Waste to Medicine: Evidence from Computational Studies on the Modulatory Role of Corn Silk on the Therapeutic Targets Implicated in Type 2 Diabetes Mellitus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Silk Collection, Processing and Extract Preparation
2.2. Ultra-Performance Liquid Chromatography-Mass Spectrometry Analysis
2.3. Network Pharmacology
2.3.1. Pharmacokinetic Properties of Corn Silk Phytoconstituents
2.3.2. Acquisition of CS Phytoconstituents and T2DM-Associated Targets
2.3.3. Protein–Protein Interaction Network Construction and Analyses of KEGG Enrichment Pathway, Gene Ontology, and Compound–Target Pathway of Overlapping Target Genes
2.4. Molecular Docking and MD Simulation of T2DM-Related Target Genes with CS Secondary Metabolites
2.5. Quantum Chemical Calculations
3. Results
3.1. Metabolomic Profiling
3.1.1. Ultra-Performance Liquid Chromatography-Mass Spectrometry
3.1.2. Principal Component Analysis
3.2. Drug Candidate Filtering/ADME Property Analysis
3.3. Identification of Overlapping Targets of Secondary Metabolites within SEA and STP Databases
3.4. PPI Network Analysis
KEGG Pathway Enrichment Analysis
3.5. Gene Ontology Analysis
3.6. Compound–Target Pathway Network Analysis
3.7. Molecular Docking Analysis of Identified Secondary Metabolites Present in CS against ADORA1, HCAR2, and GABBR1 in the cAMP Signaling Pathway
3.8. Molecular Dynamics (MD) Simulation of Identified Secondary Metabolites against ADORA1, HCAR2, and GABBR1 Genes from the cAMP Signaling Pathway
3.9. Molecular Orbital Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pheiffer, C.; Wyk, V.P.-V.; Joubert, J.D.; Levitt, N.; Nglazi, M.D.; Bradshaw, D. The prevalence of type 2 diabetes in South Africa: A systematic review protocol. BMJ Open 2018, 8, e021029. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation (IDF). 2022. Available online: https://idf.org/about-diabetes/type-2-diabetes/ (accessed on 5 August 2023).
- International Diabetes Federation (IDF). 2021. Available online: https://idf.org/our-network/regions-and-members/africa/members/south-africa/ (accessed on 5 August 2023).
- Lankatillake, C.; Huynh, T.; Dias, D.A. Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants. Plant Methods 2019, 15, 105. [Google Scholar] [CrossRef] [PubMed]
- Yagasaki, K.; Muller, C.J. The effect of phytochemicals and food bioactive compounds on diabetes. Int. J. Mol. Sci. 2022, 23, 7765. [Google Scholar] [CrossRef] [PubMed]
- Paddy, V.; Van Tonder, J.J.; Steenkamp, V. The antidiabetic activity of a polyherbal tea mixture and its constituents in vitro. In Proceedings of the 17th World Congress of Basic and Clinical Pharmacology, Cape Town, South Africa, 13–18 July 2014; p. 13. [Google Scholar]
- Sabiu, S.; O’Neill, F.H.; Ashafa, A.O.T. Toxicopathological evaluation of a 28-day repeated dose administration of Zea mays L. (Poaceae), Stigma maydis aqueous extract on key metabolic markers of Wistar rats. Trans. R. Soc. S. Afr. 2017, 72, 225–233. [Google Scholar] [CrossRef]
- Hasanudin, K.; Hashim, P.; Mustafa, S. Corn silk (Stigma maydis) in healthcare: A phytochemical and pharmacological review. Molecules 2012, 17, 9697. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, L.; Ma, Z.; Cheng, J.; Liu, J. Anti-diabetic, anti-oxidant and anti-hyperlipidemic activities of flavonoids from corn silk on STZ-induced diabetic mice. Molecules 2015, 21, 7. [Google Scholar] [CrossRef] [PubMed]
- Sabiu, S.; O’Neill, F.H.; Ashafa, A.O.T. Kinetics of alpha amylase and alpha glucosidase inhibitory potentials of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment. J. Ethnopharmacol. 2016, 183, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.J.; Zhao, J.L. Corn silk (Zea mays L.), a source of natural antioxidants with α-amylase, α-glucosidase, advanced glycation and diabetic nephropathy inhibitory activities. Biomed. Pharmacother. 2018, 110, 510–517. [Google Scholar] [CrossRef]
- Singh, J.; Rasane, P.; Nanda, V.; Kaur, S. Bioactive compounds of corn silk and their role in management of glycaemic response. J. Food Sci. Technol. 2022, 60, 1695–1710. [Google Scholar] [CrossRef]
- Shalihah, I.M.; Pamela, V.Y.; Kusumasari, S. Cornsilk tea extract as antidiabetic: A review. Food Sci. Technol. J. 2020, 2202, 66. [Google Scholar]
- Pan, Y.; Wang, C.; Chen, Z.; Li, W.; Yuan, G.; Chen, H. Physicochemical properties and antidiabetic ef, fects of a polysaccharide from corn silk in high-fat diet and streptozotocin-induced diabetic mice. Carbohydr. Polym. 2017, 164, 370. [Google Scholar] [CrossRef]
- Vijitha, T.P.; Saranya, D. Corn Silk-A medicinal boon. Int. J. ChemTech. Res. 2017, 10, 129. [Google Scholar]
