Molecular Approaches for Detection of Trichoderma Green Mold Disease in Edible Mushroom Production
Abstract
:Simple Summary
Abstract
1. Introduction
2. Culture-Based Methods to Detect Trichoderma spp.
3. Secondary Metabolite-Based Methods
4. Overview of Available Molecular Detection Methods
4.1. RAPD-Based Methods
4.2. Species-and Strain-Specific PCR
4.3. Single Locus Sequence Typing and DNA Barcoding
5. Methods Based on High-Throughput Sequencing
6. Isothermal Nucleic Acid Amplification Methods
6.1. Loop-Mediated Isothermal Amplification (LAMP)
6.2. Recombinase Polymerase Amplification (RPA)
6.3. Nucleic Acid Sequence Based Amplification (NASBA)
7. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernaś, E.; Jaworska, G.; Lisiewska, Z. Edible mushrooms as a source of valuable nutritive constituents. Acta Sci. Pol. Technol. Aliment. 2006, 5, 5–20. [Google Scholar]
- Lu, H.; Lou, H.; Hu, J.; Liu, Z.; Chen, Q. Macrofungi: A review of cultivation strategies, bioactivity, and application of mushrooms. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2333–2356. [Google Scholar] [CrossRef] [PubMed]
- Rangel-Vargas, E.; Rodriguez, J.A.; Domínguez, R.; Lorenzo, J.M.; Sosa, M.E.; Andrés, S.C.; Rosmini, M.; Pérez-Alvarez, J.A.; Teixeira, A.; Santos, E.M. Edible mushrooms as a natural source of food ingredient/additive replacer. Foods 2021, 10, 2687. [Google Scholar] [CrossRef]
- Royse, D.J.; Baars, J.; Tan, Q. Current overview of mushroom production in the world. In Edible and Medicinal Mushrooms; Diego, C.Z., Pardo-Giménez, A., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 5–13. [Google Scholar]
- Singh, M.; Kamal, S.; Sharma, V.P. Status and trends in world mushroom production-III -World Production of different mushroom species in 21st century. Mushroom Res. 2020, 29, 75–111. [Google Scholar] [CrossRef]
- Singh, M.; Kamal, S.; Sharma, V.P. Species and region-wise mushroom production in leading mushroom producing countries—China, Japan, USA, Canada and India. Mushroom Res. 2021, 30, 99–108. [Google Scholar] [CrossRef]
- Luković, J.; Milijašević-Marčić, S.; Hatvani, L.; Kredics, L.; Szűcs, A.; Vágvölgyi, C.; Duduk, N.; Vico, I.; Potočnik, I. Sensitivity of Trichoderma strains from edible mushrooms to the fungicides prochloraz and metrafenone. J. Environ. Sci. Health B 2021, 56, 54–63. [Google Scholar] [CrossRef]
- Cao, Z.-J.; Qin, W.-T.; Zhao, J.; Liu, Y.; Wang, S.-X.; Zheng, S.-Y. Three new Trichoderma species in harzianum clade associated with the contaminated substrates of edible fungi. J. Fungi 2022, 8, 1154. [Google Scholar] [CrossRef]
- Allaga, H.; Zhumakayev, A.; Büchner, R.; Kocsubé, S.; Szűcs, A.; Vágvölgyi, C.; Kredics, L.; Hatvani, L. Members of the Trichoderma harzianum species complex with mushroom pathogenic potential. Agronomy 2021, 11, 2434. [Google Scholar] [CrossRef]
- Kredics, L.; Naeimi, S.; Hatvani, L.; Vágvölgyi, C.; Cai, F.; Druzhinina, I.S.; Manczinger, L. ‘The good, the bad and the ugly’ in the shades of green: The genus Trichoderma in the spotlight. Indian Phytopathol. 2021, 74, 403–411. [Google Scholar] [CrossRef]
- Krupke, O.A.; Castle, A.J.; Rinker, D.L. The North American mushroom cmpetitor, Trichoderma aggressivum f. aggressivum, produces antifungal compounds in mushroom compost that inhibit mycelial growth of the commercial mushroom Agaricus bisporus. Mycol. Res. 2003, 107, 1467–1475. [Google Scholar] [CrossRef]
- Kosanovic, D.; Grogan, H.; Kavanagh, K. Exposure of Agaricus bisporus to Trichoderma aggressivum f. europaeum leads to growth inhibition and induction of an oxidative stress response. Fungal Biol. 2020, 124, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Aydoğdu, M.; Kurbetli, İ.; Kitapçı, A.; Sülü, G. Aggressiveness of green mould on cultivated mushroom (Agaricus bisporus) in Turkey. J. Plant. Dis. Prot. 2020, 127, 695–708. [Google Scholar] [CrossRef]
- Sinden, J.; Hauser, E. Nature and control of three mildew diseases of mushrooms in America. Mushroom Sci. 1953, 2, 177–180. [Google Scholar]
- Ospina-Giraldo, M.D.; Royse, D.J.; Thon, M.R.; Chen, X.; Romaine, C.P. Phylogenetic relationships of Trichoderma harzianum causing mushroom green mold in Europe and North America to other species of Trichoderma from world-wide sources. Mycologia 1998, 90, 76–81. [Google Scholar] [CrossRef]
- Ospina-Giraldo, M.D.; Royse, D.J.; Chen, X.; Romaine, C.P. Molecular phylogenetic analyses of biological control strains of Trichoderma harzianum and other biotypes of Trichoderma spp. associated with mushroom green mold. Phytopathology 1999, 89, 308–313. [Google Scholar] [CrossRef]
