Impact of Frailty on Outcomes of First-Line Pembrolizumab Monotherapy in a Real-World Population with Advanced Non-Small Cell Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Data Collection
2.2. Statistical Analysis
2.3. Ethics
3. Results
3.1. Baseline Population Characteristics
3.2. Baseline Population Characteristics According to Frailty Scoring System
3.3. Pembrolizumab Outcomes in Overall Population
3.4. Impact of Frailty in Outcomes of Pembrolizumab
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
1 point | History of MI; CHF; PD (includes aortic aneurysm 36 cm); Cerebrovascular disease (with mild or no residua or transient ischemic attack); Dementia; COPD; Connective tissue disease; Peptic ulcer disease; Mild liver diseases (no portal hypertension, including chronic hepatitis); Diabetes without end-organ damage |
2 points | Hemiplegia; Moderate or severe renal disease; Diabetes with end-organ damage; Other tumors without metastasis (exclude if >5 years from diagnosis of non-small cell lung cancer); Leukemia (acute or chronic); Lymphoma |
3 points | Moderate or severe liver disease |
6 points | Other metastatic solid tumors (exclude if >5 years from diagnosis of non-small cell lung cancer); acquired immunodeficiency syndrome (not just human immunodeficiency virus positive) |
33 points | Maximum comorbidity score |
Variable | Value | Score |
---|---|---|
ECOG | 0–1 | 0 |
≥2 | 1 | |
CCI | 0–2 | 0 |
≥3 | 1 | |
NLR | <4 | 0 |
≥4 | 1 | |
Total score | 0 | Low frailty |
1 | Intermediate frailty | |
2, 3 | High frailty |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Ciuleanu, T.-E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): An international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 198–211. [Google Scholar] [CrossRef]
- Horn, L.; Mansfield, A.S.; Szczęsna, A.; Havel, L.; Krzakowski, M.; Hochmair, M.J.; Huemer, F.; Losonczy, G.; Johnson, M.L.; Nishio, M.; et al. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2220–2229. [Google Scholar] [CrossRef]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sezer, A.; Kilickap, S.; Gümüş, M.; Bondarenko, I.; Özgüroğlu, M.; Gogishvili, M.; Turk, H.M.; Cicin, I.; Bentsion, D.; Gladkov, O.; et al. Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: A multicentre, open-label, global, phase 3, randomised, controlled trial. Lancet 2021, 397, 592–604. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, K.; Gill, R.R.; Widick, P.; Bindal, P.; McDonald, D.C.; Shea, M.; Rangachari, D.; Costa, D.B. Association of Performance Status With Survival in Patients With Advanced Non–Small Cell Lung Cancer Treated With Pembrolizumab Monotherapy. JAMA Netw. Open 2021, 4, e2037120. [Google Scholar] [CrossRef]
- Friedlaender, A.; Metro, G.; Signorelli, D.; Gili, A.; Economopoulou, P.; Roila, F.; Banna, G.; De Toma, A.; Camerini, A.; Christopoulou, A.; et al. Impact of performance status on non-small-cell lung cancer patients with a PD-L1 tumour proportion score ≥50% treated with front-line pembrolizumab. Acta Oncol. 2020, 59, 1058–1063. [Google Scholar] [CrossRef]
- Facchinetti, F.; Mazzaschi, G.; Barbieri, F.; Passiglia, F.; Mazzoni, F.; Berardi, R.; Proto, C.; Cecere, F.L.; Pilotto, S.; Scotti, V.; et al. First-line pembrolizumab in advanced non–small cell lung cancer patients with poor performance status. Eur. J. Cancer 2020, 130, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Passaro, A.; Spitaleri, G.; Gyawali, B.; De Marinis, F. Immunotherapy in Non–Small-Cell Lung Cancer Patients with Performance Status 2: Clinical Decision Making With Scant Evidence. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 1863–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgos-San José, A.; Colomer-Aguilar, C.; Martínez-Caballero, D.; Massutí-Sureda, B. Effectiveness and Safety of Atezolizumab, Nivolumab and Pembrolizumab in Metastatic Non-Small Cell Lung Cancer. Farm. Hosp. Organo Expresion Cient. Soc. Espanola Farm. Hosp. 2021, 45, 121–125. [Google Scholar] [CrossRef]
- Galán, R.J.; Prado-Mel, E.; Pérez-Moreno, M.A.; Caballano-Infantes, E.; Moreno, S.F. Influence of Performance Status on the Effectiveness of Pembrolizumab Monotherapy in First-Line for Advanced Non-Small-Cell Lung Cancer: Results in a Real-World Population. Biology 2021, 10, 890. [Google Scholar] [CrossRef] [PubMed]
- Badaoui, S.; Shahnam, A.; McKinnon, R.A.; Abuhelwa, A.Y.; Sorich, M.J.; Hopkins, A.M. The predictive utility of patient-reported outcomes and performance status for survival in metastatic lung cancer patients treated with chemoimmunotherapy. Transl. Lung Cancer Res. 2022, 11, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Overcash, J.; Cope, D.G.; Van Cleave, J.H. Frailty in Older Adults: Assessment, Support, and Treatment Implications in Patients With Cancer. Clin. J. Oncol. Nurs. 2018, 22, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older adults: Evidence for a phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Wildiers, H.; Heeren, P.; Puts, M.; Topinkova, E.; Janssen-Heijnen, M.L.; Extermann, M.; Falandry, C.; Artz, A.; Brain, E.; Colloca, G.; et al. International Society of Geriatric Oncology Consensus on Geriatric Assessment in Older Patients With Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014, 32, 2595–2603. [Google Scholar] [CrossRef] [Green Version]
- Cancer of the Lung and Bronchus—Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/lungb.html (accessed on 2 November 2022).