- Haldar, S.; Gan, L.; Tay, S.L.; Ponnalagu, S.; Henry, C.J. Postprandial glycemic and insulinemic effects of the addition of aqueous extracts of dried corn silk, cumin seed powder or tamarind pulp, in two forms, consumed with high glycemic index rice. Foods 2019, 8, 437. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Chen, Z.; Santhanam, R.K.; Xu, L.; Gao, X.; Ma, Q.; Xue, Z.; Chen, H. Hypoglycemic effects of polysaccharides from corn silk (Maydis stigma) and their beneficial roles via regulating the PI3K/Akt signaling pathway in L6 skeletal muscle myotubes. Int. J. Biol. Macromol. 2019, 121, 981. [Google Scholar] [CrossRef]
- Jia, Y.; Xue, Z.; Wang, Y.; Lu, Y.; Li, R.; Li, N.; Wang, Q.; Zhang, M.; Chen, H. Chemical structure and inhibition on α-glucosidase of polysaccharides from corn silk by fractional precipitation. Carbohydr. Polym. 2021, 252, 117185. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.K.; Karoli, S.S.; Dwivedi, P.S.; Bhandari, R. Anti-diabetic potential of corn silk (Stigma maydis): An in-silico approach. J. Diabetes Metab. Disord. 2022, 21, 445. [Google Scholar] [CrossRef]
- Alimin, L. Effects of corn silk (Stigma Maydis) against blood glucose levels of type 2 diabetes mellitus patients. Bul. Farmatera 2020, 5, 202. [Google Scholar] [CrossRef]
- Agamah, F.E.; Mazandu, G.K.; Hassan, R.; Bope, C.D.; Thomford, N.E.; Ghansah, A.; Chimusa, E.R. Computational/in silico methods in drug target and lead prediction. Brief. Bioinform. 2020, 21, 1663. [Google Scholar] [CrossRef]
- Koparde, A.A.; Doijad, R.C.; Magdum, C.S. Natural Products in Drug Discovery. In Pharmacognosy-Medicinal Plants; IntechOpen: London, UK, 2019. [Google Scholar]
- Yin, B.; Bi, Y.M.; Fan, G.J.; Xia, Y.Q. Molecular mechanism of the effect of Huanglian Jiedu decoction on type 2 diabetes mellitus based on network pharmacology and molecular docking. J. Diabetes Res. 2020, 2020, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Shaker, B.; Ahmad, S.; Lee, J.; Jung, C.; Na, D. In silico methods and tools for drug discovery. Comput. Biol. Med. 2021, 137, 104851. [Google Scholar] [CrossRef]
- Oh, K.K.; Adnan, M.; Cho, D.H. Network pharmacology of bioactives from Sorghum bicolor with targets related to diabetes mellitus. PLoS ONE 2020, 15, 0240873. [Google Scholar] [CrossRef] [PubMed]
- An, W.; Huang, Y.; Chen, S.; Teng, T.; Shi, Y.; Sun, Z.; Xu, Y. Mechanisms of Rhizoma Coptidis against type 2 diabetes mellitus explored by network pharmacology combined with molecular docking and experimental validation. Sci. Rep. 2021, 11, 20849. [Google Scholar] [CrossRef] [PubMed]
- Di, S.; Han, L.; An, X.; Kong, R.; Gao, Z.; Yang, Y.; Wang, X.; Zhang, P.; Ding, Q.; Wu, H.; et al. In silico network pharmacology and in vivo analysis of berberine-related mechanisms against type 2 diabetes mellitus and its complications. J. Ethnopharmacol. 2021, 276, 114180. [Google Scholar] [CrossRef] [PubMed]
- Adnan, M.; Jeon, B.B.; Chowdhury, M.H.U.; Oh, K.K.; Das, T.; Chy, M.N.U.; Cho, D.H. Network pharmacology study to reveal the potentiality of a methanol extract of Caesalpinia sappan L. Wood against type-2 diabetes mellitus. Life 2022, 12, 277. [Google Scholar] [CrossRef] [PubMed]
- Akoonjee, A.; Rampadarath, A.; Aruwa, C.E.; Ajiboye, T.A.; Ajao, A.A.N.; Sabiu, S. Network pharmacology-and molecular dynamics simulation-based bioprospection of Aspalathus linearis for type-2 diabetes care. Metabolites 2022, 12, 1013. [Google Scholar] [CrossRef] [PubMed]
- Rampadarath, A.; Balogun, F.O.; Sabiu, S. Insights into the mechanism of action of Helianthus annuus (sunflower) seed essential oil in the management of type-2 diabetes mellitus using network pharmacology and molecular docking approaches. Endocrines 2023, 4, 327. [Google Scholar] [CrossRef]
- Tran, M.N.; Lee, S. The molecular mechanisms of panax ginseng in treating type 2 diabetes mellitus: Network pharmacology analysis and molecular docking validation. Evid.-Based Complement. Altern. Med. 2022, 2022, 3082109. [Google Scholar] [CrossRef] [PubMed]
- De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of molecular dynamics and related methods in drug discovery. J. Med. Chem. 2016, 59, 4035. [Google Scholar] [CrossRef]
- Abdullah, A.; Biswas, P.; Sahabuddin, M.; Mubasharah, A.; Khan, D.A.; Hossain, A.; Roy, T.; Rafi, N.M.R.; Dey, D.; Hasan, M.N.; et al. Molecular Dynamics simulation and pharmacoinformatic integrated analysis of bioactive phytochemicals from Azadirachta indica (Neem) to treat diabetes mellitus. J. Chem. 2023, 2023, 4170703. [Google Scholar] [CrossRef]
- Rampogu, S.; Parameswaran, S.; Lemuel, M.; Lee, K. Exploring the therapeutic ability of fenugreek against type 2 diabetes and breast cancer employing molecular docking and molecular dynamics simulations. Evid.-Based Complement. Altern. Med. 2018, 2018, 1943203. [Google Scholar] [CrossRef]
- Shode, F.O.; Uhomoibhi, J.O.O.; Idowu, K.A.; Sabiu, S.; Govender, K.K. Molecular dynamics study on selected bioactive phytochemicals as potential inhibitors of HIV-1 subtype C protease. Metabolites 2022, 12, 1155. [Google Scholar] [CrossRef] [PubMed]
