the Head. J. Neurotrauma 2020, 37, 1546–1555. [Google Scholar] [CrossRef]
- Wu, T.; Alshareef, A.; Giudice, J.S.; Panzer, M.B. Explicit modeling of white matter axonal fiber tracts in a finite element brain model. Ann. Biomed. Eng. 2019, 47, 1908–1922. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.D.; Giudice, J.S.; Wu, T.; Panzer, M.B.; Meaney, D.F. Predicting Concussion Outcome by Integrating Finite Element Modeling and Network Analysis. Front. Bioeng. Biotechnol. 2020, 8, 309. [Google Scholar] [CrossRef] [PubMed]
- Kenner, V.; Goldsmith, W. Dynamic loading of a fluid-filled spherical shell. Int. J. Mech. Sci. 1972, 14, 557–568. [Google Scholar] [CrossRef]
- Chan, H.S. Mathematical model for closed head impact. SAE Trans. 1974, 83, 3814–3825. [Google Scholar] [CrossRef]
- Shugar, T. Transient structural response of the linear skull-brain system. Proc. Stapp Car Crash Conf. 1975, 19, 581–614. [Google Scholar] [CrossRef]
- Shugar, T.A.; Katona, M.G. Development of finite element head injury model. J. Eng. Mech. Div. 1975, 101, 223–239. [Google Scholar] [CrossRef]
- Ward, C.C.; Thompson, R.B. The development of a detailed finite element brain model. SAE Trans. 1975, 84, 3238–3252. [Google Scholar]
- Khalil, T.B.; Hubbard, R.P. Parametric study of head response by finite element modeling. J. Biomech. 1977, 10, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Hosey, R. A Homeomorphic Finite Element Model of the Human Head and Neck. In Finite Elements in Biomechanics; Wiley: Hoboken, NJ, USA, 1982. [Google Scholar]
- Ruan, J.S.; Khalil, T.B.; King, A.I. Finite Element Modeling of Direct Head Impact; SAE Technical Report; SAE: Warrendale, PA, USA, 1993. [Google Scholar] [CrossRef]
- Ruan, J.S.; Khalil, T.; King, A.I. Dynamic Response of the Human Head to Impact by Three-Dimensional Finite Element Analysis. J. Biomech. Eng. 1994, 116, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Khalil, T.B.; King, A.I. A new model comparing impact responses of the homogeneous and inhomogeneous human brain. SAE Trans. 1995, 104, 2999–3015. [Google Scholar]
- Kumaresan, S.; Radhakrishnan, S. Importance of partitioning membranes of the brain and the influence of the neck in head injury modelling. Med Biol. Eng. Comput. 1996, 34, 27–32. [Google Scholar] [CrossRef]
- Kang, H.S.; Willinger, R.; Diaw, B.M.; Chinn, B. Validation of a 3D Anatomic Human Head Model and Replication of Head Impact in Motorcycle Accident by Finite Element Modeling. SAE Trans. 1997, 106, 3849–3858. [Google Scholar] [CrossRef]
- Willinger, R.; Kang, H.S.; Diaw, B. Three-dimensional human head finite-element model validation against two experimental impacts. Ann. Biomed. Eng. 1999, 27, 403–410. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, K.H.; Dwarampudi, R.; Omori, K.; Li, T.; Chang, K.; Hardy, W.N.; Khalil, T.B.; King, A.I. Recent advances in brain injury research: A new human head model development and validation. Stapp Car Crash J. 2001, 45, 375. [Google Scholar]
- Kleiven, S.; Hardy, W.N. Correlation of an FE Model of the Human Head with Local Brain Motion–Consequences for Injury Prediction. Stapp Car Crash J. 2002, 46, 123–144. [Google Scholar] [CrossRef] [Green Version]
- King, A.I.; Yang, K.H.; Zhang, L.; Hardy, W.; Viano, D.C. Is head injury caused by linear or angular acceleration. In Proceedings of the IRCOBI Conference, Lisbon, Portugal, 25–26 September 2003; Volume 12. [Google Scholar]
- Horgan, T.J.; Gilchrist, M.D. The creation of three-dimensional finite element models for simulating head impact biomechanics. Int. J. Crashworthiness 2003, 8, 353–366. [Google Scholar] [CrossRef]
- Takhounts, E.G.; Eppinger, R.H.; Campbell, J.Q.; Tannous, R.E.; Power, E.D.; Shook, L.S. On the Development of the SIMon Finite Element Head Model; SAE Technical Report; SAE: Warrendale, PA, USA, 2003. [Google Scholar] [CrossRef] [Green Version]
