Assessing the Genomics Structure of Dorper and White Dorper Variants, and Dorper Populations in South Africa and Hungary
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Basic Population Statistics and Runs of Homozygosity
3.2. Population Structure and Differentiation between Populations
3.3. Linkage Disequilibrium (LD) and Signatures of Selection for Local Adaptation
4. Discussion
4.1. Basic Population Statistics and Runs of Homozygosity (ROH)
4.2. Population Structure and Differentiation between Populations
4.3. Linkage Disequilibrium (LD) and Signatures of Selection for Local Adaptation
5. Potential Possibilities for Improving the Genomic Management of Animal Genetic Re-Sources in Developing Nations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cloete, S.W.P.; Snyman, M.A.; Herselman, M.J. Productive performance of Dorper sheep. Small Rumin. Res. 2000, 36, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Milne, C. The history of the Dorper sheep. Small Rumin. Res. 2000, 36, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Dorper, Sheep Breeders’ Society of South Africa. Available online: https://dorpersa.co.za (accessed on 12 December 2022).
- Schoeman, S.J. A comparative assessment of Dorper sheep in different production environments and systems. Small Rumin. Res. 2000, 36, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Souza, D.A.; Selaive-Villarroel, A.B.; Pereira, E.S.; Osório, J.C.S.; Teixeira, A. Growth performance, feed efficiency and carcass characteristics of lambs produced from Dorper sheep crossed with Santa Inês or Brazilian Somali sheep. Small Rumin. Res. 2013, 114, 51–55. [Google Scholar] [CrossRef]
- Budai, C.; Gavojdian, D.; Kovács, A.; Negrut, F.; Oláh, J.; Cziszter, L.T.; Kusza, S.; Jávor, A. Performance and adaptability of the Dorper sheep breed under Hungarian and Romanian rearing conditions. Sci. Pap. Anim. Sci. Biotechnol. 2013, 46, 344–349. [Google Scholar]
- Inyangala, B.A.O.; Rege, J.E.O.; Itulya, S. The performance of the Dorper and Dorper×Red Maasai sheep. Discov. Innov. 1992, 4, 76–82. Available online: https://hdl.handle.net/10568/28451 (accessed on 15 December 2022).
- Oyieng, E.; Mrode, R.; Ojango, J.M.K.; Ekine-Dzivenu, C.C.; Audho, J.; Okeyo, A.M. Genetic parameters and genetic trends for growth traits of the Red Maasai sheep and its crosses to Dorper sheep under extensive production system in Kenya. Small Rumin. Res. 2022, 206, 106588. [Google Scholar] [CrossRef]
- Malhado, C.H.M.; Carneiro, P.L.S.; Affonso, P.R.A.M.; Souza, A.A.O.; Sarmento, J.L.R. Growth curves in Dorper sheep crossed with the local Brazilian breeds, Morada Nova, Rabo Largo, and Santa Inês. Small Rumin. Res. 2009, 84, 16–21. [Google Scholar] [CrossRef]
- Xiang, J.; Zhong, L.; Luo, H.; Meng, L.; Dong, Y.; Qi, Z.; Wang, H. A comparative analysis of carcass and meat traits, and rumen bacteria between Chinese Mongolian sheep and Dorper × Chinese Mongolian crossbred sheep. Animal 2022, 16, 100503. [Google Scholar] [CrossRef]