- Lanrewaju, A.A.; Enitan-Folami, A.M.; Nyaga, M.M.; Sabiu, S.; Swalaha, F.M. Metabolites profiling and cheminformatics bioprospection of selected medicinal plants against the main protease and RNA-dependent RNA polymerase of SARS-CoV-2. J. Biomol. Struct. Dyn. 2023, 1–21, Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Ali, M.C.; Ruma, R.A.; Mahmud, S.; Paul, G.K.; Saleh, M.A.; Alshahrani, M.M.; Obaidullah, A.J.; Biswas, S.K.; Rahman, M.M. Molecular Docking and dynamics simulation of natural compounds from betel leaves (Piper betle L.) for investigating the potential inhibition of alpha-amylase and alpha-glucosidase of type 2 diabetes. Molecules 2022, 27, 4526. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, A.S.D.; Seibert, J.B.; Amparo, T.R.; Antunes, A.D.S.; Sousa, L.R.D.; Souza, G.H.B.D.; Teixeira, L.F.M.; Vieira, P.M.D.A.; Santos, V.M.R.D.; Nascimento, A.M.D.; et al. Chemical constituents, antioxidant potential, antibacterial study and photoprotective activity of Brazilian corn silk extract. Food Sci. Technol. 2022, 42, e98421. [Google Scholar] [CrossRef]
- El-Ghorab, A.; El-Massry, K.F.; Shibamoto, T. Chemical composition of the volatile extract and antioxidant activities of the volatile and nonvolatile extracts of Egyptian corn silk (Zea mays L.). J. Agric. Food Chem. 2007, 55, 9124. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Sun, Y.; Chen, Z. Extraction of flavonoids from corn silk and biological activities in vitro. J. Food Qual. 2021, 2021, 7390425. [Google Scholar] [CrossRef]
- Magangana, T.P.; Stander, M.; Makunga, N.P. Effect of nitrogen and phosphate on in vitro growth and metabolite profiles of Stevia rebaudiana Bertoni (Asteraceae). Plant Cell Tissue Organ Cult. 2022, 134, 141. [Google Scholar] [CrossRef]
- Magangana, T.P.; Makunga, N.P.; Fawole, O.A.; Stander, M.A.; Opara, U.L. Antioxidant, antimicrobial, and metabolomic characterization of blanched pomegranate peel extracts: Effect of cultivar. Molecules 2022, 27, 2979. [Google Scholar] [CrossRef]
- Qian, L.; Xia, Z.; Zhang, M.; Han, Q.; Hu, D.; Qi, S.; Xing, D.; Chen, Y.; Zhao, X. Integrated bioinformatics-based identification of potential diagnostic biomarkers associated with diabetic foot ulcer development. J. Diabetes Res. 2021, 2021, 5445349. [Google Scholar] [CrossRef]
- Aribisala, J.O.; Nkosi, S.; Idowu, K.; Nurain, I.O.; Makolomakwa, G.M.; Shode, F.O.; Sabiu, S. Astaxanthin-mediated bacterial lethality: Evidence from oxidative stress contribution and molecular dynamics simulation. Oxidative Med. Cell. Longev. 2021, 2021, 7159652. [Google Scholar] [CrossRef]
- Aribisala, J.O.; Sabiu, S. Cheminformatics identification of phenolics as modulators of penicillin-binding protein 2a of Staphylococcus aureus: A structure-activity-relationship-based study. Pharmaceutics 2022, 14, 1818. [Google Scholar] [CrossRef] [PubMed]
- Sabiu, S.; Idowu, K. An insight on the nature of biochemical interactions between glycyrrhizin, myricetin and CYP3A4 isoform. J. Food Biochem. 2022, 46, 13831. [Google Scholar] [CrossRef] [PubMed]
- Ibeji, C.U.; Akintayo, D.C.; Oluwasola, H.O.; Akintemi, E.O.; Onwukwe, O.G.; Eziomume, O.M. Synthesis, experimental and computational studies on the anti-corrosion performance of substituted Schiff bases of 2-methoxybenzaldehyde for mild steel in HCl medium. Sci. Rep. 2023, 13, 3265. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Song, B.; Zheng, C.; Zhang, S.; Yan, Z.; Tang, Z.; Kong, X.; Duan, Y.; Li, F. Flavonoids from mulberry leaves alleviate lipid dysmetabolism in high fat diet-fed mice: Involvement of gut microbiota. Microorganisms 2020, 8, 860. [Google Scholar] [CrossRef] [PubMed]
- Azwanida, N.N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plants 2015, 4, 2167. [Google Scholar]
- Nawaz, H.; Aslam, M.; Muntaha, S.T. Effect of solvent polarity and extraction method on phytochemical composition and antioxidant potential of corn silk. Fee Radic. Antioxid. 2019, 9, 5. [Google Scholar] [CrossRef]
- Nurhanan, A.R.; Wi, W.R. Evaluation of polyphenol content and antioxidant activities of some selected organic and aqueous extracts of cornsilk (Zea Mays Hairs). J. Med. Bioeng. 2012, 1, 48–51. [Google Scholar]
- Liu, J.; Wang, C.; Wang, Z.; Zhang, C.; Lu, S.; Liu, J. The antioxidant and free-radical scavenging activities of extract and fractions from corn silk (Zea mays L.) and related flavone glycosides. Food Chem. 2011, 126, 261. [Google Scholar] [CrossRef]
- Min, O.J.; Sharma, B.R.; Park, C.M.; Rhyu, D.Y. Effect of myadis stigma water extract on adipogenesis and blood glucose in 3T3-L1 adipocytes and db/db mice. Korean J. Pharmacogn. 2011, 2011, 9. [Google Scholar]
- Borhan, M.Z.; Ahmad, R.; Rusop, M.; Abdullah, S. Impact of nanopowders on extraction yield of Centella asiatica. Adv. Mater. Res. 2013, 667, 246. [Google Scholar] [CrossRef]
- Haslina, M.E. Extract corn silk with variation of solvents on yield, total phenolics, total flavonoids and antioxidant activity. Indones. Food Nutr. Prog. 2017, 14, 21. [Google Scholar] [CrossRef]