- Takhounts, E.G.; Ridella, S.A.; Hasija, V.; Tannous, R.E.; Campbell, J.Q.; Malone, D.; Danelson, K.; Stitzel, J.; Rowson, S.; Duma, S. Investigation of Traumatic Brain Injuries Using the Next Generation of Simulated Injury Monitor (SIMon) Finite Element Head Model; SAE Technical Report; SAE: Warrendale, PA, USA, 2008. [Google Scholar] [CrossRef]
- Belingardi, G.; Chiandussi, G.; Gaviglio, I. Development and validation of a new finite element model of human head. In Proceedings of the 19th International Technical Conference of the Enhanced Safety of Vehicle (ESV), Washington, DC, USA, 6–9 June 2005; Volume 35. [Google Scholar]
- Zong, Z.; Lee, H.; Lu, C. A three-dimensional human head finite element model and power flow in a human head subject to impact loading. J. Biomech. 2006, 39, 284–292. [Google Scholar] [CrossRef] [PubMed]
- McAllister, T.W.; Ford, J.C.; Ji, S.; Beckwith, J.G.; Flashman, L.A.; Paulsen, K.; Greenwald, R.M. Maximum Principal Strain and Strain Rate Associated with Concussion Diagnosis Correlates with Changes in Corpus Callosum White Matter Indices. Ann. Biomed. Eng. 2012, 40, 127–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, H.; Zhang, L.; Jiang, B.; Genthikatti, V.V.; Jin, X.; Zhu, F.; Makwana, R.; Gill, A.; Jandir, G.; Singh, A.; et al. Development of a Finite Element Human Head Model Partially Validated With Thirty Five Experimental Cases. J. Biomech. Eng. 2013, 135, 4025101. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Tse, K.M.; Chen, N.; Tan, L.B.; Zheng, Q.Q.; Yang, H.M.; Hu, M.; Pan, G.; Lee, H.P. Development of a finite element head model for the study of impact head injury. BioMed Res. Int. 2014, 2014, 408278. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, D.; Deck, C.; Willinger, R. Development and validation of an advanced anisotropic visco-hyperelastic human brain FE model. J. Mech. Behav. Biomed. Mater. 2014, 33, 24–42. [Google Scholar] [CrossRef]
- Ji, S.; Zhao, W.; Ford, J.C.; Beckwith, J.G.; Bolander, R.P. Group-Wise Evaluation and Comparison of White Matter Fiber Strain and Maximum Principal Strain in Sports-Related Concussion. J. Neurotrauma 2015, 32, 441–454. [Google Scholar] [CrossRef]
- Zhao, W.; Ruan, S.; Ji, S. Brain pressure responses in translational head impact: A dimensional analysis and a further computational study. Biomech. Model. Mechanobiol. 2015, 14, 753–766. [Google Scholar] [CrossRef] [Green Version]
- Atsumi, N.; Nakahira, Y.; Iwamoto, M. Development and validation of a head/brain FE model and investigation of influential factor on the brain response during head impact. Int. J. Veh. Saf. 2016, 9, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.E.; Urban, J.E.; Stitzel, J.D. Development and validation of an atlas-based finite element brain model. Biomech. Model. Mechanobiol. 2016, 15, 1201–1214. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, Y.; Railkar, A.; Awamori, S.; Kokeguchi, A.; Amamori, I.; Katagiri, M.; Yoshii, K. Intracranial Brain Motion Measurement in Frontal Sled Tests by Using a New Anthropometric Test Dummy Head Capable of Direct Brain Motion Evaluation and Visualisation. In Proceedings of the IRCOBI Conference, Antwerp, Belgium, 13–15 September 2017. [Google Scholar]
- Toma, M.; Nguyen, P.D. Fluid–structure interaction analysis of cerebrospinal fluid with a comprehensive head model subject to a rapid acceleration and deceleration. Brain Inj. 2018, 32, 1576–1584. [Google Scholar] [CrossRef]
- Toma, M.; Nguyen, P.D.H. Coup-contrecoup brain injury: Fluid–structure interaction simulations. Int. J. Crashworthiness 2020, 25, 175–182. [Google Scholar] [CrossRef]
- Toma, M.; Dehesa-Baeza, A.; Chan-Akaley, R.; Nguyen, P.D.; Zwibel, H. Cerebrospinal fluid interaction with cerebral cortex during pediatric abusive head trauma. J. Pediatr. Neurol. 2020, 18, 223–230. [Google Scholar] [CrossRef]
