Relationship between Copper, Zinc, and Copper-to-Zinc Ratio in Hair and Severity of Coronary Artery Disease according to the SYNTAX Score
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Population
2.2. Laboratory and Clinical Data
2.3. Sample Collection and Analysis
2.4. Coronary Angiography
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Determinants of Cu, Zn, and Cu/Zn
3.3. Association between Cu, Zn, Cu/Zn-Ratio, and Severity of CAD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organisation. Global Health Estimates: Life Expectancy and Leading Causes of Death and Disability. Available online: www.who.int/data/gho/data/themes/mortality-and-global-health-estimates (accessed on 20 May 2023).
- Björkegren, J.L.M.; Lusis, A.J. Atherosclerosis: Recent developments. Cell 2022, 185, 1630–1645. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Zhao, Q.; Luo, Y.; Wang, T. Investigating the Role of Zinc in Atherosclerosis: A Review. Biomolecules 2022, 12, 1358. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Cai, Q.; Liang, R.; Zhang, D.; Liu, X.; Zhang, M.; Xiong, Y.; Xu, M.; Liu, Q.; Li, P.; et al. Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies. Cell Death Dis. 2023, 14, 105. [Google Scholar] [CrossRef]
- Malavolta, M.; Giacconi, R.; Piacenza, F.; Santarelli, L.; Cipriano, C.; Costarelli, L.; Tesei, S.; Pierpaoli, S.; Basso, A.; Galeazzi, R.; et al. Plasma copper/zinc ratio: An inflammatory/nutritional biomarker as predictor of all-cause mortality in elderly population. Biogerontology 2010, 11, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Stefanidou, M.; Maravelias, C.; Dona, A.; Spiliopoulou, C. Zinc: A multipurpose trace element. Arch. Toxicol. 2006, 80, 1–9. [Google Scholar] [CrossRef]
- Outten, C.E.; O’Halloran, T.V. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 2001, 292, 2488–2492. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Miao, J. An Emerging Role of Defective Copper Metabolism in Heart Disease. Nutrients 2022, 14, 700. [Google Scholar] [CrossRef] [PubMed]
- Linder, M.C.; Hazegh-Azam, M. Copper biochemistry and molecular biology. Am. J. Clin. Nutr. 1996, 63, 797S–811S. [Google Scholar]
- Bost, M.; Houdart, S.; Oberli, M.; Kalonji, E.; Huneau, J.-F.; Margaritis, I. Dietary copper and human health: Current evidence and unresolved issues. J. Trace Elem. Med. Biol. 2016, 35, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Nakaona, L.; Maseka, K.K.; Hamilton, E.M.; Watts, M.J. Using human hair and nails as biomarkers to assess exposure of potentially harmful elements to populations living near mine waste dumps. Environ. Geochem. Health 2020, 42, 1197–1209. [Google Scholar] [CrossRef]
- Chojnacka, K.; Górecka, H.; Chojnacki, A.; Górecki, H. Inter-element interactions in human hair. Environ. Toxicol. Pharmacol. 2005, 20, 368–374. [Google Scholar] [CrossRef]
- Çelik, B.; Nalçacıoğlu, H.; Karakükçü, Ç.; Aslaner, H.; Şahiner, Ü.M. Assessment of Hair Zinc in the School Children in Kayseri, Turkey. Biol. Trace Elem. Res. 2020, 196, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Kazemi-Bajestani, S.M.R.; Ghayour-Mobarhan, M.; Ebrahimi, M.; Moohebati, M.; Esmaeili, H.A.; Parizadeh, M.R.; Aghacizadeh, R.; Ferns, G.A.A. Serum copper and zinc concentrations are lower in Iranian patients with angiographically defined coronary artery disease than in subjects with a normal angiogram. J. Trace Elem. Med. Biol. 2007, 21, 22–28. [Google Scholar] [CrossRef]