- Fougère, L.; Zubrzycki, S.; Elfakir, C.; Destandau, E. Characterization of corn silk extract using HPLC/HRMS/MS analyses and bioinformatic data processing. Plants 2023, 12, 721. [Google Scholar] [CrossRef] [PubMed]
- Eid, H.M.; Thong, F.; Nachar, A.; Haddad, P.S. Caffeic acid methyl and ethyl esters exert potential antidiabetic effects on glucose and lipid metabolism in cultured murine insulin-sensitive cells through mechanisms implicating activation of AMPK. Pharm. Biol. 2017, 55, 2026. [Google Scholar] [CrossRef] [PubMed]
- Omidi, M.; Ahangarpour, A.; Khorsandi, L.; Ramezani-AliAkbari, F. The antidiabetic and hepatoprotective effects of myricitrin on aged mice with D-galactose. Gastroenterol. Hepatol. Bed Bench 2020, 13, 247. [Google Scholar] [PubMed]
- Streeper, R.T.; Louden, C.; Izbicka, E. Oral azelaic acid ester decreases markers of insulin resistance in overweight human male subjects. In Vivo 2020, 34, 1173. [Google Scholar] [CrossRef] [PubMed]
- Abdel Hakam, A.; Khowailed, A.; Mohammed, M. Protective effect of p-coumaric acid on fructose induced- insulin resistance in albino rats. Minia J. Med. Res. 2021, 32, 1. [Google Scholar] [CrossRef]
- Balogun, F.O.; Naidoo, K.; Aribisala, J.O.; Pillay, C.; Sabiu, S. Cheminformatics Identification and validation of dipeptidyl peptidase-iv modulators from shikimate pathway-derived phenolic acids towards interventive type-2 diabetes therapy. Metabolites 2023, 12, 937. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yang, L. Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. J. Mol. Endocrinol. 2016, 52, 93. [Google Scholar] [CrossRef]
- Deb, D.K.; Bao, R.; Li, Y.C. Critical role of the cAMP-PKA pathway in hyperglycemia-induced epigenetic activation of fibrogenic program in the kidney. FASEB J. 2017, 31, 2065. [Google Scholar] [CrossRef]
- Chen, P.C.; Kryukova, Y.N.; Shyng, S.L. Leptin regulates KATP channel trafficking in pancreatic beta-cells by a signaling mechanism involving AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKA). J. Biol. Chem. 2013, 288, 34098. [Google Scholar] [CrossRef]
- Rhee, S.; Wood, V.; Dolinski, K.; Draghici, S. Use and misuse of the gene ontology annotations. Nat. Rev. Genet. 2008, 9, 50. [Google Scholar]
- Huang-Doran, I.; Zhang, C.Y.; Vidal-Puig, A. Extracellular vesicles: Novel mediators of cell communication in metabolic disease. Trends Endocrinol. Metaolism 2017, 28, 3. [Google Scholar] [CrossRef] [PubMed]
- Blake, J.A.; Baldarelli, R.; Kadin, J.A.; Richardson, J.E.; Smith, C.L.; Bult, C.J.; Mouse Genome Database Group. Mouse Genome Database (MGD): Knowledgebase for mouse-human comparative biology. Nucleic Acids Reserves 2021, 2021, 981. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yang, W.; Meng, Y.; Feng, L.; Sun, L.; Li, Z.; Liu, X.; Li, M. Exploring the therapeutic mechanism of Banxia Xiexin decoction in mild cognitive impairment and diabetes mellitus: A netwrk pharmacology approach. Metab. Brain Dis. 2023, 38, 2315–2325. [Google Scholar] [CrossRef] [PubMed]
- Keerthikumar, S.; Chisanga, D.; Ariyaratne, D.; Al Saffar, H.; Anand, S.; Zhao, K.; Samuel, M.; Pathan, M.; Jois, M.; Chilamkurti, N.; et al. ExoCarta: A web-based compendium of exosomal cargo. J. Mol. Biol. 2016, 428, 688. [Google Scholar] [CrossRef] [PubMed]
- Pardo, F.; Villalobos-Labra, R.; Sobrevia, B.; Toledo, F.; Sobrevia, L. Extracellular vesicles in obesity and diabetes mellitus. Mol. Asp. Med. 2018, 60, 81. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, D.; Shyng, S. Ion channels of the islets in type 2 diabetes. J. Mol. Biol. 2019, 432, 1326. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Sun, F.; Zhao, Y.; Shan, L.; Lou, H. Identification of susceptibility modules and genes for cardiovascular disease in diabetic patients using WGCNA analysis. J. Diabetes Res. 2020, 2020, 4178639. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, L.; Chen, Z. Research progress of extracellular vesicles in type 2 diabetes and its complications. Diabet. Med. 2022, 39, 14865. [Google Scholar] [CrossRef]
- Haisu, M.; Hongvu, Z. Drug target inference through pathway analysis of genomics data. Adv. Drug Deliv. Rev. 2013, 65, 966–972. [Google Scholar]
- Liu, S.N.; Liu, Q.; Sun, S.J.; Li, C.N.; Huan, Y.; Chen, Y.T.; Wang, R.Y.; Xia, X.J.; Liu, Z.H.; Liu, Y.L.; et al. Anti-diabetic effects of the fraction of alkaloids from Ramulus Mori, an innovative Sangzhi alkaloids as an α-glucosidase inhibitor. Acta Pharm. Sin. 2019, 12, 1225–1233. [Google Scholar]
- Hu, S.; Chen, S.; Li, Z.; Wang, Y.; Wang, Y. Research on the potential mechanism of Chuanxiong Rhizoma on treating diabetic nephropathy based on network pharmacology. Int. J. Med. Sci. 2020, 17, 2240. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Lin, J.; Wu, X.; Pu, H.; Guan, Y.; Xiao, P.; He, C.; Jiang, B. Novel active compounds and the anti-diabetic mechanism of mulberry leaves. Front. Pharmacol. 2022, 13, 986931. [Google Scholar] [CrossRef]