- Gavojdian, D.; Cziszter, L.T.; Pacala, N.; Sauer, M. Productive and reproductive performance of Dorper and its crossbreds under a Romanian semi-intensive management system. South Afr. J. Anim. Sci. 2013, 43, 219–228. [Google Scholar] [CrossRef]
- Kovács, A.; Kukovics, S.; Jávor, A. Dorpers, the meat sheep of the future. Analele Universita din Oradea. Fascicula: Ecotoxicologie, zootechnie si Technologii de Industrie Alimentara 2008, 7, 272–275. [Google Scholar]
- Liu, Z.; Ji, Z.; Wang, G.; Chao, T.; Hou, L.; Wang, J. Genome-wide analysis reveals signatures of selection for important traits in domestic sheep from different ecoregions. BMC Genom. 2016, 17, 863. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, H.D.; Krehbiel, B.; Ericsson, S.A.; Wilson, C.; Caetano, A.R.; Paiva, S.R. A fine structure genetic analysis evaluating ecoregional adaptability of a Bos taurus breed (Hereford). PLoS ONE 2017, 12, e0176474. [Google Scholar] [CrossRef] [PubMed]
- Fohringer, C.; Hoelzl, F.; Allen, A.M.; Cayol, C.; Ericsson, G.; Spong, G.; Smith, S.; Singh, N.J. Large mammal telomere length variation across ecoregions. BMC Ecol. Evol. 2022, 22, 105. [Google Scholar] [CrossRef] [PubMed]
- Zsolnai, A.; Egerszegi, I.; Rózsa, L.; Anton, I. Genetic status of lowland-type Racka sheep colour variants. Animal 2021, 15, 100080. [Google Scholar] [CrossRef]
- Sempéré, G.; Moazami-Goudarzi, K.; Eggen, A.; Laloë, D.; Gautier, M.; Flori, L. WIDDE: A Web-Interfaced next generation database for genetic diversity exploration, with a first application in cattle. BMC Genom. 2015, 16, 940. [Google Scholar] [CrossRef]
- Kijas, J.W.; Lenstra, J.A.; Hayes, B.; Boitard, S.; Porto Neto, L.R.; San Cristobal, M.; Servin, B.; McCulloch, R.; Whan, V.; Gietzen, K.; et al. Genome-Wide Analysis of the World’s Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection. PLoS Biol. 2012, 10, e1001258. [Google Scholar] [CrossRef]
- Fan, J.; Gunderson, K.L.; Bibikova, M.; Yeakley, J.M.; Chen, J.; Wickham Garcia, E.; Lebruska, L.L.; Laurent, M.; Shen, R.; Barker, D. [3] Illumina Universal Bead Arrays. In DNA Microarrays, Part A: Array Platforms and Wet-Bench Protocols; Kimmel, A., Brian Oliver, O., Eds.; Academic Press: Cambridge, MA, USA, 2006; Volume 410, pp. 57–73. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.A.M.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015, 4, 7. [Google Scholar] [CrossRef]
- Excoffier, L.; Laval, G.; Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. 2005, 1, 117693430500100000. [Google Scholar] [CrossRef]
- Sweigart, A.; Karoly, K.; Jones, A.; Willis, J.H. The distribution of individual inbreeding coefficients and pairwise relatedness in a population of Mimulus guttatus. Heredity 1999, 83, 625–632. [Google Scholar] [CrossRef]
- Biscarini, F.; Cozzi, P.; Gaspa, G.; Marras, G. detectRUNS: Detect Runs of Homozygosity and Runs of Heterozygosity in Diploid Genomes. 2018. Available online: https://cran.r-project.org/web/packages/detectRUNS (accessed on 12 December 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. Available online: http://www.r-project.org (accessed on 12 December 2022).