- Choi, S.; Liu, X.; Pan, Z. Zinc deficiency and cellular oxidative stress: Prognostic implications in cardiovascular diseases. Acta Pharmacol. Sin. 2018, 39, 1120–1132. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhu, H.; Zhai, T.; Pan, H.; Wang, L.; Yang, H.; Yan, K.; Zeng, Y.; Gong, F. Serum Zinc-α2-Glycoprotein Levels Were Decreased in Patients with Premature Coronary Artery Disease. Front. Endocrinol. 2019, 10, 197. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Wang, Y.; Zhou, F.; Ruan, J.; Duan, M.; Wang, X.; Yu, Q.; Yang, P.; Chen, W.; Meng, F. Reduced Serum Zinc Ion Concentration Is Associated with Coronary Heart Disease. Biol. Trace Elem. Res. 2021, 199, 4109–4118. [Google Scholar] [CrossRef] [PubMed]
- Kärberg, K.; Forbes, A.; Lember, M. Raised dietary Zn:Cu ratio increases the risk of atherosclerosis in type 2 diabetes. Clin. Nutr. ESPEN 2022, 50, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Dziedzic, E.A.; Gąsior, J.S.; Tuzimek, A.; Paleczny, J.; Kwaśny, M.; Dąbrowski, M.; Jankowski, P. No Association of Hair Zinc Concentration with Coronary Artery Disease Severity and No Relation with Acute Coronary Syndromes. Biomolecules 2022, 12, 862. [Google Scholar] [CrossRef]
- De Paula, R.C.S.; Aneni, E.C.; Costa, A.P.R.; Figueiredo, V.N.; Moura, F.A.; Freitas, W.M.; Quaglia, L.A.; Santos, S.N.; Soares, A.A.; Nadruz, W.; et al. Low zinc levels is associated with increased inflammatory activity but not with atherosclerosis, arteriosclerosis or endothelial dysfunction among the very elderly. BBA Clin. 2014, 2, 1–6. [Google Scholar] [CrossRef]
- Dziedzic, E.A.; Tuzimek, A.; Gąsior, J.S.; Paleczny, J.; Junka, A.; Kwaśny, M.; Dąbrowski, M.; Jankowski, P. Investigation on the Association of Copper and Copper-to-Zinc-Ratio in Hair with Acute Coronary Syndrome Occurrence and Its Risk Factors. Nutrients 2022, 14, 4107. [Google Scholar] [CrossRef]
- Jäger, S.; Cabral, M.; Kopp, J.F.; Hoffmann, P.; Ng, E.; Whitfield, J.B.; Morris, A.P.; Lind, L.; Schwerdtle, T.; Schulze, M.B. Blood copper and risk of cardiometabolic diseases: A Mendelian randomization study. Hum. Mol. Genet. 2022, 31, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Urbanowicz, T.; Hanć, A.; Olasińska-Wiśniewska, A.; Rodzki, M.; Witkowska, A.; Michalak, M.; Perek, B.; Haneya, A.; Jemielity, M. Serum copper concentration reflect inflammatory activation in the complex coronary artery disease—A pilot study. J. Trace Elem. Med. Biol. 2022, 74, 127064. [Google Scholar] [CrossRef] [PubMed]
- Neumann, F.-J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.-P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef] [PubMed]
- Yumuk, V.; Tsigos, C.; Fried, M.; Schindler, K.; Busetto, L.; Micic, D.; Toplak, H. European Guidelines for Obesity Management in Adults. Obes. Facts 2015, 8, 402–424. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; de Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Araszkiewicz, A.; Bandurska-Stankiewicz, E.; Borys, S.; Budzyński, A.; Cyganek, K.; Cypryk, K.; Czech, A.; Czupryniak, L.; Drzewoski, J.; Dzida, G.; et al. 2021 Guidelines on the management of patients with diabetes. A position of Diabetes Poland. Clin. Diabetol. 2021, 10, 1–113. [Google Scholar] [CrossRef]