- Fernandes, F.A.; Tchepel, D.; de Sousa, R.J.A.; Ptak, M. Development and validation of a new finite element human head model: Yet another head model (YEAHM). Eng. Comput. 2018, 35, 477–496. [Google Scholar] [CrossRef]
- Migueis, G.; Fernandes, F.; Ptak, M.; Ratajczak, M.; Alves de Sousa, R. Detection of bridging veins rupture and subdural haematoma onset using a finite element head model. Clin. Biomech. 2019, 63, 104–111. [Google Scholar] [CrossRef]
- Barbosa, A.; Fernandes, F.A.O.; Alves de Sousa, R.J.; Ptak, M.; Wilhelm, J. Computational Modeling of Skull Bone Structures and Simulation of Skull Fractures Using the YEAHM Head Model. Biology 2020, 9, 267. [Google Scholar] [CrossRef]
- Costa, J.M.; Fernandes, F.A.; Alves de Sousa, R.J. Prediction of subdural haematoma based on a detailed numerical model of the cerebral bridging veins. J. Mech. Behav. Biomed. Mater. 2020, 111, 103976. [Google Scholar] [CrossRef]
- Huang, J.; Raymond, D.; Shen, W.; Stuhmiller, J.; Crawford, G.; Bir, C. Development and Validation of a Subject-Specific Finite Element Model for Skull Fracture Assessment. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Denver, CO, USA, 11–17 November 2011; Volume 2. [Google Scholar] [CrossRef]
- Depreitere, B.; Lierde, C.V.; Sloten, J.V.; Audekercke, R.V.; Perre, G.V.D.; Plets, C.; Goffin, J. Mechanics of acute subdural hematomas resulting from bridging vein rupture. J. Neurosurg. JNS 2006, 104, 950–956. [Google Scholar] [CrossRef] [Green Version]
- Khanuja, T.; Unni, H.N. Intracranial pressure–based validation and analysis of traumatic brain injury using a new three-dimensional finite element human head model. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2020, 234, 3–15. [Google Scholar] [CrossRef]
- Hassan, M.; Taha, Z.; Hasanuddin, I.; Majeed, A.; Mustafa, H.; Othman, N. A simplified human head finite element model for brain injury assessment of blunt impacts. J. Mech. Eng. Sci. 2020, 14, 6538–6547. [Google Scholar] [CrossRef]
- Trotta, A.; Clark, J.M.; McGoldrick, A.; Gilchrist, M.D.; Annaidh, A.N. Biofidelic finite element modelling of brain trauma: Importance of the scalp in simulating head impact. Int. J. Mech. Sci. 2020, 173, 105448. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Z.; Kleiven, S. An anatomically detailed and personalizable head injury model: Significance of brain and white matter tract morphological variability on strain. Biomech. Model. Mechanobiol. 2021, 20, 403–431. [Google Scholar] [CrossRef]
- Pastakia, K.; Kumar, S. Acute Whiplash Associated Disorders (WAD). Ph.D. Thesis, University of South Australia, Adelaide, Australia, 2011. [Google Scholar] [CrossRef] [Green Version]
- Vasavada, A.N.; Danaraj, J.; Siegmund, G.P. Head and neck anthropometry, vertebral geometry and neck strength in height-matched men and women. J. Biomech. 2008, 41, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Stemper, B.D.; Derosia, J.J.; Yogananan, N.; Pintar, F.A.; Shender, B.S.; Paskoff, G.R. Gender dependent cervical spine anatomical differences in size-matched volunteers. Biomed. Sci. Instrum. 2009, 45, 149–154. [Google Scholar] [PubMed]
- Pollard, C.D.; Braun, B.; Hamill, J. Influence of gender, estrogen and exercise on anterior knee laxity. Clin. Biomech. 2006, 21, 1060–1066. [Google Scholar] [CrossRef] [PubMed]
- Quatman, C.E.; Ford, K.R.; Myer, G.D.; Paterno, M.V.; Hewett, T.E. The effects of gender and pubertal status on generalized joint laxity in young athletes. J. Sci. Med. Sport 2008, 11, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Shultz, S.J.; Sander, T.; Kirk, S.; Perrin, D. Sex differences in knee joint laxity change across the female menstrual cycle. J. Sport. Med. Phys. Fit. 2005, 45, 594. [Google Scholar]