- Zhang, L.; Han, L.; Wang, X.; Wei, Y.; Zheng, J.; Zhao, L.; Tong, X. Exploring the mechanisms underlying the therapeutic effect of Salvia miltiorrhiza in diabetic nephropathy using network pharmacology and molecular docking. Biosci. Rep. 2021, 41, BSR20203520. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.C.; Verdin, E. β-hydroxybutyrate: Much more than a metabolite. Diabetes Res. Clin. Pract. 2014, 106, 173. [Google Scholar] [CrossRef]
- Yip, L.; Taylor, C.; Whiting, C.C.; Fathman, C.G. Diminished adenosine A1 receptor expression in pancreatic α-cells may contribute to the pathology of type 1 diabetes. Diabetes 2013, 62, 4208. [Google Scholar] [CrossRef] [PubMed]
- Dobbins, R.L.; Shearn, S.P.; Byerly, R.L.; Gao, F.F.; Mahar, K.M.; Napolitano, A.; Nachbaur, G.J.; Le Monnier de Gouville, A.C. GSK256073, a selective agonist of G-protein coupled receptor 109A (GPR109A) reduces serum glucose in subjects with type 2 diabetes mellitus. Diabetes Obes. Metab. 2013, 15, 1013. [Google Scholar] [CrossRef]
- Gambhir, D.; Ananth, S.; Veeranan-Karmegam, R.; Elangovan, R.; Hester, S.; Jennings, E.; Offermanns, S.; Nussbaum, J.J.; Smith, S.B.; Thangaraju, M.; et al. GPR109A as an anti-inflammatory receptor in retinal pigment epithelial cells and its relevance to diabetic retinopathy. Retin. Cell Biol. 2012, 53, 2208. [Google Scholar] [CrossRef]
- Liu, F.; Fu, Y.; Wei, C.; Chen, Y.; Ma, S.; Xu, W. The expression of GPR109A, NF-kB and IL-1β in peripheral blood leukocytes from patients with type 2 diabetes. Ann. Clin. Lab. Sci. 2014, 44, 443. [Google Scholar]
- Rachdi, L.; Maugein, A.; Pechberty, S.; Armanet, M.; Hamroune, J.; Ravassard, P.; Marullo, S.; Albagli, O.; Scharfmann, R. Regulated expression and function of the GABAB receptor in human pancreatic beta cell line and islets. Sci. Rep. 2020, 10, 13469. [Google Scholar] [CrossRef]
- Lyu, Z.; Zhao, M.; Atanes, P.; Persuad, S.J. Quantification of changes in human islet G protein-coupled receptor mRNA expression in obesity. Diabet. Med. 2022, 39, 14974. [Google Scholar] [CrossRef]
- Fan, J.; Fu, A.; Zhang, L. Progress in molecular docking. Quant Biol. 2019, 7, 80–83. [Google Scholar] [CrossRef]
- Alvarado-Díaz, C.S.; Gutiérrez-Méndez, N.; Mendoza-López, M.L.; Rodríguez-Rodríguez, M.Z.; Quintero-Ramos, A.; Landeros-Martínez, L.L.; Rodríguez-Valdez, L.M.; Rodríguez-Figueroa, J.C.; Pérez-Vega, S.; Salmeron-Ochoa, I.; et al. Inhibitory effect of saccharides and phenolic compounds from maize silks on intestinal α-glucosidases. J. Food Biochem. 2019, 43, 12896. [Google Scholar] [CrossRef]
- Rosenberg, M.S. Sequence Alignment: Methods, Models, Concepts and Strategies; University of California Press: Oakland, CA, USA, 2009. [Google Scholar] [CrossRef]
- Du, X.; Li, Y.; Xia, Y.L.; Ai, X.M.; Liang, J.; Sang, P.; Ji, X.L.; Liu, S.Q. Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods. Int. J. Mol. Sci. 2016, 17, 144. [Google Scholar] [CrossRef] [PubMed]
- Nayak, C.; Chandra, I.; Singh, S.K. An in silico pharmacological approach toward the discovery of potent inhibitors to combat drub resistant HIV-1 proteas variants. J. Cell. Biochem. 2018, 120, 9063–9081. [Google Scholar] [CrossRef] [PubMed]
- Perelson, A.S. Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2002, 2, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, D.; Caballero, J. Is it reliable to use common molecular docking methods for comparing the binding affinities of enantiomer pairs for their protein target? Int. J. Mol. Sci. 2016, 17, 525. [Google Scholar] [CrossRef] [PubMed]
- Hess, B. Convergence of sampling in protein simulations. Phys. Rev. 2002, 65, 031910. [Google Scholar] [CrossRef]
- Fahad, M.; Al-Khodairy, M.; Kalim, A.; Khan, M.K.; Manogaran, S.P.; Salman, A.; Jamal, M.A. In Silico Prediction of Mechanism of Erysolin-induced Apoptosis in Human Breast Cancer Cell Lines. Am. J. Bioinform. 2013, 3, 62. [Google Scholar]
- Murali, M.; Ahmed, F.; Gowtham, H.G.; Aribisala, J.O.; Abdulsalam, R.A.; Shati, A.A.; Alfaifi, M.Y.; Sayyed, R.Z.; Sabiu, S.; Amruthesh, K.N.; et al. Exploration of CviR-mediated quorum sensing inhibitors from Cladosporium spp. against Chromobacterium violaceum through computational studies. Sci. Rep. 2023, 13, 15505. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.K.; Kumar, B.K.; Sharma, P.K.; Murugesan, S.; Deepa, P.R. In silico and in vitro analysis of PPAR–α/γ dual agonists: Comparative evaluation of potential phytochemicals with anti-obesity drug orlistat. Comput. Biol. Med. 2022, 147, 105796. [Google Scholar] [CrossRef]
- S’thebe, N.W.; Aribisala, J.O.; Sabiu, S. Cheminformatics bioprospection of sunflower seeds’ oils against quorum sensing system of Pseudomonas aeruginosa. Antibiotics 2023, 12, 504. [Google Scholar] [CrossRef] [PubMed]