- Stergiou, G.S.; Palatini, P.; Parati, G.; O’Brien, E.; Januszewicz, A.; Lurbe, E.; Persu, A.; Mancia, G.; Kreutz, R. 2021 European Society of Hypertension practice guidelines for office and out-of-office blood pressure measurement. J. Hypertens. 2021, 39, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Shizhong, C.; Dengbo, L.; Zhixiong, H.; Zhan, W. The use of electrothermal vaporization ICP-OES for the determination of trace elements in human hair using slurry sampling and PTFE as modifier. Int. J. Environ. Anal. Chem. 2005, 85, 493–501. [Google Scholar] [CrossRef]
- Montalescot, G.; Sechtem, U.; Achenbach, S.; Andreotti, F.; Arden, C.; Budaj, A.; Bugiardini, R.; Crea, F.; Cuisset, T.; Di Mario, C.; et al. 2013 ESC guidelines on the management of stable coronary artery disease: The Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur. Heart J. 2013, 34, 2949–3003. [Google Scholar] [CrossRef]
- Windecker, S.; Kolh, P.; Alfonso, F.; Collet, J.-P.; Cremer, J.; Falk, V.; Filippatos, G.; Hamm, C.; Head, S.J.; Jüni, P.; et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. Heart J. 2014, 35, 2541–2619. [Google Scholar] [CrossRef]
- Islamoglu, Y.; Evliyaoglu, O.; Tekbas, E.; Cil, H.; Elbey, M.A.; Atilgan, Z.; Kaya, H.; Bilik, Z.; Akyuz, A.; Alan, S. The relationship between serum levels of Zn and Cu and severity of coronary atherosclerosis. Biol. Trace Elem. Res. 2011, 144, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.; Ferin, R.; Fontes, A.; Santos, E.; Martins, D.; Baptista, J.; Pavão, M.L. Circulating antioxidant vitamins and copper in Azorean coronary artery disease patients under preventive medication—A case study. J. Trace Elem. Med. Biol. 2021, 64, 126701. [Google Scholar] [CrossRef] [PubMed]
- Yendt, E.R.; Cohanim, M. Prevention of calcium stones with thiazides. Kidney Int. 1978, 13, 397–409. [Google Scholar] [CrossRef]
- Bagheri, B.; Akbari, N.; Tabiban, S.; Habibi, V.; Mokhberi, V. Serum level of copper in patients with coronary artery disease. Niger. Med. J. 2015, 56, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Gensini, G.G. A more meaningful scoring system for determining the severity of coronary heart disease. Am. J. Cardiol. 1983, 51, 606. [Google Scholar] [CrossRef] [PubMed]
- Mielcarz, G.; Howard, A.N.; Mielcarz, B.; Williams, N.R.; Rajput-Williams, J.; Nigdigar, S.V.; Stone, D.L. Leucocyte copper, a marker of copper body status is low in coronary artery disease. J. Trace Elem. Med. Biol. 2001, 15, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Mahalle, N.; Garg, M.K.; Naik, S.S.; Kulkarni, M.V. Association of dietary factors with severity of coronary artery disease. Clin. Nutr. ESPEN 2016, 15, 75–79. [Google Scholar] [CrossRef]
- Białkowska, M.; Hoser, A.; Szostak, W.B.; Dybczyński, R.; Sterliński, S.; Nowicka, G.; Majchrzak, J.; Kaczorowski, J.; Danko, B. Hair zinc and copper concentration in survivors of myocardial infarction. Ann. Nutr. Metab. 1987, 31, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.-R.; Zhang, S.-Q.; Xiong, Y.; Zhao, Y.; Fu, H.; Zhang, H.-P.; Xiong, K.-M. Studies of five microelement contents in human serum, hair, and fingernails correlated with aged hypertension and coronary heart disease. Biol. Trace Elem. Res. 2003, 92, 97–104. [Google Scholar] [CrossRef]
- Afridi, H.I.; Kazi, T.G.; Kazi, G.H.; Jamali, M.K.; Shar, G.Q. Essential trace and toxic element distribution in the scalp hair of Pakistani myocardial infarction patients and controls. Biol. Trace Elem. Res. 2006, 113, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Chen, H.; Xia, C. The prediction of cardiovascular disease based on trace element contents in hair and a classifier of boosting decision stumps. Biol. Trace Elem. Res. 2009, 129, 9–19. [Google Scholar] [CrossRef]