- Saremi, H.; Shahbazi, F.; Rahighi, A.H. Epidemiology of generalized ligamentous laxity in northwest of Iran: A pilot national study on 17–40 years old adults in Hamadan province. Clin. Epidemiol. Glob. Health 2020, 8, 461–465. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Siegmund, G.; Ozyigit, G.; Vasavada, A. Sex-specific prediction of neck muscle volumes. J. Biomech. 2013, 46, 899–904. [Google Scholar] [CrossRef] [Green Version]
- Reddy, C.; Zhou, Y.; Wan, B.; Zhang, X. Sex and posture dependence of neck muscle size-strength relationships. J. Biomech. 2021, 127, 110660. [Google Scholar] [CrossRef]
- Migotto, B.D.; Gill, S.; Sem, M.; Macpherson, A.K.; Hynes, L.M. Sex-related differences in sternocleidomastoid muscle morphology in healthy young adults: A cross-sectional magnetic resonance imaging measurement study. Musculoskelet. Sci. Pract. 2022, 61, 102590. [Google Scholar] [CrossRef]
- Saito, T.; Yamamuro, T.; Shikata, J.; Oka, M.; Tsutsumi, S. Analysis and prevention of spinal column deformity following cervical laminectomy. I. Pathogenetic analysis of postlaminectomy deformities. Spine 1991, 16, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Maurel, N.; Lavaste, F.; Skalli, W. A three-dimensional parameterized finite element model of the lower cervical spine, study of the influence of the posterior articular facets. J. Biomech. 1997, 30, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Moroney, S.P. Mechanical Properties and Muscle Force Analyses of the Lower Cervical Spine (Stiffness, Modelling, Motion Segment). Ph.D. Thesis, University of Illinois, Champaign, IL, USA, 1984. [Google Scholar]
- Moroney, S.P.; Schultz, A.B.; Miller, J.A.; Andersson, G.B. Load-displacement properties of lower cervical spine motion segments. J. Biomech. 1988, 21, 769–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelker, R.R.; Duranceau, J.S.; Panjabi, M.M. Cervical spine stabilization. A three-dimensional, biomechanical evaluation of rotational stability, strength, and failure mechanisms. Spine 1991, 16, 117–122. [Google Scholar] [PubMed]
- Zhang, Q.H.; Teo, E.C.; Ng, H.W.; Lee, V.S. Finite element analysis of moment-rotation relationships for human cervical spine. J. Biomech. 2006, 39, 189–193. [Google Scholar] [CrossRef]
- Panjabi, M.; Nibu, K.; Cholewicki, J. Whiplash injuries and the potential for mechanical instability. Eur. Spine J. 1998, 7, 484–492. [Google Scholar] [CrossRef] [Green Version]
- Panjabi, M.M.; Crisco, J.J.; Vasavada, A.; Oda, T.; Cholewicki, J.; Nibu, K.; Shin, E. Mechanical properties of the human cervical spine as shown by three-dimensional load–displacement curves. Spine 2001, 26, 2692–2700. [Google Scholar] [CrossRef]
- Kallemeyn, N.A.; Tadepalli, S.C.; Shivanna, K.H.; Grosland, N.M. An interactive multiblock approach to meshing the spine. Comput. Methods Programs Biomed. 2009, 95, 227–235. [Google Scholar] [CrossRef]
- Kallemeyn, N.; Gandhi, A.; Kode, S.; Shivanna, K.; Smucker, J.; Grosland, N. Validation of a C2–C7 cervical spine finite element model using specimen-specific flexibility data. Med. Eng. Phys. 2010, 32, 482–489. [Google Scholar] [CrossRef]
- Traynelis, V.C.; Donaher, P.A.; Roach, R.M.; Kojimoto, H.; Goel, V.K. Biomechanical comparison of anterior Caspar plate and three-level posterior fixation techniques in a human cadaveric model. J. Neurosurg. 1993, 79, 96–103. [Google Scholar] [CrossRef]
- Panzer, M.B.; Fice, J.B.; Cronin, D.S. Cervical spine response in frontal crash. Med. Eng. Phys. 2011, 33, 1147–1159. [Google Scholar] [CrossRef] [PubMed]