- Balducci, L.; Extermann, M. Management of Cancer in the Older Person: A Practical Approach. Oncologist 2000, 5, 224–237. [Google Scholar] [CrossRef]
- Shrestha, S.; Shrestha, S.; Khanal, S. Polypharmacy in elderly cancer patients: Challenges and the way clinical pharmacists can contribute in resource-limited settings. Aging Med. 2019, 2, 42–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junius-Walker, U.; Onder, G.; Soleymani, D.; Wiese, B.; Albaina, O.; Bernabei, R.; Marzetti, E. The essence of frailty: A systematic review and qualitative synthesis on frailty concepts and definitions. Eur. J. Intern. Med. 2018, 56, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Pansarasa, O.; Pistono, C.; Davin, A.; Bordoni, M.; Mimmi, M.C.; Guaita, A.; Cereda, C. Altered immune system in frailty: Genetics and diet may influence inflammation. Ageing Res. Rev. 2019, 54, 100935. [Google Scholar] [CrossRef] [PubMed]
- Sakakida, T.; Ishikawa, T.; Uchino, J.; Tabuchi, Y.; Komori, S.; Asai, J.; Arai, A.; Tsunezuka, H.; Kosuga, T.; Konishi, H.; et al. Safety and tolerability of PD-1/PD-L1 inhibitors in elderly and frail patients with advanced malignancies. Oncol. Lett. 2020, 20, 14. [Google Scholar] [CrossRef]
- Raghavan, G.; Shaverdian, N.; Chan, S.; Chu, F.-I.; Lee, P. Comparing Outcomes of Patients With Early-Stage Non–Small-Cell Lung Cancer Treated With Stereotactic Body Radiotherapy Based on Frailty Status. Clin. Lung Cancer 2018, 19, e759–e766. [Google Scholar] [CrossRef]
- Franco, I.; Chen, Y.-H.; Chipidza, F.; Agrawal, V.; Romano, J.; Baldini, E.; Chen, A.; Colson, Y.; Hou, Y.; Kozono, D.; et al. Use of frailty to predict survival in elderly patients with early stage non-small-cell lung cancer treated with stereotactic body radiation therapy. J. Geriatr. Oncol. 2018, 9, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Sbrana, A.; Antognoli, R.; Pasqualetti, G.; Linsalata, G.; Okoye, C.; Calsolaro, V.; Paolieri, F.; Bloise, F.; Ricci, S.; Antonuzzo, A.; et al. Effectiveness of Multi-Prognostic Index in older patients with advanced malignancies treated with immunotherapy. J. Geriatr. Oncol. 2019, 11, 503–507. [Google Scholar] [CrossRef]
- Dai, S.; Yang, M.; Song, J.; Dai, S.; Wu, J. Impacts of Frailty on Prognosis in Lung Cancer Patients: A Systematic Review and Meta-Analysis. Front. Med. 2021, 8, 715513. [Google Scholar] [CrossRef]
- Komici, K.; Bencivenga, L.; Navani, N.; D’Agnano, V.; Guerra, G.; Bianco, A.; Rengo, G.; Perrotta, F. Frailty in Patients with Lung Cancer. Chest 2022, 162, 485–497. [Google Scholar] [CrossRef]
- Fletcher, J.A.; Fox, S.T.; Reid, N.; Hubbard, R.E.; Ladwa, R. The impact of frailty on health outcomes in older adults with lung cancer: A systematic review. Cancer Treat. Res. Commun. 2022, 33, 100652. [Google Scholar] [CrossRef]
- Bellera, C.; Rainfray, M.; Mathoulin-Pélissier, S.; Mertens, C.; Delva, F.; Fonck, M.; Soubeyran, P. Screening older cancer patients: First evaluation of the G-8 geriatric screening tool. Ann. Oncol. 2012, 23, 2166–2172. [Google Scholar] [CrossRef] [PubMed]