- Sabiu, S.; Balogun, F.O.; Amoo, O. Phenolics profiling of Carpobrotus edulis (L.) NE Br. and insights into molecular dynamics of their significance in type 2 diabtes therapy and its retinopathy complication. Molecules 2021, 26, 4867. [Google Scholar] [CrossRef] [PubMed]
- Rampadarath, A.; Aribisala, J.O.; Makunga, N.P.; Mazibuko-Mbeje, S.; Sabiu, S. Molecular bioprospection of Helianthus annuus L. (sunflower) cypsela for antidiabetic therapeutics through network pharmacology, density functional theory and molecular dynamics simulation. S. Afr. J. Bot. 2023, 162, 72. [Google Scholar] [CrossRef]
- Joshi, T.; Sharma, P.; Joshi, T.; Pundir, H.; Mathpal, S.; Chandra, S. Structure-based screening of novel lichen compounds against SARS Coronavirus main protease (Mpro) as potentials inhibitrs of COVID-19. Mol. Divers. 2021, 25, 1665. [Google Scholar] [CrossRef] [PubMed]
- Kehinde, I.; Ramharack, P.; Nlooto, M.; Gordon, M. The pharmacokinetic properties of HIV-1 protease inhibitors: A computational perspective on herbal phytochemicals. Heliyon 2019, 5, 02565. [Google Scholar] [CrossRef] [PubMed]
- Jairajpuri, D.S.; Hussain, A.; Nasreen, K.; Mohammad, T.; Anjum, F.; Rehman, M.T.; Hasan, G.M.; Alajmi, M.F.; Hassan, M.I. Identification of natural compounds as potent inhibitors of SARS-CoV-2 main protease using combined docking and molecular dynamics simulations. Saudi J. Biol. Sci. 2021, 28, 2423. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.S.; Karami, A.; Haghighi, T.M.; Tumilaar, S.G.; Fatimawali, I.R.; Mahmud, S.; Celik, I.A.; Agagündüz, D.; Tallei, T.E.; Emran, T.B. In Silico evaluation of iranian medicinal plant phytoconstituents as inhibitors against main protease and the receptor-binding domain of SARS-CoV-2. Molecules 2021, 26, 5724. [Google Scholar] [CrossRef]
- Santra, B.; Klimeš, J.; Alfe, D.; Tkatchenko, A.; Slater, B.; Michaelides, A.; Car, R.; Scheffler, M. Hydrogen bonds and van der Waals forces in ice at ambient and high pressures. Phys. Rev. Lett. 2011, 107, 185701. [Google Scholar] [CrossRef]
- Munnangi, S.R.; Youssef, A.A.A.; Narala, N.; Lakkala, P.; Narala, S.; Vemula, S.K.; Repka, M. Drug complexes: Perspective from academic research and pharmaceutical market. Pharm. Res. 2023, 40, 1519–1540. [Google Scholar] [CrossRef]
- Prasad, O.; Sinha, L.; Misra, N.; Narayan, V.; Kumar, N.; Pathak, J. Molecular structure and vibrational study on 2, 3-dihydro-1H-indene and its derivative 1H-indene-1, 3 (2H)-dione by density functional theory calculations. J. Mol. Struct. Theochem 2010, 940, 82. [Google Scholar] [CrossRef]
- Akintemi, E.O.; Govender, K.K.; Singh, T. A DFT study of the chemical reactivity properties, spectroscopy and bioactivity scores of bioactive flavonols. Comput. Theor. Chem. 2022, 1210, 113658. [Google Scholar] [CrossRef]
- Mountessou, B.Y.G.; Ngouonpe, A.W.; Mbobda, A.S.W.; Akintemi, E.O.; Stammler, H.-G.; Kouam, S.F.; Tchouankeu, J.C.; Lenta, B.N.; Sewald, N.; Singh, T. Structural analysis and molecular docking study of pachypodostyflavone: A potent anti-onchocerca. J. Mol. Struct. 2023, 2023, 136003. [Google Scholar] [CrossRef]
- Lakhera, S.; Devlal, K.; Ghosh, A.; Chowdhury, P.; Rana, M. Modelling the DFT structural and reactivity study of feverfew and evaluation of its potential antiviral activity against COVID-9 using molecular docking and MD simulations. Chem. Pap. 2022, 76, 2759. [Google Scholar] [CrossRef]
Pathway Code | Description | Degree | Total | Strength | False Discovery Rate | Genes |
---|---|---|---|---|---|---|
hsa04933 | AGE-RAGE signaling pathway in diabetic complications | 11 | 98 | 0.91 | 4.88 × 10−6 | MMP2, SERPINE1, NOX4, F3, JUN, NOX1, RELA, HRAS, VEGFA |
hsa04917 | Prolactin signaling pathway | 5 | 69 | 0.72 | 8.80 × 10−3 | NFKB1, RAF1, RELA, ESR1, HRAS |
hsa04915 | Estrogen signaling pathway | 12 | 133 | 0.81 | 1.08 × 10−5 | MMP2, RAF1, RARA, EGFR, PRKACA, PGR, JUN, MMP9, GABBR1, ESR1, HRAS, HSPA8 |
hsa04664 | Fc epsilon RI signaling pathway | 5 | 66 | 0.73 | 7.50 × 10−3 | RAF1, PLA2G4A, ALOX5, PLA2G4B, HRAS |
hsa04660 | T cell receptor signaling pathway | 9 | 101 | 0.81 | 1.30 × 10−4 | NFKB1, IL2, RAF1, JUN, RELA, PTPN6, RHOA, HRAS, PTPRC |
hsa04370 | VEGF signaling pathway | 8 | 57 | 1.00 | 2.77 × 10−5 | SPHK2, RAF1, SPHK1, PLA2G4A, PTGS2, PLA2G4B, HRAS, VEGFA |
hsa04071 | Sphingolipid signaling pathway | 10 | 116 | 0.79 | 6.82 × 10−5 | NFKB1, SPHK2, RAF1, SPHK1, ADORA1, ABCC1, ROCK1, RELA, RHOA, HRAS |
hsa04910 | Insulin signaling pathway | 9 | 133 | 0.69 | 7.50 × 10−4 | PYGM, RAF1, BRAF, HK2, FASN, PRKACA, PTPN1, HK1, HRAS |
hsa04911 | Insulin secretion | 5 | 82 | 0.64 | 1.59 × 10−2 | FFAR1, KCNMA1, PRKACA, CAMK2A, ATP1A1 |
hsa04931 | Insulin resistance | 7 | 107 | 0.67 | 3.10 × 10−3 | PYGM, NFKB1, PTPN11, MGEA5, PTPN1, RPS6KA3, RELA |
hsa04024 | cAMP signaling pathway | 26 | 208 | 0.95 | 1.88 × 10−14 | NFKB1, GLI1, RAF1, CREBBP, EP300, BRAF, SSTR5, ADRB2, PRKACA, PDE4D, PDE4C, PTGER3, ATP2A1, ADORA1, ADRB1, JUN, HTR1D, GABBR1, PDE4A, HCAR2, DRD1, CAMK2A, ROCK1, RELA, RHOA, ATP1A1 |