- Seaby, D.A. Infection of mushroom compost by Trichoderma species. Mushroom J. 1987, 179, 355–361. [Google Scholar]
- Seaby, D.A. Further observations on Trichoderma. Mushroom J. 1989, 197, 147–151. [Google Scholar]
- Seaby, D.A. Differentiation of Trichoderma taxa associated with mushroom production. Plant Pathol. 1996, 45, 905–912. [Google Scholar] [CrossRef]
- Seaby, D.A. Investigation of the epidemiology of green mould of mushroom (Agaricus bisporus) compost caused by Trichoderma harzianum. Plant Pathol. 1996, 45, 913–923. [Google Scholar] [CrossRef]
- Seaby, D. Pathogen in mushroom cultivation. In Trichoderma and Gliocladium; Harman, G.E., Kubicek, C.P., Eds.; CRC Press: London, UK, 1998; Volume 2, p. 267. [Google Scholar]
- Doyle, O.; Morris, E.; Clancy, K. Trichoderma green mould update. Ir. Mushroom Rev. 1991, 3, 13–17. [Google Scholar]
- Morris, E.; Doyle, O.; Clancy, K. A profile of Trichoderma species. I. Mushroom compost production. Mushroom Sci. 1995, 14, 611–618. [Google Scholar]
- Morris, E.; Doyle, O.; Clancy, K.J. A profile of Trichoderma species. II. Mushroom growing units. Mushroom Sci. 1995, 14, 619–625. [Google Scholar]
- Rinker, D.L. Trichoderma green mold: A seminar by Dr. Donald Betterley, Monterey labs. Mushroom News 1994, 42, 28–32. [Google Scholar]
- Romaine, C.P.; Royse, D.J.; Wuest, P.J.; Beyer, D.M. Mushroom green mold: Cause, edaphic factors & control. Mushroom News 1996, 44, 20–23. [Google Scholar]
- Muthumeenakshi, S.; Mills, P.R.; Brown, A.E.; Seaby, D.A. Intraspecific molecular variation among Trichoderma harzianum isolates colonizing mushroom compost in the British Isles. Microbiology 1994, 140, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Castle, A.; Speranzini, D.; Rghei, N.; Alm, G.; Rinker, D.; Bissett, J. Morphological and molecular identification of Trichoderma isolates on North American mushroom farms. Appl. Environ. Microbiol. 1998, 64, 133–137. [Google Scholar] [CrossRef]
- Samuels, G.J.; Dodd, S.L.; Gams, W.; Castlebury, L.A.; Petrini, O. Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 2002, 94, 146–170. [Google Scholar] [CrossRef]
- Chen, X.; Romaine, C.P.; Ospina-Giraldo, M.D.; Royse, D.J. A polymerase chain reaction-based test for the identification of Trichoderma harzianum biotypes 2 and 4, responsible for the worldwide green mold epidemic in cultivated Agaricus bisporus. Appl. Microbiol. Biotechnol. 1999, 52, 246–250. [Google Scholar] [CrossRef]
- Chen, X.; Romaine, C.P.; Tan, Q.; Schlagnhaufer, B.; Ospina-Giraldo, M.D.; Royse, D.J.; Huff, D.R. PCR-based genotyping of epidemic and preepidemic Trichoderma isolates associated with green mold of Agaricus bisporus. Appl. Environ. Microbiol. 1999, 65, 2674–2678. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.; Idrees, M.; Zhou, Y.; Zhang, C.; Xu, J. First report of green mold disease caused by Trichoderma hengshanicum on Ganoderma lingzhi. Mycobiology 2020, 48, 427–430. [Google Scholar] [CrossRef]
- Colavolpe, M.B.; Mejía, S.J.; Albertó, E. Efficiency of treatments for controlling Trichoderma spp during spawning in cultivation of lignicolous mushrooms. Braz. J. Microbiol. 2014, 45, 1263–1270. [Google Scholar] [CrossRef]
- Komoń-Zelazowska, M.; Bissett, J.; Zafari, D.; Hatvani, L.; Manczinger, L.; Woo, S.; Lorito, M.; Kredics, L.; Kubicek, C.P.; Druzhinina, I.S. Genetically closely related but phenotypically divergent Trichoderma species cause green mold disease in oyster mushroom farms worldwide. Appl. Environ. Microbiol. 2007, 73, 7415–7426. [Google Scholar] [CrossRef] [PubMed]
- Park, M.-S.; Bae, K.-S.; Yu, S.-H. Two new species of Trichoderma associated with green mold of oyster mush-room cultivation in Korea. Mycobiology 2006, 34, 111–113. [Google Scholar] [CrossRef] [PubMed]
- Jayalal, R.G.U.; Adikaram, N.K.B. Influence of Trichoderma harzianum metabolites on the development of green mould disease in the oyster mushroom. Cey. J. Sci. 2007, 36, 53–60. [Google Scholar]
- Yan, Y.; Zhang, C.; Moodley, O.; Zhang, L.; Xu, J. Green mold caused by Trichoderma atroviride on the lingzhi medicinal mushroom, Ganoderma lingzhi (Agaricomycetes). Int. J. Med. Mushrooms 2019, 21, 515–521. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, X.; Zhao, J.; Tang, X.; Pasquali, M.; Migheli, Q.; Berg, G.; Cernava, T. Occurrence of green mold disease on Dictyophora rubrovolvata caused by Trichoderma koningiopsis. J. Plant Pathol. 2021, 103, 981–984. [Google Scholar] [CrossRef]