- Chen, A.; Li, G.; Liu, Y. Association between copper levels and myocardial infarction: A meta-analysis. Inhal. Toxicol. 2015, 27, 237–246. [Google Scholar] [CrossRef]
- Ilyas, A.; Ahmad, H.; Shah, M.H. Comparative Study of Elemental Concentrations in the Scalp Hair and Nails of Myocardial Infarction Patients versus Controls from Pakistan. Biol. Trace Elem. Res. 2015, 166, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, A.; Shah, M.H. Disparities of Selected Metal Levels in the Blood and Scalp Hair of Ischemia Heart Disease Patients and Healthy Subjects. Biol. Trace Elem. Res. 2017, 180, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, A.; Ahmad, H.; Shah, M.H. Comparative Distribution, Correlation, and Chemometric Analyses of Selected Metals in Scalp Hair of Angina Patients and Healthy Subjects. Biol. Trace Elem. Res. 2015, 168, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-P.; Song, Y.-X.; Lin, Z.-J.; Ma, M.-L.; He, L.-P. Essential trace elements in patients with dyslipidemia: A meta-analysis. Curr. Med. Chem. 2023. Online ahead of print. [Google Scholar] [CrossRef]
- Ruz, M.; Carrasco, F.; Rojas, P.; Basfi-Fer, K.; Hernández, M.C.; Pérez, A. Nutritional Effects of Zinc on Metabolic Syndrome and Type 2 Diabetes: Mechanisms and Main Findings in Human Studies. Biol. Trace Elem. Res. 2019, 188, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Safarzad, M.; Jazi, M.S.; Kiaei, M.; Asadi, J. Lower serum zinc level is associated with higher fasting insulin in type 2 diabetes mellitus (T2DM) and relates with disturbed glucagon suppression response in male patients. Prim. Care Diabetes 2023. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Maret, W. Zinc in Pancreatic Islet Biology, Insulin Sensitivity, and Diabetes. Prev. Nutr. Food Sci. 2017, 22, 1–8. [Google Scholar] [CrossRef]
- Chabosseau, P.; Rutter, G.A. Zinc and diabetes. Arch. Biochem. Biophys. 2016, 611, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Ferdowsi, P.V.; Ahuja, K.D.K.; Beckett, J.M.; Myers, S. Capsaicin and Zinc Signalling Pathways as Promising Targets for Managing Insulin Resistance and Type 2 Diabetes. Molecules 2023, 28, 2861. [Google Scholar] [CrossRef]
- Ghaedi, K.; Ghasempour, D.; Jowshan, M.; Zheng, M.; Ghobadi, S.; Jafari, A. Effect of zinc supplementation in the management of type 2 diabetes: A grading of recommendations assessment, development, and evaluation-assessed, dose-response meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2023, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kazi, T.G.; Afridi, H.I.; Kazi, N.; Jamali, M.K.; Arain, M.B.; Jalbani, N.; Kandhro, G.A. Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol. Trace Elem. Res. 2008, 122, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Hotta, Y.; Fujino, R.; Kimura, O.; Endo, T. Essential and Non-essential Elements in Scalp Hair of Diabetics: Correlations with Glycated Hemoglobin (HbA1c). Biol. Pharm. Bull. 2018, 41, 1034–1039. [Google Scholar] [CrossRef] [PubMed]
- Eljazzar, S.; Abu-Hijleh, H.; Alkhatib, D.; Sokary, S.; Ismail, S.; Al-Jayyousi, G.F.; Tayyem, R. The Role of Copper Intake in the Development and Management of Type 2 Diabetes: A Systematic Review. Nutrients 2023, 15, 1655. [Google Scholar] [CrossRef] [PubMed]