hsa03320 | PPAR signaling pathway | 8 | 75 | 0.88 | 1.11 × 10−4 | FABP4, PPARG, FABP5, MMP1, RXRG, FABP3, RXRB, RXRA |
hsa04066 | HIF-1 signaling pathway | 13 | 106 | 0.94 | 2.63 × 10−7 | HMOX1, SERPINE1, NFKB1, GAPDH, CREBBP, EP300, EGFR, HK2, LDHB, CAMK2A, RELA, HK1, VEGFA |
Target | Compounds | Docking Score (kcal/mol) |
---|---|---|
ADORA1 | Quing hau sau | −8.5 |
Cyperine | −7.9 | |
Domesticoside | −6.9 | |
Gallicynoic acid B | −6.4 | |
Ginsenoyne e | −6.3 | |
Caffeic acid | −6.3 | |
Caffeoyl tartaric acid | −6.3 | |
Methyl geranate | −6.1 | |
Tetradecanedioic acid | −5.7 | |
Traumatic acid | −5.6 | |
7-acetoxy-5,6-dimethoxycoumarin | −5.6 | |
Methylisocitric acid | −4.9 | |
(-)-6-((2S,3R,4R,5S,6R)-3,4-dihydroxy-6-(hydroxymethyl)-5-methoxytetrahydro-2H-pyran-2-yloxy)-8-hydroxy-3-methyl-1H-isochromen-1-one | −4.8 | |
Isorhamnetin 3–6 malonyl glycoside | −4.8 | |
Phellodendric acid | −4.7 | |
Metformin | −4.6 | |
Resveratrol | −8.0 | |
2-Chloro-n6-cyclopentyladenosine (gene agonist) | −7.3 | |
HCAR2 | Phaseic acid | −6.9 |
Caffeic acid | −6.6 | |
4-hydoxycinnamic acid | −6.2 | |
Dodecanedioc acid | −5.6 | |
Sebaic acid | −4.9 | |
Citraconic acid | −4.8 | |
CNPD0447999 | −4.7 | |
Pimelic acid | −4.7 | |
Sarmentose | −4.7 | |
Syndic acid | −4.7 | |
Glutaric acid | −4.6 | |
Metformin | −4.7 | |
Resveratrol | −6.5 | |
Butyric acid (gene agonist) | −3.4 | |
GABBR1 | Tetradecanedioc acid | −5.8 |
Dodecanedioc acid | −5.7 | |
Methylisocitric acid | −5.6 | |
Quinic acid | −5.5 | |
xi-2,2,6-Trimethyl-1,4-cyclohexanedione | −5.4 | |
Sebaic acid | −5.1 | |
Pimelic acid | −5.0 | |
Glutaric acid | −4.7 | |
Metformin | −4.6 | |
Resveratrol | −6.4 | |
Baclofen (gene agonist) | −5.9 |
Energy Components (kcal/mol) | |||||
---|---|---|---|---|---|
Compound | ΔEVdW | ΔEelec | ΔGgas | ΔGsolv | ΔGbind |
ADORA1 | |||||
Cyperine | −34.29 ± 3.40 | −12.89 ± 3.14 | −47.18 ± 4.44 | 15.34 ± 2.60 | −31.84 ± 3.68 |
Domesticoside | −42.99 ± 3.22 | −19.59 ± 7.79 | −62.58 ± 7.48 | 28.53 ± 6.08 | −34.05 ± 3.72 |
Gallicynoic acid B | −47.88 ± 3.06 | −18.32 ± 8.06 | −66.20 ± 8.19 | 17.47 ± 4.65 | −48.74 ± 4.86 |
Ginsenoyne e | −52.55 ± 3.32 | −5.20 ± 2.36 | −57.75 ± 4.24 | 9.87 ± 1.94 | −34.05 ± 3.72 |
Quing hau sau | −40.15 ± 2.20 | −5.63 ± 3.60 | −45.78 ± 4.38 | 13.74 ± 3.58 | −32.04 ± 2.56 |
Metformin | −2.78 ± 3.10 | −93.28 ± 110.41 | −96.05 ± 111.67 | 85.26 ± 104.62 | −10.80 ± 7.76 |
Resveratrol | −6.80 ± 6.62 | −8.12 ± 9.86 | −14.92 ± 14.89 | 9.61 ± 9.82 | −5.31 ± 5.62 |
HCAR2 | |||||
Caffeic acid | −17.94 ± 3.06 | −37.51 ± 10.87 | −55.45 ± 10.01 | 28.61 ± 8.60 | −26.83 ± 3.60 |
Dodecanedioc acid | −36.58 ± 3.16 | −31.29 ± 8.71 | −67.87 ± 8.55 | 33.34 ± 6.29 | −34.53 ± 4.21 |
4-hydoxycinnamic acid | −21.38 ± 2.04 | −15.31 ± 9.12 | −36.69 ± 8.70 | 22.11 ± 5.79 | −14.50 ± 4.1 |
Phaseic acid | −29.88 ± 3.78 | −8.14 ± 7.54 | −34.80 ± 7.20 | 17.40 ± 6.55 | −17.40 ± 3.90 |
Sebaic acid | −24.65 ± 3.89 | −29.39 ± 15.43 | −54.04 ± 13.34 | 32.12 ± 11.32 | −21.92 ± 4.24 |
Metformin | −0.01 ± 0.15 | 107.28 ± 28.17 | 107.28 ± 28.15 | −107.27 ± 28.14 | 0.01 ± 0.07 |
Resveratrol | −23.40 ± 5.18 | −8.87 ± 4.24 | −32.27 ± 5.84 | 15.97 ± 3.94 | −16.31 ± 4.25 |
GABBR1 | |||||
Dodecanedioc acid | −31.61 ± 4.00 | −43.03 ± 14.45 | −74.64 ± 15.77 | 40.17 ± 11.38 | −34.46 ± 5.56 |
Methylisocitric acid | −14.85 ± 3.36 | −32.17 ± 14.21 | −47.01 ± 13.67 | 29.01 ± 9.53 | −18.00 ± 5.52 |
Quinic acid | −10.90 ± 4.99 | −33.92 ± 20.44 | −44.82 ± 22.61 | 31.78 ± 16.50 | −13.04 ± 6.99 |
Tetradecanedioc acid | −28.26 ± 3.79 | −45.28 ± 15.18 | −73.54 ± 13.64 | 36.73 ± 9.51 | −36.80 ± 5.25 |
Xi-2,2,6, trimethyl-1,4-cyclohexanedione | −15.51 ± 5.75 | −5.03 ± 4.48 | −20.55 ± 8.63 | 8.81 ± 4.35 | −11.74 ± 5.15 |
Metformin | −2.53 ± 2.66 | −273.87 ± 95.97 | −276.40 ± 96.89 | 271.81 ± 93.74 | −4.59 ± 4.68 |
Resveratrol | −28.78 ± 2.12 | −11.87 ± 4.09 | −40.65 ± 4.81 | 22.55 ± 2.82 | −18.09 ± 2.87 |
Compound | RMSD (Å) | RMSF (Å) | ROG (Å) | Number of H-bonds | SASA (Å) |
---|---|---|---|---|---|
ADORA1 | |||||
ADORA1 | 4.10 ± 0.60 | 1.93 ± 0.86 | 28.64 ± 0.39 | 173.53 ± 9.20 | 22,151.21 ± 602.21 |
Cyperine | 5.93 ± 1.04 | 2.18 ± 1.16 | 29.04 ± 0.26 | 167.97 ± 9.25 | 22,745.86 ± 336.02 |
Domesticoside | 4.81 ± 0.90 | 2.29 ± 1.43 | 28.55 ± 0.32 | 162.94 ± 9.61 | 22,760.33 ± 405.56 |
Gallicynoic acid B | 6.71 ± 1.10 | 2.12 ± 1.59 | 28.39 ± 0.27 | 171.58 ± 9.69 | 21,996.14 ± 357.48 |
Ginsenoyne e | 3.48 ± 0.53 | 2.12 ± 1.55 | 28.59 ± 0.27 | 170.93 ± 9.60 | 21,484.73± 426.66 |
Quing hau sau | 4.06 ± 0.48 | 2.06 ± 0.98 | 28.51 ± 0.27 | 170.30 ± 9.68 | 22,366.55 ± 398.10 |
Metformin | 6.26 ± 0.77 | 1.88 ± 0.86 | 28.39 ± 0.36 | 136.77 ± 8.90 | 17,546.87 ± 446.41 |
Resveratrol | 4.10 ± 0.66 | 2.11 ± 1.02 | 29.16 ± 0.39 | 143.60 ± 8.90 | 18,462.50 ± 314.93 |
HCAR2 | |||||
HCAR2 | 9.64 ± 1.13 | 2.57 ± 2.39 | 24.24 ± 0.74 | 158.21 ± 10.58 | 20,865.81 ± 899.36 |