- Gea, F.J.; Navarro, M.J.; Santos, M.; Diánez, F.; Carrasco, J. Control of fungal diseases in mushroom crops while dealing with fungicide resistance: A review. Microorganisms 2021, 9, 585. [Google Scholar] [CrossRef] [PubMed]
- Kredics, L.; Hatvani, L.; Allaga, H.; Büchner, R.; Cai, F.; Vágvölgyi, C.; Druzhinina, I.S.; Naeimi, S. Trichoderma Green Mould Disease of Cultivated Mushrooms. In Advances in Trichoderma Biology for Agricultural Applications; Amaresan, N., Sankaranarayanan, A., Dwivedi, M.K., Druzhinina, I.S., Eds.; Fungal Biology; Springer International Publishing: Cham, Switzerland, 2022; pp. 559–606. ISBN 978-3-030-91650-3. [Google Scholar]
- Kredics, L.; García Jimenez, L.; Naeimi, N.; Czifra, D.; Urbán, P.; Manczinger, L.; Vágvölgyi, C.; Hatvani, L. A challenge to mushroom growers: The green mould disease of cultivated champignons. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; FORMATEX: Badajoz, Spain, 2010; pp. 295–305. ISBN 978-84-614-6194-3. [Google Scholar]
- Talavera-Ortiz, A.; Chaverri, P.; Díaz-Godínez, G.; Acosta-Urdapilleta, M.d.L.; Villegas, E.; Téllez-Téllez, M. Mycelial inhibition of Trichoderma spp. (Hypocreaceae) isolated from the cultivation of Pleurotus ostreatus (Pleurotaceae) with an extract of Pycnoporus sp. (Polyporaceae). Acta Bot. Mex. 2020, 127, e1537. [Google Scholar] [CrossRef]
- Willinger, B. Culture-based Techniques. In Human Fungal Pathogen Identification: Methods and Protocols; Lion, T., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2017; pp. 195–207. ISBN 978-1-4939-6515-1. [Google Scholar]
- Shah, M.M.; Afiya, H. Introductory chapter: Identification and isolation of Trichoderma spp.—Their significance in agriculture, human health, industrial and environmental application. In Trichoderma—The Most Widely Used Fungicide; Shah, M.M., Sharif, U., Buhari, T.R., Eds.; IntechOpen: London, UK, 2019; ISBN 978-1-78923-918-8. [Google Scholar]
- Williams, J.; Clarkson, J.M.; Mills, P.R.; Cooper, R.M. A selective medium for quantitative reisolation of Trichoderma harzianum from Agaricus bisporus compost. Appl. Environ. Microbiol. 2003, 69, 4190–4191. [Google Scholar] [CrossRef]
- Lee, S.; Yap, M.; Behringer, G.; Hung, R.; Bennett, J.W. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol. Biotechnol. 2016, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Claydon, N.; Allan, M.; Hanson, J.R.; Avent, A.G. Antifungal alkyl pyrones of Trichoderma harzianum. Trans. Br. Mycol. Soc. 1987, 88, 503–513. [Google Scholar] [CrossRef]
- Salwan, R.; Rialch, N.; Sharma, V. Bioactive volatile metabolites of Trichoderma: An overview. In Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms: Discovery and Applications; Singh, H.B., Keswani, C., Reddy, M.S., Sansinenea, E., García-Estrada, C., Eds.; Springer: Singapore, 2019; pp. 87–111. [Google Scholar]
- Baars, J.; Rutjens, J.; Mumm, R. Can volatiles emitted by compost during spawn run be used to detect green mould infection early? In Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7); Savoie, J.-M., Foulongne-Oriol, M., Largeteau, M., Barroso, G., Eds.; INRA, Villenave d’Ornon Cedex: Villenave d’Ornon, France, 2011; Volume 1, pp. 474–483. [Google Scholar]
- Kredics, L.; Chen, L.; Kedves, O.; Büchner, R.; Hatvani, L.; Allaga, H.; Nagy, V.D.; Khaled, J.M.; Alharbi, N.S.; Vágvölgyi, C. Molecular tools for monitoring Trichoderma in agricultural environments. Front. Microbiol. 2018, 9, 1599. [Google Scholar] [CrossRef] [PubMed]
- Dewey, F.M.; Thornton, C.R. Fungal immunodiagnosis in plant agriculture. In New Diagnostics in Crop Sciences; Skerritt, J.H., Appels, R., Eds.; CAB International: Wallingford, UK, 1995; pp. 151–170. ISBN 978-0-8519-8934-1. [Google Scholar]
- Dewey, F.M.; Thornton, C.R.; Gilligan, C.A. Use of monoclonal antibodies to detect, quantify and visualize fungi in soils. In Advances in Botanical Research; Andrews, J.H., Tommerup, I.C., Callow, J.A., Eds.; Academic Press: Cambridge, MA, USA, 1997; Volume 24, pp. 275–308. ISBN 978-0-1200-5924-9. [Google Scholar]
- Otten, W.; Gilligan, C.A.; Thornton, C.R. Quantification of fungal antigens in soil with a monoclonal antibody-based ELISA: Analysis and reduction of soil-specific bias. Phytopathology 1997, 87, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Thornton, C.R.; Dewey, F.M.; Gilligan, C.A. Development of monoclonal antibody-based immunological assays for the detection of live propagules of Rhizoctonia solani in soil. Plant Pathol. 1993, 42, 763–773. [Google Scholar] [CrossRef]