- Middleton, G.; Brock, K.; Savage, J.; Mant, R.; Summers, Y.; Connibear, J.; Shah, R.; Ottensmeier, C.; Shaw, P.; Lee, S.-M.; et al. Pembrolizumab in patients with non-small-cell lung cancer of performance status 2 (PePS2): A single arm, phase 2 trial. Lancet Respir. Med. 2020, 8, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Facchinetti, F.; Di Maio, M.; Perrone, F.; Tiseo, M. First-line immunotherapy in non-small cell lung cancer patients with poor performance status: A systematic review and meta-analysis. Transl. Lung Cancer Res. 2021, 10, 2917–2936. [Google Scholar] [CrossRef]
- Xie, X.; Liu, J.; Yang, H.; Chen, H.; Zhou, S.; Lin, H.; Liao, Z.; Ding, Y.; Ling, L.; Wang, X. Prognostic Value of Baseline Neutrophil-to-Lymphocyte Ratio in Outcome of Immune Checkpoint Inhibitors. Cancer Investig. 2019, 37, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Sacdalan, D.B.; Lucero, J.A.; Sacdalan, D.L. Prognostic utility of baseline neutrophil-to-lymphocyte ratio in patients receiving immune checkpoint inhibitors: A review and meta-analysis. OncoTargets Ther. 2018, 11, 955–965. [Google Scholar] [CrossRef] [Green Version]
- Alessi, J.V.; Ricciuti, B.; Alden, S.L.; Bertram, A.A.; Lin, J.J.; Sakhi, M.; Nishino, M.; Vaz, V.R.; Lindsay, J.; Turner, M.M.; et al. Low peripheral blood derived neutrophil-to-lymphocyte ratio (dNLR) is associated with increased tumor T-cell infiltration and favorable outcomes to first-line pembrolizumab in non-small cell lung cancer. J. Immunother. Cancer 2021, 9, e003536. [Google Scholar] [CrossRef] [PubMed]
- Mezquita, L.; Preeshagul, I.; Auclin, E.; Saravia, D.; Hendriks, L.; Rizvi, H.; Park, W.; Nadal, E.; Martin-Romano, P.; Ruffinelli, J.C.; et al. Predicting immunotherapy outcomes under therapy in patients with advanced NSCLC using dNLR and its early dynamics. Eur. J. Cancer 2021, 151, 211–220. [Google Scholar] [CrossRef]
- Xu, W.; Liang, Y.; Lin, Z. Association Between Neutrophil–Lymphocyte Ratio and Frailty: The Chinese Longitudinal Healthy Longevity Survey. Front. Med. 2021, 8, 783077. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zhu, S.; Xu, C.; Wang, Z.; Su, X.; Zeng, D.; Long, H.; Zhu, B. Effect of Comorbidity on Outcomes of Patients with Advanced Non-Small Cell Lung Cancer Undergoing Anti-PD1 Immunotherapy. Experiment 2020, 26, e922576. [Google Scholar] [CrossRef] [PubMed]
- Ng, I.K.; Kumarakulasinghe, N.B.; Syn, N.L.; Soo, R.A. Development, internal validation and calibration of a risk score to predict survival in patients with EGFR-mutant non-small cell lung cancer. J. Clin. Pathol. 2021, 74, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Hanazawa, H.; Matsuo, Y.; Takeda, A.; Tsurugai, Y.; Iizuka, Y.; Kishi, N.; Takehana, K.; Mizowaki, T. Development and validation of a prognostic model for non-lung cancer death in elderly patients treated with stereotactic body radiotherapy for non-small cell lung cancer. J. Radiat. Res. 2021, 62, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Hoogendijk, E.O.; Afilalo, J.; Ensrud, K.E.; Kowal, P.; Onder, G.; Fried, L.P. Frailty: Implications for clinical practice and public health. Lancet 2019, 394, 1365–1375. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Values, n (%) |
---|---|
Sex Male Female | |
75 (74.3) | |
26 (25.7) | |
Age <70 years of age ≥70 years of age | |
63 (62.4) 38 (37.6) | |
Smoking history Yes No | |
93 (92.1) 8 (7.9) | |
Histology Adenocarcinoma Squamous NSCLC poorly differentiated Others | 69 (68.3) 19 (18.8) 9 (8.9) 4 (4.0) |
Disease stage IIIB IV | 2 (2.3) 86 (97.7) |