- Xu, Z.; Mei, S.; Zhou, J.; Zhang, Y.; Qiao, M.; Sun, H.; Li, Z.; Li, L.; Dong, B.; Oyelami, F.O.; et al. Genome-Wide Assessment of Runs of Homozygosity and Estimates of Genomic Inbreeding in a Chinese Composite Pig Breed. Front. Genet. 2021, 12, 720081. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. Programming with ggplot2. In ggplot2. Use R; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Gautier, M.; Vitalis, R. rehh: An R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics 2012, 28, 1176–1177. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.D. qqman: An R package for visualizing GWAS results using Q-Q and manhattan plots. BioRxiv 2014. [Google Scholar] [CrossRef]
- Durinck, S.; Moreau, Y.; Kasprzyk, A.; Davis, S.; De Moor, B.; Brazma, A.; Huber, W. BioMart and Bioconductor: A powerful link between biological databases and microarray data analysis. Bioinformatics 2005, 21, 3439–3440. [Google Scholar] [CrossRef]
- Hubbard, T.; Barker, D.; Birney, E.; Cameron, G.; Chen, Y.; Clark, L.; Cox, T.; Cuff, J.; Curwen, V.; Down, T.; et al. The Ensembl genome database project. Nucleic Acids Res. 2002, 30, 38–41. [Google Scholar] [CrossRef]
- Kusza, S.; Nagy, I.; Sasvári, Z.; Stágel, A.; Németh, T.; Molnár, A.; Kume, K.; Bősze, Z.; Jávor, A.; Kukovics, S. Genetic diversity and population structure of Tsigai and Zackel type of sheep breeds in the Central-, Eastern-and Southern-European regions. Small Rumin. Res. 2008, 78, 13–23. [Google Scholar] [CrossRef]
- Kusza, S.; Nagy, I.; Németh, T.; Molnár, A.; Jávor, A.; Kukovics, S. The genetic variability of Hungarian Tsigai sheep. Arch. Anim. Breed. 2010, 53, 309–317. [Google Scholar] [CrossRef]
- Neubauer, V.; Vogl, C.; Seregi, J.; Sáfár, L.; Brem, G. Genetic diversity and population structure of Zackel sheep and other Hungarian sheep breeds. Arch. Anim. Breed. 2015, 58, 343–350. [Google Scholar] [CrossRef]
- Wanjala, G.; Bagi, Z.; Kusza, S. Meta-Analysis of Mitochondrial DNA Control Region Diversity to Shed Light on Phylogenetic Relationship and Demographic History of African Sheep (Ovis aries) Breeds. Biology 2021, 10, 762. [Google Scholar] [CrossRef]
- DAD-IS, F.A.O. Risk Status of Animal Genetic Resources|Domestic Animal Diversity Information System (DAD-IS)|Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/dad-is/risk-status-of-animal-genetic-resources/en/ (accessed on 15 December 2022).
- Ceballos, F.C.; Joshi, P.K.; Clark, D.W.; Ramsay, M.; Wilson, J.F. Runs of homozygosity: Windows into population history and trait architecture. Nat. Rev. Genet. 2018, 19, 220–234. [Google Scholar] [CrossRef] [PubMed]
- Rebelato, A.B.; Caetano, A.R. Runs of homozygosity for autozygosity estimation and genomic analysis in production animals. Pesqui. Agropecuária Bras. 2018, 53, 975–984. [Google Scholar] [CrossRef]
- Kdidi, S.; Calvo, J.H.; González-Calvo, L.; Ben Sassi, M.; Khorchani, T.; Yahyaoui, M.H. Genetic relationship and admixture in four Tunisian sheep breeds revealed by microsatellite markers. Small Rumin. Res. 2015, 131, 64–69. [Google Scholar] [CrossRef]
- Kandoussi, A.; Badaoui, B.; Boujenane, I.; Piro, M.; Petit, D. How have sheep breeds differentiated from each other in Morocco? Genetic structure and geographical distribution patterns. Genet. Sel. Evol. 2021, 53, 83. [Google Scholar] [CrossRef]
- Kusza, S.; Ivankovic, A.; Ramljak, J.; Nagy, I.; Jávor, A.; Kukovics, S. Genetic structure of Tsigai, Ruda, Pramenka and other local sheep in Southern and Eastern Europe. Small Rumin. Res. 2011, 99, 130–134. [Google Scholar] [CrossRef]
- García-Gámez, E.; Sahana, G.; Gutiérrez-Gil, B.; Arranz, J.-J. Linkage disequilibrium and inbreeding estimation in Spanish Churra sheep. BMC Genet. 2012, 13, 43. [Google Scholar] [CrossRef]
- Ghoreishifar, S.M.; Moradi-Shahrbabak, H.; Parna, N.; Davoudi, P.; Khansefid, M. Linkage disequilibrium and within-breed genetic diversity in Iranian Zandi sheep. Arch. Anim. Breed. 2019, 62, 143–151. [Google Scholar] [CrossRef]
- Mastrangelo, S.; Di Gerlando, R.; Tolone, M.; Tortorici, L.; Sardina, M.T.; Portolano, B.; Consortium, I.S.G. Genome wide linkage disequilibrium and genetic structure in Sicilian dairy sheep breeds. BMC Genet. 2014, 15, 108. [Google Scholar] [CrossRef]
- Shifman, S.; Kuypers, J.; Kokoris, M.; Yakir, B.; Darvasi, A. Linkage disequilibrium patterns of the human genome across populations. Hum. Mol. Genet. 2003, 12, 771–776. [Google Scholar] [CrossRef]
- Clarke, L.; Heasman, L.; Firth, K.; Symonds, M.E. Influence of route of delivery and ambient temperature on thermoregulation in newborn lambs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1997, 272, R1931–R1939. [Google Scholar] [CrossRef]
- GeneCards. Available online: https://www.genecards.org/ (accessed on 28 November 2022).