- Wheeldon, J.A.; Pintar, F.A.; Knowles, S.; Yoganandan, N. Experimental flexion/extension data corridors for validation of finite element models of the young, normal cervical spine. J. Biomech. 2006, 39, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, R.W.; Winkelstein, B.A.; Knaub, K.E.; Richardson, W.J.; Luck, J.F.; Myers, B.S. Comparative strengths and structural properties of the upper and lower cervical spine in flexion and extension. J. Biomech. 2002, 35, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, R.W.; Carol Chancey, V.; Ottaviano, D.; Luck, J.F.; Tran, L.; Prange, M.; Myers, B.S. Flexion and extension structural properties and strengths for male cervical spine segments. J. Biomech. 2007, 40, 535–542. [Google Scholar] [PubMed]
- Dibb, A.T.; Nightingale, R.W.; Luck, J.F.; Chancey, V.C.; Fronheiser, L.E.; Myers, B.S. Tension and Combined Tension-Extension Structural Response and Tolerance Properties of the Human Male Ligamentous Cervical Spine. J. Biomech. Eng. 2009, 131, 3127257. [Google Scholar] [CrossRef]
- Toosizadeh, N.; Haghpanahi, M. Generating a finite element model of the cervical spine: Estimating muscle forces and internal loads. Sci. Iran 2011, 18, 1237–1245. [Google Scholar] [CrossRef] [Green Version]
- Erbulut, D.; Zafarparandeh, I.; Lazoglu, I.; Ozer, A. Application of an asymmetric finite element model of the C2-T1 cervical spine for evaluating the role of soft tissues in stability. Med. Eng. Phys. 2014, 36, 915–921. [Google Scholar]
- Östh, J.; Brolin, K.; Svensson, M.Y.; Linder, A. A Female Ligamentous Cervical Spine Finite Element Model Validated for Physiological Loads. J. Biomech. Eng. 2016, 138, 4032966. [Google Scholar] [CrossRef]
- Östh, J.; Mendoza-Vazquez, M.; Sato, F.; Svensson, M.Y.; Linder, A.; Brolin, K. A female head–neck model for rear impact simulations. J. Biomech. 2017, 51, 49–56. [Google Scholar] [CrossRef]
- Panjabi, M.M.; Summers, D.J.; Pelker, R.R.; Videman, T.; Friedlaender, G.E.; Southwick, W.O. Three-dimensional load-displacement curves due to froces on the cervical spine. J. Orthop. Res. 1986, 4, 152–161. [Google Scholar] [CrossRef]
- Stemper, B.D.; Yoganandan, N.; Pintar, F.A. Gender dependent cervical spine segmental kinematics during whiplash. J. Biomech. 2003, 36, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Stemper, B.D.; Yoganandan, N.; Pintar, F.A. Gender-and region-dependent local facet joint kinematics in rear impact: Implications in whiplash injury. Spine 2004, 29, 1764–1771. [Google Scholar] [CrossRef] [PubMed]
- Stemper, B.D.; Yoganandan, N.; Pintar, F.A. Response corridors of the human head-neck complex in rear impact. Annu. Proc. Assoc. Adv. Automot. Med. 2004, 48, 149. [Google Scholar]
- Cai, X.Y.; Sang, D.; Yuchi, C.X.; Cui, W.; Zhang, C.; Du, C.F.; Liu, B. Using finite element analysis to determine effects of the motion loading method on facet joint forces after cervical disc degeneration. Comput. Biol. Med. 2020, 116, 103519. [Google Scholar] [CrossRef] [PubMed]
- Yoganandan, N.; Pintar, F.A.; Stemper, B.D.; Wolfla, C.E.; Shender, B.S.; Paskoff, G. Level-dependent coronal and axial moment-rotation corridors of degeneration-free cervical spines in lateral flexion. JBJS 2007, 89, 1066–1074. [Google Scholar] [CrossRef] [PubMed]
- Yoganandan, N.; Stemper, B.D.; Pintar, F.A.; Baisden, J.L.; Shender, B.S.; Paskoff, G. Normative segment-specific axial and coronal angulation corridors of subaxial cervical column in axial rotation. Spine 2008, 33, 490–496. [Google Scholar] [CrossRef]
- Eliot, L.; Ahmed, A.; Khan, H.; Patel, J. Dump the “dimorphism”: Comprehensive synthesis of human brain studies reveals few male-female differences beyond size. Neurosci. Biobehav. Rev. 2021, 125, 667–697. [Google Scholar] [CrossRef]
- Giudice, M.D. Binary thinking about the sex binary: A comment on Joel (2021). Neurosci. Biobehav. Rev. 2021, 127, 144–145. [Google Scholar] [CrossRef]
Authors | Year | Type | Model Description | Validation |
---|---|---|---|---|