- Thornton, C.R.; O’Neill, T.M.; Hilton, G.; Gilligan, C.A. Detection and recovery of Rhizoctonia solani in naturally infested glasshouse soils using a combined baiting, double monoclonal antibody ELISA. Plant Pathol. 1999, 48, 627–634. [Google Scholar] [CrossRef]
- Thornton, C.R.; Gilligan, C.A. Quantification of the effect of the hyperparasite Trichoderma harzianum on the saprotrophic growth dynamics of Rhizoctonia solani in compost using a monoclonal antibody-based ELISA. Mycol. Res. 1999, 103, 443–448. [Google Scholar] [CrossRef]
- Thornton, C.R.; Pitt, D.; Wakley, G.E.; Talbot, N.J. Production of a monoclonal antibody specific to the genus Trichoderma and closely related fungi, and its use to detect Trichoderma spp. in naturally infested composts. Microbiology 2002, 148, 1263–1279. [Google Scholar] [CrossRef]
- Green, H.; Jensen, D.F. A tool for monitoring Trichoderma harzianum: II. The use of a GUS transformant for ecological studies in the rhizosphere. Phytopathology 1995, 85, 1436–1440. [Google Scholar] [CrossRef]
- Lo, C.-T.; Nelson, E.B.; Hayes, C.K.; Harman, G.E. Ecological studies of transformed Trichoderma harzianum strain 1295–22 in the rhizosphere and on the phylloplane of creeping bentgrass. Phytopathology 1998, 88, 129–136. [Google Scholar] [CrossRef]
- Bae, Y.-S.; Knudsen, G.R. Cotransformation of Trichoderma harzianum with β-glucuronidase and green fluorescent protein genes provides a useful tool for monitoring fungal growth and activity in natural soils. Appl. Environ. Microbiol. 2000, 66, 810–815. [Google Scholar] [CrossRef] [Green Version]
- Sabat, A.J.; Budimir, A.; Nashev, D.; Sá-Leão, R.; van Dijl, J.M.; Laurent, F.; Grundmann, H.; Friedrich, A.W.; on behalf of the ESCMID Study Group of Epidemiological Markers (ESGEM). Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill. 2013, 18, 20380. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.A.; Constantine, C.C.; Morgan, U.M. Overview and significance of molecular methods: What role for molecular epidemiology? Parasitology 1999, 117, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.-Y.; Hong, S.-B.; Yadav, M.C. Molecular and morphological characterization of green mold, Trichoderma spp. isolated from oyster mushrooms. Mycobiology 2003, 31, 74–80. [Google Scholar] [CrossRef]
- Singh, S.K.; Sharma, V.P.; Sharma, S.R.; Kumar, S.; Tiwari, M. Molecular characterization of Trichoderma taxa causing green mould disease in edible mushrooms. Curr. Sci. 2006, 90, 427–431. [Google Scholar]
- Williams, J.G.K.; Kubelik, A.R.; Livak, K.J.; Rafalski, J.A.; Tingey, S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990, 18, 6531–6535. [Google Scholar] [CrossRef]
- Welsh, J.; McClelland, M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990, 18, 7213–7218. [Google Scholar] [CrossRef]
- Bulat, S.A.; Lübeck, M.; Mironenko, N.; Jensen, D.F.; Lübeck, P.S. UP-PCRanalysis and ITS1 ribotyping of strains of Trichoderma and Gliocladium. Mycol. Res. 1998, 102, 933–943. [Google Scholar] [CrossRef]
- Rifai, M.A. A revision of the genus Trichoderma. Mycol. Pap. 1969, 116, 1–56. [Google Scholar]
- Miyazaki, K.; Tsuchiya, Y.; Okuda, T. Specific PCR assays for the detection of Trichoderma harzianum causing green mold disease during mushroom cultivation. Mycoscience 2009, 50, 94–99. [Google Scholar] [CrossRef]
- Kredics, L.; Kocsubé, S.; Nagy, L.; Komoń-Zelazowska, M.; Manczinger, L.; Sajben, E.; Nagy, A.; Vágvölgyi, C.; Kubicek, C.P.; Druzhinina, I.S.; et al. Molecular identification of Trichoderma species associated with Pleurotus ostreatus and natural substrates of the oyster mushroom. FEMS Microbiol. Lett. 2009, 300, 58–67. [Google Scholar] [CrossRef]
- Lee, S.H.; Jung, H.J.; Hong, S.-B.; Choi, J.I.; Ryu, J.-S. Molecular markers for detecting a wide range of Trichoderma spp. that might potentially cause green mold in Pleurotus eryngii. Mycobiology 2020, 48, 313–320. [Google Scholar] [CrossRef]
- Kim, S.-W.; Kim, S.; Lee, H.-J.; Park, J.-W.; Ro, H.-S. Isolation of fungal pathogens to an edible mushroom, Pleurotus eryngii, and development of specific ITS primers. Mycobiology 2013, 41, 252–255. [Google Scholar] [CrossRef] [Green Version]
- Rubio, M.B.; Hermosa, M.R.; Keck, E.; Monte, E. Specific PCR assays for the detection and quantification of DNA from the biocontrol strain Trichoderma harzianum 2413 in soil. Microb. Ecol. 2005, 49, 25–33. [Google Scholar] [CrossRef]