- Zachar, P.K.; Strausz, P. Bewegungsraum und aktuelle Managementfragen für die Kammern im Gesellschafts- und Wirtschaftsleben Ungarns. In Jahrbuch des Kammer- und Berufsrechts 2011; Kluth, W., Ed.; Peter Junkermann Verlag: Halle an der Saale, Germany, 2012; pp. 227–251. ISBN 978-3-941226-26-5. [Google Scholar]
FID | N | Ho ± SD | He ± SD | F ± SD | ROH (Mbps) | ||||
---|---|---|---|---|---|---|---|---|---|
0–6 | 6–12 | 12–24 | 24–48 | >48 | |||||
SADOR | 21 | 0.372 ± 0.164 | 0.368 ± 0.137 | 0.066 ± 0.041 | 994 | 193 | 51 | 6 | 2 |
HUDOR | 20 | 0.365 ± 0.177 | 0.351 ± 0.145 | 0.173 ± 0.106 | 1386 | 293 | 74 | 20 | 4 |
HUWDOR | 20 | 0.367 ± 0.164 | 0.363 ± 0.137 | 0.177 ± 0.064 | 1167 | 235 | 106 | 26 | 9 |
HORAC | 20 | 0.376 ± 0.151 | 0.377 ± 0.130 | 0.046 ± 0.122 | 999 | 219 | 83 | 14 | 1 |
Source of Variation | d.f | Sum of Squares | Variance Components | Percentage of Variation |
---|---|---|---|---|
Among populations | 3 | 79212.882 | 987.640 Va | 9.76 |
Within population | 132 | 773272.817 | 6467.576 Vb | 90.24 |
Total | 135 | 852485.699 | 10065.041 | |
Fixation index (FST) 0.097; p-value < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wanjala, G.; Astuti, P.K.; Bagi, Z.; Kichamu, N.; Strausz, P.; Kusza, S. Assessing the Genomics Structure of Dorper and White Dorper Variants, and Dorper Populations in South Africa and Hungary. Biology 2023, 12, 386. https://doi.org/10.3390/biology12030386
Wanjala G, Astuti PK, Bagi Z, Kichamu N, Strausz P, Kusza S. Assessing the Genomics Structure of Dorper and White Dorper Variants, and Dorper Populations in South Africa and Hungary. Biology. 2023; 12(3):386. https://doi.org/10.3390/biology12030386
Chicago/Turabian StyleWanjala, George, Putri Kusuma Astuti, Zoltán Bagi, Nelly Kichamu, Péter Strausz, and Szilvia Kusza. 2023. "Assessing the Genomics Structure of Dorper and White Dorper Variants, and Dorper Populations in South Africa and Hungary" Biology 12, no. 3: 386. https://doi.org/10.3390/biology12030386
APA StyleWanjala, G., Astuti, P. K., Bagi, Z., Kichamu, N., Strausz, P., & Kusza, S. (2023). Assessing the Genomics Structure of Dorper and White Dorper Variants, and Dorper Populations in South Africa and Hungary. Biology, 12(3), 386. https://doi.org/10.3390/biology12030386