Brain metastases Yes No | 16 (15.8) 85 (84.2) |
PD-L1 TPS% <90% ≥90% | 74 (73.3) 27 (26.7) |
ECOG PS 0 1 2 3 | 20 (19.8) 43 (42.6) 30 (29.7) 8 (7.9) |
CCI 0–2 ≥3 | 91 (90.1) 10 (9.9) |
NLR ≥4 <4 | 58 (57.4) 43 (42.6) |
Frailty Scoring System Low Intermediate High | 28 (27.7) 41 (40.6) 32 (31.7) |
Characteristics | Frailty Scoring System | p-Value | ||
---|---|---|---|---|
Low n (%) | Intermediate n (%) | High n (%) | ||
Sex Male Female | 21 (75) 7 (25) | 29 (70.7) 12 (29.3) | 25 (78.1) 7 (21.9) | 0.769 |
Smoking history | 25 (89.3) | 38 (92.7) | 30 (93.8) | 0.801 |
Histology Adenocarcinoma Non-adenocarcinoma | 20 (71.4) 8 (28.6) | 31 (75.6) 10 (24.4) | 18 (56.3) 14 (43.8) | 0.193 |
PD-L1-expression levels ≥90% <90% | 7 (25) 21 (75) | 11 (26.8) 30 (73.2) | 9 (28.1) 23 (71.9) | 0.963 |
Elderly No (age < 70years) Yes (age ≥ 70 years) | 16 (57.1) 12 (42.8) | 26 (63.4) 15 (36.6) | 21 (65.6) 11 (34.4) | 0.783 |
Brain metastases Yes No | 5 (17.9) 23 (82.1) | 4 (9.8) 37 (90.2) | 7 (21.9) 25 (78.1) | 0.350 |
Response | Low FSI | Intermediate FSI | High FSI |
---|---|---|---|
PR, n (%) | 11 (40.7) | 16 (50.0) | 2 (13.3) |
SD, n (%) | 12 (44.4) | 6 (18.8) | - |
PD, n (%) | 4 (14.8) | 10 (31.3) | 13 (86.7) |
Progression-Free Survival | Overall Survival | |||
---|---|---|---|---|
Variable | Median (95% CI) | p-Value | Median (95% CI) | p-Value |
Sex Female male | 3.2 (0.7–5.7) 3.2 (1.4–4.9) | 0.630 | 4.2 (0–13.8) 6.3 (3.8–8.7) | 0.805 |
Age <70 ≥70 | 3.2 (1.5–4.9) 3.9 (1.1–6.7) | 0.829 | 5.7 (1.9–9.4) 7.0 (3.9–10.1) | 0.934 |
Smoking history No Yes | 4.4 (0–14.7) 3.2 (1.6–4.8) | 0.566 | 10.8 (0–31.3) 5.9 (3.5–8.3) | 0.237 |
Histology Adenocarcinoma Non-adenocarcinoma | 4.2 (2.3–6.2) 2.1 (1.9– 2.3) | 0.303 | 7.0 (2.2–11.9) 3.3 (0–7.0) | 0.282 |
PD-L1 TPS <90% ≥90% | 3.1 (1.2–5.0) 3.3 (0.7–5.8) | 0.554 | 6.2 (2.8–9.6) 5.3 (0–11.7) | 0.742 |
Brain Metastasis No Yes | 3.7 (1.9–5.6) 2.2 (0.04–4.3) | 0.164 | 7.0 (1.9–12.2) 4.1 (2.2–5.9) | 0.205 |
Frailty Scoring System Low Intermediate High | 10.5 (0–21.2) 3.9 (2.1–5.7) 1.6 (0.9–2.3) | <0.001 | 23.8 (–) 7.0 (3.8–10.2) 1.8 (1.2–2.6) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez Galán, R.; Prado-Mel, E.; Alvarez de Sotomayor, M.; Martin, L.A.-K. Impact of Frailty on Outcomes of First-Line Pembrolizumab Monotherapy in a Real-World Population with Advanced Non-Small Cell Lung Cancer. Biology 2023, 12, 191. https://doi.org/10.3390/biology12020191
Jiménez Galán R, Prado-Mel E, Alvarez de Sotomayor M, Martin LA-K. Impact of Frailty on Outcomes of First-Line Pembrolizumab Monotherapy in a Real-World Population with Advanced Non-Small Cell Lung Cancer. Biology. 2023; 12(2):191. https://doi.org/10.3390/biology12020191
Chicago/Turabian StyleJiménez Galán, Rocío, Elena Prado-Mel, Maria Alvarez de Sotomayor, and Laila Abdel-Kader Martin. 2023. "Impact of Frailty on Outcomes of First-Line Pembrolizumab Monotherapy in a Real-World Population with Advanced Non-Small Cell Lung Cancer" Biology 12, no. 2: 191. https://doi.org/10.3390/biology12020191
APA StyleJiménez Galán, R., Prado-Mel, E., Alvarez de Sotomayor, M., & Martin, L. A. -K. (2023). Impact of Frailty on Outcomes of First-Line Pembrolizumab Monotherapy in a Real-World Population with Advanced Non-Small Cell Lung Cancer. Biology, 12(2), 191. https://doi.org/10.3390/biology12020191