- O’Brien, M.; Kavanagh, K.; Grogan, H. Detection of Trichoderma aggressivum in bulk phase III substrate and the effect of T. aggressivum inoculum, supplementation and substrate-mixing on Agaricus bisporus yields. Eur. J. Plant Pathol. 2017, 147, 199–209. [Google Scholar] [CrossRef]
- Hermosa, M.R.; Grondona, I.; Díaz-Mínguez, J.M.; Iturriaga, E.A.; Monte, E. Development of a strain-specific SCAR marker for the detection of Trichoderma atroviride 11, a biological control agent against soilborne fungal plant pathogens. Curr. Genet. 2001, 38, 343–350. [Google Scholar] [CrossRef]
- Shekhovtsov, S.V.; Shekhovtsova, I.N.; Peltek, S.E. DNA barcoding: Methods and approaches. Biol. Bull. Rev. 2019, 9, 475–483. [Google Scholar] [CrossRef]
- Lücking, R.; Aime, M.C.; Robbertse, B.; Miller, A.N.; Ariyawansa, H.A.; Aoki, T.; Cardinali, G.; Crous, P.W.; Druzhinina, I.S.; Geiser, D.M.; et al. Unambiguous identification of fungi: Where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 2020, 11, 14. [Google Scholar] [CrossRef]
- Geiser, D.M.; Klich, M.A.; Frisvad, J.C.; Peterson, S.W.; Varga, J.; Samson, R.A. The current status of species recognition and identification in Aspergillus. Stud. Mycol. 2007, 59, 1–10. [Google Scholar] [CrossRef]
- Gilmore, S.R.; Gräfenhan, T.; Louis-Seize, G.; Seifert, K.A. Multiple copies of cytochrome oxidase 1 in species of the fungal genus Fusarium. Mol. Ecol. Resour. 2009, 9, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Damm, U.; Cannon, P.F.; Woudenberg, J.H.C.; Crous, P.W. The Colletotrichum acutatum species complex. Stud. Mycol. 2012, 73, 37–113. [Google Scholar] [CrossRef] [PubMed]
- Maharachchikumbura, S.S.N.; Guo, L.-D.; Cai, L.; Chukeatirote, E.; Wu, W.P.; Sun, X.; Crous, P.W.; Bhat, D.J.; McKenzie, E.H.C.; Bahkali, A.H.; et al. A multi-locus backbone tree for Pestalotiopsis, with a polyphasic characterization of 14 new species. Fungal Divers. 2012, 56, 95–129. [Google Scholar] [CrossRef]
- López-Quintero, C.A.; Atanasova, L.; Franco-Molano, A.E.; Gams, W.; Komon-Zelazowska, M.; Theelen, B.; Müller, W.H.; Boekhout, T.; Druzhinina, I. DNA barcoding survey of Trichoderma diversity in soil and litter of the colombian lowland amazonian rainforest reveals Trichoderma strigosellum sp. nov. and other species. Antonie van Leeuwenhoek 2013, 104, 657–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasundaram, S.V.; Engh, I.B.; Skrede, I.; Kauserud, H. How many DNA markers are needed to reveal cryptic fungal species? Fungal Biol. 2015, 119, 940–945. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Beakes, G.; Glockling, S.; Kruse, J.; Nam, B.; Nigrelli, L.; Ploch, S.; Shin, H.-D.; Shivas, R.G.; Telle, S.; et al. Towards a universal barcode of oomycetes—A comparison of the cox1 and cox2 loci. Mol. Ecol. Resour. 2015, 15, 1275–1288. [Google Scholar] [CrossRef] [PubMed]
- Stielow, J.B.; Lévesque, C.A.; Seifert, K.A.; Meyer, W.; Irinyi, L.; Smits, D.; Renfurm, R.; Verkley, G.J.M.; Groenewald, M.; Chaduli, D.; et al. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 2015, 35, 242–263. [Google Scholar] [CrossRef]
- Xu, J. Fungal DNA barcoding. Genome 2016, 59, 913–932. [Google Scholar] [CrossRef]
- Al-Hatmi, A.M.S.; Van Den Ende, A.H.G.G.; Stielow, J.B.; Van Diepeningen, A.D.; Seifert, K.A.; McCormick, W.; Assabgui, R.; Gräfenhan, T.; De Hoog, G.S.; Levesque, C.A. Evaluation of two novel barcodes for species recognition of opportunistic pathogens in Fusarium. Fungal Biol. 2016, 120, 231–245. [Google Scholar] [CrossRef]
- Irinyi, L.; Lackner, M.; de Hoog, G.S.; Meyer, W. DNA barcoding of fungi causing infections in humans and animals. Fungal Biol. 2016, 120, 125–136. [Google Scholar] [CrossRef]
- Větrovský, T.; Kolařík, M.; Žifčáková, L.; Zelenka, T.; Baldrian, P. The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Mol. Ecol. Resour. 2016, 16, 388–401. [Google Scholar] [CrossRef]
- Woudenberg, J.H.C.; Hanse, B.; van Leeuwen, G.C.M.; Groenewald, J.Z.; Crous, P.W. Stemphylium revisited. Stud. Mycol. 2017, 87, 77–103. [Google Scholar] [CrossRef]
- Schnittler, M.; Shchepin, O.N.; Dagamac, N.H.A.; Borg Dahl, M.; Novozhilov, Y.K. Barcoding myxomycetes with molecular markers—Challenges and opportunities. Nova Hedwiga 2017, 104, 323–341. [Google Scholar] [CrossRef]
- Tekpinar, A.D.; Kalmer, A. Utility of various molecular markers in fungal identification and phylogeny. Nova Hedwigia 2019, 109, 187–224. [Google Scholar] [CrossRef]