- Taneja, S.K.; Mahajan, M.; Gupta, S.; Singh, K.P. Assessment of copper and zinc status in hair and urine of young women descendants of NIDDM parents. Biol. Trace Elem. Res. 1998, 62, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Afridi, H.I.; Kazi, T.G.; Kazi, N.; Talpur, F.N.; Naeemullah; Arain, S.S.; Brahman, K.D.; Wadhwa, S.K.; Shah, F. Distribution of copper, iron, and zinc in biological samples of Pakistani hypertensive patients and referent subjects of different age groups. Clin. Lab. 2013, 59, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Vivoli, G.; Borella, P.; Bergomi, M.; Fantuzzi, G. Zinc and copper levels in serum, urine, and hair of humans in relation to blood pressure. Sci. Total Environ. 1987, 66, 55–64. [Google Scholar] [CrossRef]
- Ozyildirim, S.; Baltaci, S.B. Cardiovascular Diseases and Zinc. Biol. Trace Elem. Res. 2023, 201, 1615–1626. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Li, H.; Liu, M.; Zhang, Z.; Zhang, Y.; Zhou, C.; Ye, Z.; Wu, Q.; Liang, M.; Jiang, J.; et al. J-shaped association between dietary zinc intake and new-onset hypertension: A nationwide cohort study in China. Front. Med. 2023, 17, 156–164. [Google Scholar] [CrossRef]
- Knez, M.; Pantovic, A.; Zekovic, M.; Pavlovic, Z.; Glibetic, M.; Zec, M. Is There a Link between Zinc Intake and Status with Plasma Fatty Acid Profile and Desaturase Activities in Dyslipidemic Subjects? Nutrients 2019, 12, 93. [Google Scholar] [CrossRef]
- Knez, M.; Nikolic, M.; Zekovic, M.; Stangoulis, J.C.; Gurinovic, M.; Glibetic, M. The influence of food consumption and socio-economic factors on the relationship between zinc and iron intake and status in a healthy population. Public Health Nutr. 2017, 20, 2486–2498. [Google Scholar] [CrossRef]
- Król, E.; Bogdański, P.; Suliburska, J.; Krejpcio, Z. The Relationship between Dietary, Serum and Hair Levels of Minerals (Fe, Zn, Cu) and Glucose Metabolism Indices in Obese Type 2 Diabetic Patients. Biol. Trace Elem. Res. 2019, 189, 34–44. [Google Scholar] [CrossRef]
- Kempson, I.M.; Skinner, W.M.; Kirkbride, K.P. The occurrence and incorporation of copper and zinc in hair and their potential role as bioindicators: A review. J. Toxicol. Environ. Health B Crit. Rev. 2007, 10, 611–622. [Google Scholar] [CrossRef]
- Kales, S.N.; Goldman, R.H. Mercury exposure: Current concepts, controversies, and a clinic’s experience. J. Occup. Environ. Med. 2002, 44, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Samanta, G.; Chowdhury, T.R.; Mandal, B.K.; Biswas, B.K.; Chowdhury, U.K.; Basu, G.K.; Chanda, C.R.; Lodh, D.; Chakraborti, D. Flow Injection Hydride Generation Atomic Absorption Spectrometry for Determination of Arsenic in Water and Biological Samples from Arsenic-Affected Districts of West Bengal, India, and Bangladesh. Microchem. J. 1999, 62, 174–191. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Iqbal, J.; Campos, C.M.; Klaveren, D.V.; Bourantas, C.V.; Dawkins, K.D.; Banning, A.P.; Escaned, J.; de Vries, T.; Morel, M.-A.; et al. Prognostic value of site SYNTAX score and rationale for combining anatomic and clinical factors in decision making: Insights from the SYNTAX trial. J. Am. Coll. Cardiol. 2014, 64, 423–432. [Google Scholar] [CrossRef] [PubMed]
Q1 < 25% | Q2 25–50% | Q3 50–75% | Q4 > 75% | |
---|---|---|---|---|
Cu | 6.6 (1.0–7.3) | 8.4 (7.4–9.0) | 10.0 (9.1–11.0) | 12.7 (11.2–35.2) |
Zn | 113 (25–139) | 152 (140–167) | 176 (168–191) | 206 (192–495) |
Cu/Zn | 0.04 (0.01–0.04) | 0.05 (0.05–0.05) | 0.06 (0.05–0.07) | 0.09 (0.07–0.31) |
Variables | Effect for | β | 95% CI | Wald Stat. | p-Value |
---|---|---|---|---|---|
Age | - | 0.013 | −0.011–0.036 | 1.104 | 0.294 |