Caffeic acid | 11.37 ± 1.67 | 2.25 ± 1.68 | 22.98 ± 0.63 | 166.40 ± 9.39 | 19,469.28 ± 645.20 |
Dodecanedioc acid | 7.80 ± 0.80 | 2.21 ± 1.76 | 24.06 ± 0.33 | 160.98 ± 9.42 | 20,231.01 ± 515.88 |
4-hydoxycinnamic acid | 9.46 ± 1.30 | 2.85 ± 2.29 | 23.70 ± 0.86 | 163.67 ± 9.43 | 20,516.00 ± 677.56 |
Phaseic acid | 7.08 ± 0.53 | 2.07± 1.30 | 23.17 ± 0.27 | 158.70 ± 9.61 | 20,100.35 ± 631.16 |
Sebaic acid | 9.73 ± 9.73 | 2.13 ± 1.55 | 23.20 ± 0.60 | 160.16 ± 9.14 | 20,546.94 ± 553.95 |
Metformin | 9.54 ± 1.09 | 2.63 ± 1.91 | 24.70 ± 0.44 | 156.60 ± 9.51 | 20,894.76 ± 554.19 |
Resveratrol | 9.10 ± 1.00 | 2.25 ± 1.96 | 23.79 ± 0.43 | 168.97 ± 10.01 | 20,736.27 ± 550.78 |
GABBR1 | |||||
GABBR1 | 1.97 ± 0.37 | 1.29 ± 0.50 | 23.11 ± 0.18 | 203.89 ± 9.56 | 17,313.73 ± 317.08 |
Dodecanedioc acid | 2.21 ± 0.46 | 1.49± 0.57 | 23.49 ± 0.24 | 205.08 ± 9.77 | 17,372.46 ± 384.40 |
Methylisocitric acid | 2.23 ± 0.39 | 1.27 ± 0.52 | 22.73 ± 0.18 | 205.83 ± 9.77 | 17,499.85 ± 327.27 |
Quinic acid | 1.69 ± 0.28 | 1.34 ± 0.96 | 23.41 ± 0.19 | 211.12 ± 9. 11 | 17,117.23 ± 356.12 |
Tetradecanedioc acid | 1.54 ± 0.24 | 1.25 ± 0.48 | 23.35 ± 0.17 | 211.77 ± 9.96 | 17,361.58 ± 314.41 |
Xi-2,2,6, trimethyl-1,4-cyclohexanedione | 2.06 ± 0.38 | 1.58 ± 0.93 | 23.50 ± 0.25 | 207.06 ± 9.60 | 17,688.30 ± 388.06 |
Metformin | 2.15 ± 0.47 | 1.63 ± 1.29 | 23.53 ± 0.22 | 207.00 ± 9.78 | 17,616.59 ± 385.58 |
Resveratrol | 2.21 ± 0.35 | 1.22 ± 0.46 | 22.69 ± 0.14 | 205.87 ± 9.81 | 16,994.73 ± 319.80 |
cDFT Parameters (eV) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ligands | LUMO | HUMO | EA | IE | EA | Hardness | Softness | EN | CP | GE |
ADORA1 | ||||||||||
Cyperine | −0.04 | −5.75 | 5.71 | 0.04 | 5.75 | 2.85 | 0.35 | 2.89 | −2.89 | 1.47 |
Domesticoside | −1.41 | −6.29 | 4.88 | 1.41 | 6.29 | 2.44 | 0.41 | 3.85 | −3.85 | 3.04 |
Gallicynoic acid B | −0.80 | −6.63 | 5.83 | 0.80 | 6.63 | 2.91 | 0.34 | 3.72 | −3.72 | 2.37 |
Ginsenoyne E | −2.58 | −7.01 | 4.43 | 2.58 | 7.01 | 2.22 | 0.45 | 4.80 | −4.80 | 5.19 |
Quing hau sau | −1.07 | −7.13 | 6.06 | 1.07 | 7.13 | 3.03 | 0.33 | 4.10 | −4.10 | 2.77 |
Metformin | −0.91 | −6.17 | 5.26 | 0.91 | 6.17 | 2.63 | 0.38 | 3.54 | −3.54 | 2.38 |
Reservatrol | −1.38 | −5.44 | 4.06 | 1.38 | 5.44 | 2.03 | 0.49 | 3.41 | −3.41 | 2.86 |
HCAR2 | ||||||||||
Caffeic acid | −1.91 | −6.05 | 4.14 | 1.91 | 6.05 | 2.07 | 0.48 | 3.98 | −3.98 | 3.82 |
Dodecanedioc acid | 0.45 | −6.77 | 7.22 | −0.45 | 6.77 | 3.61 | 0.28 | 3.16 | −3.16 | 1.38 |
4-Hydroxycinnamic acid | −1.90 | −6.17 | 4.27 | 1.90 | 6.17 | 2.14 | 0.47 | 4.03 | −4.03 | 3.81 |
Phaseic acid | −2.30 | −6.70 | 4.41 | 2.30 | 6.70 | 2.20 | 0.45 | 4.50 | −4.50 | 4.59 |
Sebaic acid | −0.24 | −7.65 | 7.41 | 0.24 | 7.65 | 3.70 | 0.27 | 3.94 | −3.94 | 2.10 |
Metformin | −0.91 | −6.17 | 5.26 | 0.91 | 6.17 | 2.63 | 0.38 | 3.54 | −3.54 | 2.38 |
Reservatrol | −1.38 | −5.44 | 4.06 | 1.38 | 5.44 | 2.03 | 0.49 | 3.41 | −3.41 | 2.86 |
GABBR1 | ||||||||||
Dodecanedioc acid | 0.45 | −6.77 | 7.22 | −0.45 | 6.77 | 3.61 | 0.28 | 3.16 | −3.16 | 1.38 |
Methylisocitric acid | −0.89 | −7.54 | 6.65 | 0.89 | 7.54 | 3.33 | 0.30 | 4.21 | −4.21 | 2.67 |
Quinic acid | −1.27 | −6.78 | 5.51 | 1.27 | 6.78 | 2.76 | 0.36 | 4.03 | −4.03 | 2.94 |
Tetradecanedioc acid | −0.22 | −7.63 | 7.41 | 0.22 | 7.63 | 3.70 | 0.27 | 3.92 | −3.92 | 2.08 |
Xi-2,2,6-Trimethyl-1,4-Cyclohexanedione | −1.25 | −6.85 | 5.60 | 1.25 | 6.85 | 2.80 | 0.36 | 4.05 | −4.05 | 2.93 |
Metformin | −0.91 | −6.17 | 5.26 | 0.91 | 6.17 | 2.63 | 0.38 | 3.54 | −3.54 | 2.38 |
Reservatrol | −1.38 | −5.44 | 4.06 | 1.38 | 5.44 | 2.03 | 0.49 | 3.41 | −3.41 | 2.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akoonjee, A.; Lanrewaju, A.A.; Balogun, F.O.; Makunga, N.P.; Sabiu, S. Waste to Medicine: Evidence from Computational Studies on the Modulatory Role of Corn Silk on the Therapeutic Targets Implicated in Type 2 Diabetes Mellitus. Biology 2023, 12, 1509. https://doi.org/10.3390/biology12121509
Akoonjee A, Lanrewaju AA, Balogun FO, Makunga NP, Sabiu S. Waste to Medicine: Evidence from Computational Studies on the Modulatory Role of Corn Silk on the Therapeutic Targets Implicated in Type 2 Diabetes Mellitus. Biology. 2023; 12(12):1509. https://doi.org/10.3390/biology12121509
Chicago/Turabian StyleAkoonjee, Ayesha, Adedayo Ayodeji Lanrewaju, Fatai Oladunni Balogun, Nokwanda Pearl Makunga, and Saheed Sabiu. 2023. "Waste to Medicine: Evidence from Computational Studies on the Modulatory Role of Corn Silk on the Therapeutic Targets Implicated in Type 2 Diabetes Mellitus" Biology 12, no. 12: 1509. https://doi.org/10.3390/biology12121509
APA StyleAkoonjee, A., Lanrewaju, A. A., Balogun, F. O., Makunga, N. P., & Sabiu, S. (2023). Waste to Medicine: Evidence from Computational Studies on the Modulatory Role of Corn Silk on the Therapeutic Targets Implicated in Type 2 Diabetes Mellitus. Biology, 12(12), 1509. https://doi.org/10.3390/biology12121509