- Luo, Z.-L.; Hyde, K.D.; Liu, J.-K.; Maharachchikumbura, S.S.N.; Jeewon, R.; Bao, D.-F.; Bhat, D.J.; Lin, C.-G.; Li, W.-L.; Yang, J.; et al. Freshwater Sordariomycetes. Fungal Divers. 2019, 99, 451–660. [Google Scholar] [CrossRef]
- Meyer, W.; Irinyi, L.; Hoang, M.T.V.; Robert, V.; Garcia-Hermoso, D.; Desnos-Ollivier, M.; Yurayart, C.; Tsang, C.-C.; Lee, C.-Y.; Woo, P.C.Y.; et al. Database establishment for the secondary fungal DNA barcode translational elongation factor 1α (TEF1α). Genome 2019, 1, 160–169. [Google Scholar] [CrossRef]
- Druzhinina, I.S.; Kopchinskiy, A.G.; Komoń, M.; Bissett, J.; Szakacs, G.; Kubicek, C.P. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet. Biol. 2005, 42, 813–828. [Google Scholar] [CrossRef] [PubMed]
- Kopchinskiy, A.; Komoń, M.; Kubicek, C.P.; Druzhinina, I.S. TRICHOBLAST: A multilocus database for Trichoderma and Hypocrea identifications. Mycol. Res. 2005, 109, 658–660. [Google Scholar] [CrossRef]
- Kõljalg, U.; Larsson, K.-H.; Abarenkov, K.; Nilsson, R.H.; Alexander, I.J.; Eberhardt, U.; Erland, S.; Høiland, K.; Kjøller, R.; Larsson, E.; et al. UNITE: A database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol. 2005, 166, 1063–1068. [Google Scholar] [CrossRef] [PubMed]
- Dou, K.; Lu, Z.; Wu, Q.; Ni, M.; Yu, C.; Wang, M.; Li, Y.; Wang, X.; Xie, H.; Chen, J.; et al. MIST: A multilocus identification system for Trichoderma. Appl. Environ. Microbiol. 2020, 86, e01532-20. [Google Scholar] [CrossRef]
- Park, M.; Bae, K.; Yu, S. Molecular and morphological analysis of Trichoderma isolates associated with green mold epidemic of oyster mushroom in Korea. Hua Zhong Nong Ye Da Xue Xue Bao 2004, 23, 157–164. [Google Scholar]
- Park, M.-S.; Seo, G.-S.; Bae, K.-S.; Yu, S.-H. Characterization of Trichoderma spp. associated with green mold of oyster mushroom by PCR-RFLP and sequence analysis of ITS regions of rDNA. Plant Pathol. J. 2005, 21, 229–236. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Anslan, S.; Bahram, M.; Wurzbacher, C.; Baldrian, P.; Tedersoo, L. Mycobiome diversity: High-throughput sequencing and identification of fungi. Nat. Rev. Microbiol. 2019, 17, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.K.; Horwitz, B.A.; Herrera-Estrella, A.; Schmoll, M.; Kenerley, C.M. Trichoderma research in the genome era. Annu. Rev. Phytopathol. 2013, 51, 105–129. [Google Scholar] [CrossRef] [PubMed]
- Aragona, M.; Haegi, A.; Valente, M.T.; Riccioni, L.; Orzali, L.; Vitale, S.; Luongo, L.; Infantino, A. New-generation sequencing technology in diagnosis of fungal plant pathogens: A dream comes true? J. Fungi 2022, 8, 737. [Google Scholar] [CrossRef]
- Weirather, J.L.; de Cesare, M.; Wang, Y.; Piazza, P.; Sebastiano, V.; Wang, X.-J.; Buck, D.; Au, K.F. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore technologies and their applications to transcriptome analysis. F1000Research 2017, 6, 100. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Koren, S.; Miga, K.H.; Quick, J.; Rand, A.C.; Sasani, T.A.; Tyson, J.R.; Beggs, A.D.; Dilthey, A.T.; Fiddes, I.T.; et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 2018, 36, 338–345. [Google Scholar] [CrossRef]
- Tedersoo, L.; Tooming-Klunderud, A.; Anslan, S. PacBio metabarcoding of fungi and other eukaryotes: Errors, biases and perspectives. New Phytol. 2018, 217, 1370–1385. [Google Scholar] [CrossRef]
- Tedersoo, L.; Drenkhan, R.; Anslan, S.; Morales-Rodriguez, C.; Cleary, M. High-throughput identification and diagnostics of pathogens and pests: Overview and practical recommendations. Mol. Ecol. Resour. 2019, 19, 47–76. [Google Scholar] [CrossRef]
- Tedersoo, L.; Albertsen, M.; Anslan, S.; Callahan, B. Perspectives and benefits of high-throughput long-read sequencing in microbial ecology. Appl. Environ. Microbiol. 2021, 87, e00626-21. [Google Scholar] [CrossRef]
- Wurzbacher, C.; Larsson, E.; Bengtsson-Palme, J.; Van den Wyngaert, S.; Svantesson, S.; Kristiansson, E.; Kagami, M.; Nilsson, R.H. Introducing ribosomal tandem repeat barcoding for fungi. Mol. Ecol. Resour. 2019, 19, 118–127. [Google Scholar] [CrossRef]
- Heeger, F.; Bourne, E.C.; Baschien, C.; Yurkov, A.; Bunk, B.; Spröer, C.; Overmann, J.; Mazzoni, C.J.; Monaghan, M.T. Long-read dna metabarcoding of ribosomal rna in the analysis of fungi from aquatic environments. Mol. Ecol. Resour. 2018, 18, 1500–1514. [Google Scholar] [CrossRef]
- Loit, K.; Adamson, K.; Bahram, M.; Puusepp, R.; Anslan, S.; Kiiker, R.; Drenkhan, R.; Tedersoo, L. Relative performance of MinION (Oxford Nanopore Technologies) versus Sequel (Pacific Biosciences) third-generation sequencing instruments in identification of agricultural and forest fungal pathogens. Appl. Environ. Microbiol. 2019, 85, e01368-19. [Google Scholar] [CrossRef] [PubMed]