Sex | Males | −0.004 | −0.487–0.480 | <0.001 | 0.989 |
BMI | - | 0.005 | −0.037–0.046 | 0.05 | 0.827 |
Smoking | Smokers | −0.103 | −0.579–0.373 | 0.179 | 0.672 |
Hypertension | Yes | 0.042 | −0.554–0.639 | 0.019 | 0.889 |
Diabetes | Yes | −0.248 | −0.701–0.205 | 1.150 | 0.284 |
Pre-diabetes | 1.123 | 0.030–2.217 | 4.053 | 0.044 | |
Hyperlipidemia | Yes | 0.106 | −0.299–0.511 | 0.262 | 0.609 |
Previous MI | Yes | 0.158 | −0.294–0.609 | 0.469 | 0.493 |
Diagnosis | ACS | 0.151 | −0.262–0.563 | 0.513 | 0.474 |
SYNTAX score | - | −0.019 | −0.033–−0.006 | 8.29 | 0.004 |
Variables | Effect for | β | 95% CI | Wald Stat. | p-Value |
---|---|---|---|---|---|
Age | - | −0.006 | −0.029–0.018 | 0.241 | 0.623 |
Sex | Males | 0.291 | −0.198–0.780 | 1.360 | 0.244 |
BMI | - | −0.027 | −0.070–0.015 | 1.584 | 0.208 |
Smoking | Smokers | −0.410 | −0.894–0.073 | 2.764 | 0.096 |
Hypertension | Yes | −0.127 | −0.726–0.472 | 0.173 | 0.678 |
Diabetes | Yes | −0.689 | −1.153–−0.226 | 8.484 | 0.004 |
Pre-diabetes | −0.156 | −1.195–0.883 | 0.086 | 0.769 | |
Hyperlipidemia | Yes | 0.004 | −0.405–0.414 | <0.001 | 0.983 |
Previous MI | Yes | 0.075 | −0.383–0.533 | 0.103 | 0.748 |
Diagnosis | ACS | −0.004 | −0.421–0.414 | <0.001 | 0.986 |
SYNTAX score | - | 0.003 | −0.010–0.016 | 0.165 | 0.685 |
Variables | Effect for | β | 95% CI | Wald Stat. | p-Value |
---|---|---|---|---|---|
Age | - | 0.006 | −0.018–0.029 | 0.229 | 0.632 |
Sex | Males | −0.082 | −0.566–0.401 | 0.112 | 0.738 |
BMI | - | 0.024 | −0.018–0.066 | 1.23 | 0.267 |
Smoking | Smokers | 0.065 | −0.409–0.539 | 0.073 | 0.788 |
Hypertension | Yes | −0.028 | −0.621–0.565 | 0.008 | 0.927 |
Diabetes | Yes | 0.112 | −0.341–0.565 | 0.236 | 0.627 |
Pre-diabetes | 0.409 | −0.631–1.449 | 0.593 | 0.441 | |
Hyperlipidemia | Yes | 0.176 | −0.229–0.580 | 0.724 | 0.395 |
Previous MI | Yes | 0.309 | −0.144–0.762 | 1.789 | 0.181 |
Diagnosis | ACS | 0.256 | −0.159–0.670 | 1.462 | 0.227 |
SYNTAX score | - | −0.017 | −0.030–−0.004 | 6.221 | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziedzic, E.A.; Gąsior, J.S.; Tuzimek, A.; Czestkowska, E.; Beck, J.; Jaczewska, B.; Zgnilec, E.; Osiecki, A.; Kwaśny, M.; Dąbrowski, M.J.; et al. Relationship between Copper, Zinc, and Copper-to-Zinc Ratio in Hair and Severity of Coronary Artery Disease according to the SYNTAX Score. Biology 2023, 12, 1407. https://doi.org/10.3390/biology12111407
Dziedzic EA, Gąsior JS, Tuzimek A, Czestkowska E, Beck J, Jaczewska B, Zgnilec E, Osiecki A, Kwaśny M, Dąbrowski MJ, et al. Relationship between Copper, Zinc, and Copper-to-Zinc Ratio in Hair and Severity of Coronary Artery Disease according to the SYNTAX Score. Biology. 2023; 12(11):1407. https://doi.org/10.3390/biology12111407
Chicago/Turabian StyleDziedzic, Ewelina A., Jakub S. Gąsior, Agnieszka Tuzimek, Ewa Czestkowska, Joanna Beck, Beata Jaczewska, Elżbieta Zgnilec, Andrzej Osiecki, Mirosław Kwaśny, Marek J. Dąbrowski, and et al. 2023. "Relationship between Copper, Zinc, and Copper-to-Zinc Ratio in Hair and Severity of Coronary Artery Disease according to the SYNTAX Score" Biology 12, no. 11: 1407. https://doi.org/10.3390/biology12111407
APA StyleDziedzic, E. A., Gąsior, J. S., Tuzimek, A., Czestkowska, E., Beck, J., Jaczewska, B., Zgnilec, E., Osiecki, A., Kwaśny, M., Dąbrowski, M. J., & Kochman, W. (2023). Relationship between Copper, Zinc, and Copper-to-Zinc Ratio in Hair and Severity of Coronary Artery Disease according to the SYNTAX Score. Biology, 12(11), 1407. https://doi.org/10.3390/biology12111407