Saito et al. [214] | 1991 | 2D | Two triangular mesh models, a normal and a post-laminectomy model to compare the differences leading to post-laminectomy syndrome. | |
Maurel et al. [215] | 1997 | 3D | Parameterized FENM, including the complete lower cervical spine, allowing the model to fit different morphologies of vertebrae. | Axial torque, lateral flexion, flexion and extension (Moroney [216], Moroney et al. [217], Pelker et al. [218]) |
Zhang et al. [219] | 2006 | 3D | Developed a geometrically accurate, nonlinear C0–C7 cervical spine model, based on the geometry of a human cadaver specimen. | Axial torque, lateral flexion, flexion and extension (Panjabi et al. [220,221]) |
Kallemeyn et al. [222,223] | 2009 | 3D | Development of a functional spinal unit obtained using a CT scan and meshed using the multi-block technique. The model consisted only of hexahedral elements. | Axial torque, lateral flexion, flexion and extension (Moroney et al. [217], Traynelis et al. [224]) |
2010 | 3D | Development of a cervical spine model using the multi-block technique. The model was divided to allow individual testing. | In-house experimental motion data. | |
Panzer et al. [225] | 2011 | 3D | Developed a detailed cervical spine finite for the evaluation of global kinematics and tissue-level response. | Axial torque, lateral flexion, flexion and extension (Wheeldon et al. [226], Nightingale et al. [227,228], Dibb et al. [229]) |
Toosizadeh and Haghpanahi [230] | 2011 | 3D | Geometrically accurate, non-linear model of C0–C7, using CT scan data. | Axial torque, lateral flexion, flexion and extension (Wheeldon et al. [226], Nightingale et al. [228]) |
Erbulut et al. [231] | 2014 | 3D | Asymmetrical full cervical spine model to investigate the influences of ligaments, facet joints, and disk nucleus on the stability of the model during flexion and extension. | Axial torque, lateral flexion, flexion and extension (Traynelis et al. [224], Panjabi et al. [221], Wheeldon et al. [226], Nightingale et al. [227,228]) |
Òsth et al. [232,233] | 2016 | 3D | Developed a ligamentous cervical spine of a female subject intended for biomechanical research on the effect of automotive impacts. | Axial torque, lateral flexion, flexion and extension (Panjabi et al. [221,234], Nightingale et al. [227]) |
2017 | 3D | Used the previously created ligamentous cervical spine and incorporated a skull and soft tissues. | Rear impact experiments from Stemper et al. [235,236,237] | |
Cai et al. [238] | 2020 | 3D | Developed a model of the cervical spine (C3–C7), with six degenerative models simulating mild, moderate, and severe grades of disc degeneration at C5–C6, using CT scan data. | Axial torque, lateral flexion, flexion and extension (Traynelis et al. [224], Panjabi et al. [221], Wheeldon et al. [226], Yoganandan et al. [239,240]) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmo, G.P.; Grigioni, J.; Fernandes, F.A.O.; Alves de Sousa, R.J. Biomechanics of Traumatic Head and Neck Injuries on Women: A State-of-the-Art Review and Future Directions. Biology 2023, 12, 83. https://doi.org/10.3390/biology12010083
Carmo GP, Grigioni J, Fernandes FAO, Alves de Sousa RJ. Biomechanics of Traumatic Head and Neck Injuries on Women: A State-of-the-Art Review and Future Directions. Biology. 2023; 12(1):83. https://doi.org/10.3390/biology12010083
Chicago/Turabian StyleCarmo, Gustavo P., Jeroen Grigioni, Fábio A. O. Fernandes, and Ricardo J. Alves de Sousa. 2023. "Biomechanics of Traumatic Head and Neck Injuries on Women: A State-of-the-Art Review and Future Directions" Biology 12, no. 1: 83. https://doi.org/10.3390/biology12010083
APA StyleCarmo, G. P., Grigioni, J., Fernandes, F. A. O., & Alves de Sousa, R. J. (2023). Biomechanics of Traumatic Head and Neck Injuries on Women: A State-of-the-Art Review and Future Directions. Biology, 12(1), 83. https://doi.org/10.3390/biology12010083