- Latorre-Pérez, A.; Villalba-Bermell, P.; Pascual, J.; Vilanova, C. Assembly methods for nanopore-based metagenomic sequencing: A comparative study. Sci. Rep. 2020, 10, 13588. [Google Scholar] [CrossRef] [PubMed]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niessen, L. Current state and future perspectives of loop-mediated isothermal amplification (LAMP)-based diagnosis of filamentous fungi and yeasts. Appl. Microbiol. Biotechnol. 2015, 99, 553–574. [Google Scholar] [CrossRef]
- Vaagt, F.; Haase, I.; Fischer, M. Loop-mediated isothermal amplification (LAMP)-based method for rapid mushroom species identification. J. Agric. Food Chem. 2013, 61, 1833–1840. [Google Scholar] [CrossRef]
- He, Z.; Su, Y.; Li, S.; Long, P.; Zhang, P.; Chen, Z. Development and evaluation of isothermal amplification methods for rapid detection of lethal Amanita species. Front. Microbiol. 2019, 10, 1523. [Google Scholar] [CrossRef]
- Hu, X.R.; Dai, D.J.; Wang, H.D.; Zhang, C.Q. Rapid on-site evaluation of the development of resistance to quinone outside inhibitors in Botrytis cinerea. Sci. Rep. 2017, 7, 13861. [Google Scholar] [CrossRef] [PubMed]
- Niessen, L.; Vogel, R.F. Detection of Fusarium graminearum DNA using a loop-mediated isothermal amplification (LAMP) assay. Int. J. Food Microbiol. 2010, 140, 183–191. [Google Scholar] [CrossRef]
- Li, B.; Du, J.; Lan, C.; Liu, P.; Weng, Q.; Chen, Q. Development of a loop-mediated isothermal amplification assay for rapid and sensitive detection of Fusarium oxysporum f. sp. cubense race 4. Eur. J. Plant Pathol. 2013, 135, 903–911. [Google Scholar] [CrossRef]
- Luo, J.; Vogel, R.F.; Niessen, L. Development and application of a loop-mediated isothermal amplification assay for rapid identification of aflatoxigenic molds and their detection in food samples. Int. J. Food Microbiol. 2012, 159, 214–224. [Google Scholar] [CrossRef]
- Niessen, L.; Luo, J.; Denschlag, C.; Vogel, R.F. The application of loop-mediated isothermal amplification (LAMP) in food testing for bacterial pathogens and fungal contaminants. Food Microbiol. 2013, 36, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Daher, R.K.; Stewart, G.; Boissinot, M.; Bergeron, M.G. Recombinase polymerase amplification for diagnostic applications. Clin. Chem. 2016, 62, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Zaghloul, H.; El-shahat, M. Recombinase polymerase amplification as a promising tool in hepatitis c virus diagnosis. World J. Hepatol. 2014, 6, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Daher, R.K.; Stewart, G.; Boissinot, M.; Boudreau, D.K.; Bergeron, M.G. Influence of sequence mismatches on the specificity of recombinase polymerase amplification technology. Mol. Cell. Probes 2015, 29, 116–121. [Google Scholar] [CrossRef]
- Patil, K.N.; Singh, P.; Muniyappa, K. DNA binding, coprotease, and strand exchange activities of mycobacterial RecA proteins: Implications for functional diversity among RecA nucleoprotein filaments. Biochemistry 2011, 50, 300–311. [Google Scholar] [CrossRef]
- Ali, Q.; Ahmar, S.; Sohail, M.A.; Kamran, M.; Ali, M.; Saleem, M.H.; Rizwan, M.; Ahmed, A.M.; Mora-Poblete, F.; do Amaral Júnior, A.T.; et al. Research advances and applications of biosensing technology for the diagnosis of pathogens in sustainable agriculture. Environ. Sci. Pollut. Res. 2021, 28, 9002–9019. [Google Scholar] [CrossRef]
- Karakkat, B.B.; Hockemeyer, K.; Franchett, M.; Olson, M.; Mullenberg, C.; Koch, P.L. Detection of root-infecting fungi on cool-season turfgrasses using loop-mediated isothermal amplification and recombinase polymerase amplification. J. Microbiol. Methods 2018, 151, 90–98. [Google Scholar] [CrossRef]
- Sakai, K.; Trabasso, P.; Moretti, M.L.; Mikami, Y.; Kamei, K.; Gonoi, T. Identification of fungal pathogens by visible microarray system in combination with isothermal gene amplification. Mycopathologia 2014, 178, 11–26. [Google Scholar] [CrossRef]
- Roumani, F.; Rodrigues, C.; Barros-Velázquez, J.; Garrido-Maestu, A.; Prado, M. Development of a panfungal recombinase polymerase amplification (RPA) method coupled with lateral flow strips for the detection of spoilage fungi. Food Anal. Methods 2022. [Google Scholar] [CrossRef]
- Liu, Q.; Li, X.; Wu, R.; Xiao, X.; Xing, F. Development of an on-spot and rapid recombinase polymerase amplification assay for Aspergillus flavus detection in grains. Food Control 2021, 125, 107957. [Google Scholar] [CrossRef]
- Compton, J. Nucleic acid sequence-based Amplification. Nature 1991, 350, 91–92. [Google Scholar] [CrossRef] [PubMed]
- Fakrudin, M.; Mazumdar, R.M.; Chowdhury, A.; Mannan, K.S.B. Nucleic acid sequence based amplification (NASBA)—Prospects and applications. Int. J. Life Sci. Pharma Res. 2012, 2, L106–L121. [Google Scholar]
- Chang, C.-C.; Chen, C.-C.; Wei, S.-C.; Lu, H.-H.; Liang, Y.-H.; Lin, C.-W. Diagnostic devices for isothermal nucleic acid amplification. Sensors 2012, 12, 8319–8337. [Google Scholar] [CrossRef] [PubMed]
- Trtkova, J.; Raclavsky, V. Molecular-genetic approaches to identification and typing of pathogenic Candida yeasts. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2006, 150, 51–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakata, A. Nucleotide sequence of the Iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 1987, 169, 5429–5433. [Google Scholar] [CrossRef]
- Aman, R.; Mahas, A.; Mahfouz, M. Nucleic acid detection using CRISPR/Cas biosensing technologies. ACS Synth. Biol. 2020, 9, 1226–1233. [Google Scholar] [CrossRef]
- Sun, Y.; Li, J.; Zhu, L.; Jiang, L. Cooperation and competition between CRISPR- and omics-based technologies in foodborne pathogens detection: A state of the art review. Curr. Opin. Food Sci. 2022, 44, 100813. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Kant, R.; Behera, S.P.; Dwivedi, G.R.; Singh, R. Next-generation diagnostic with CRISPR/Cas: Beyond nucleic acid detection. Int. J. Mol. Sci. 2022, 23, 6052. [Google Scholar] [CrossRef]
- Mu, K.; Ren, X.; Yang, H.; Zhang, T.; Yan, W.; Yuan, F.; Wu, J.; Kang, Z.; Han, D.; Deng, R.; et al. CRISPR-Cas12a-based diagnostics of wheat fungal diseases. J. Agric. Food Chem. 2022, 70, 7240–7247. [Google Scholar] [CrossRef]
- Shin, K.; Kwon, S.-H.; Lee, S.-C.; Moon, Y.-E. Sensitive and rapid detection of citrus scab using an RPA-CRISPR/Cas12a system combined with a lateral flow assay. Plants 2021, 10, 2132. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Ma, L.; Gong, M.; Wu, Y.; Bao, D.; Zou, G. Use of CRISPR-Cas tools to engineer Trichoderma species. Microb. Biotechnol. 2022, 15, 2521–2532. [Google Scholar] [CrossRef] [PubMed]
Method | T | S | SE | RE | EQ | PON | ||
---|---|---|---|---|---|---|---|---|
Immunoassays | 2 | b | + | + | + | − | ||
Exogenous markers | 2 | a | + | + | + | − | ||
DNA fingerprinting | RFLP | 3 | a, b | − | − | + | − | |
DNA-based | RAPD | 2 | a, b | − | − | + | − | |
AP-PCR | 2 | a, b | − | − | + | − | ||
UP-PCR | 2 | a, b | − | − | + | − | ||
Species- and strain-specific PCR | 2 | a, b | + | + | + | − | ||
Single locus sequence typing and DNA barcoding | 3 | b | + | + | + | − | ||
HTS | DNA metabarcoding | 4 | b, c | +/− | +/− | + | +/− | |
Metagenomics | 5 | b | +/− | +/− | + | +/− | ||
CRISPR/Cas | 1 | a, b | + | + | +/− | + | ||
Isothermal nucleic acid amplification | LAMP | 1 | a, b | + | + | − | + | |
RPA | 1 | a, b | + | + | − | + | ||
NASBA | 1 | a, b | + | + | − | + |
Biotype | Species | Reference |
---|---|---|
Th1 | Trichoderma harzianum | Rifai [68] |
Th2 | Trichoderma aggressivum f. europaeum | Samuels et al. [29] |
Th3 | Trichoderma atroviride | Castle et al. [28]; Ospina-Giraldo et al. [15] |
Th4 | Trichoderma aggressivum f. aggressivum | Samuels et al. [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šašić Zorić, L.; Janjušević, L.; Djisalov, M.; Knežić, T.; Vunduk, J.; Milenković, I.; Gadjanski, I. Molecular Approaches for Detection of Trichoderma Green Mold Disease in Edible Mushroom Production. Biology 2023, 12, 299. https://doi.org/10.3390/biology12020299
Šašić Zorić L, Janjušević L, Djisalov M, Knežić T, Vunduk J, Milenković I, Gadjanski I. Molecular Approaches for Detection of Trichoderma Green Mold Disease in Edible Mushroom Production. Biology. 2023; 12(2):299. https://doi.org/10.3390/biology12020299
Chicago/Turabian StyleŠašić Zorić, Ljiljana, Ljiljana Janjušević, Mila Djisalov, Teodora Knežić, Jovana Vunduk, Ivanka Milenković, and Ivana Gadjanski. 2023. "Molecular Approaches for Detection of Trichoderma Green Mold Disease in Edible Mushroom Production" Biology 12, no. 2: 299. https://doi.org/10.3390/biology12020299
APA StyleŠašić Zorić, L., Janjušević, L., Djisalov, M., Knežić, T., Vunduk, J., Milenković, I., & Gadjanski, I. (2023). Molecular Approaches for Detection of Trichoderma Green Mold Disease in Edible Mushroom Production. Biology, 12(2), 299. https://doi.org/10.3390/biology12020299