Methods to Induce Analgesia and Anesthesia in Crustaceans: A Supportive Decision Tool
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Analgesia
3.2. Anesthesia
3.2.1. Chemical Anesthetics
- Drugs acting at adrenoreceptors
- Alcohols
- Esters
- Steroids
- Inhalant (Gaseous)
- Inhalant (Volatile)
- Injectable
- Oils
- Other organic compounds
- Salts
3.2.2. Physical Methods to Reach Anesthesia (Table 3)
- Thermic methods
- Mechanical methods
- Electrical methods
3.2.3. Non-Suitable Methods (Table 4)
- Chemical anesthetics
- Alcohol
- Other organic compounds
- Salts
- Others
- Thermic methods
- Osmotic methods
3.3. Supportive Decision Tool
3.3.1. Objective of the Tool
3.3.2. Explanation of the Decision Tool (How to Use It)
- Sharing links. Every page within Datasette is designed to be shared using “copy and paste” of the page URL to share it with someone else. This includes applied filters and facets, thus, specific searches can be shared.
- Exporting data. The raw data can be exported. This is a fundamental principle of the project. There are CSV and .json links on each page to export the data in those formats.
- In the tool, there is a PDF tutorial with more detailed descriptions and examples of how to use it to facilitate readers to make the maximum use of the tool.
3.3.3. Link of the Decision Tool
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elwood, R.W. Discrimination between nociceptive reflexes and more complex responses consistent with pain in crustaceans. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20190368. [Google Scholar] [CrossRef] [PubMed]
- Dyuizen, I.V.; Kotsyuba, E.P.; Lamash, N.E. Changes in the nitric oxide system in the shore crab Hemigrapsus sanguineus (Crustacea, Decapoda) CNS induced by a nociceptive stimulus. J. Exp. Biol. 2012, 215, 2668–2676. [Google Scholar] [CrossRef] [PubMed]
- Sneddon, L.U.; Elwood, R.W.; Adamo, S.A.; Leach, M.C. Defining and assessing animal pain. Anim. Behav. 2014, 97, 201–212. [Google Scholar] [CrossRef]
- Birch, J.; Burn, C.; Schnell, A.; Browning, H.; Crump, A. Review of the Evidence of Sentience in Cephalopod Molluscs and Decapod Crustaceans; LSE Enterprise Ltd. London School of Economics and Political Science: London, UK, 2021; pp. 1–108. [Google Scholar]
- Animal Welfare (Sentience) Bill [HL]; House of Lords: London, UK, 2022; Volume 255.
- Perrot-Minnot, M.-J.; Banchetry, L.; Cézilly, F. Anxiety-like behaviour increases safety from fish predation in an amphipod crustacea. R. Soc. Open Sci. 2017, 4, 171558. [Google Scholar] [CrossRef]
- de Souza Valente, C. Anaesthesia of decapod crustaceans. Vet. Anim. Sci. 2022, 16, 100252. [Google Scholar] [CrossRef]
- Albalat, A.; Zacarias, S.; Coates, C.J.; Neil, D.M.; Planellas, S.R. Welfare in farmed decapod crustaceans, with particular reference to Penaeus vannamei. Front. Mar. Sci. 2022, 9, 677. [Google Scholar] [CrossRef]
- Underwood, W.; Anthony, R. AVMA Guidelines for the Euthanasia of Animals, 2020 Edition; American Veterinary Medical Association: Schaumburg, IL, USA, 2020; Volume 2013, pp. 2020–2021. [Google Scholar]
- Cooper, J.E. Anesthesia, analgesia, and euthanasia of invertebrates. ILAR J. 2011, 52, 196–204. [Google Scholar] [CrossRef]
- Ingle, R.W. The UFAW Handbook on the Care & Management of Decapod Crustaceans in Captivity; UFAW: Hertfordshire, UK, 1995. [Google Scholar]
- Johnston, C.; Jungalwalla, P. Aquatic Animal Welfare Guidelines: Guidelines on Welfare of fish and Crustaceans in Aquaculture and/or in Live Holding Systems for Human Consumption; National Aquaculture Council of Australia, Department of Agriculture, Fisheries and Forestry: Deakin, Australia, 2005. [Google Scholar]
- Kaplan, H.M. Anesthesia in invertebrates. Fed. Proc. 1969, 28, 1557–1569. [Google Scholar]
- Noga, E.; Hancock, A.; Bullis, R. Crustaceans. In Invertebrate Medicine; Lewbart, G., Ed.; Blackwell Publishing: Ames, IA, USA, 2006; pp. 179–194. [Google Scholar]
- Ross, L.; Ross, B. Anaesthetic and Sedative Techniques for Aquatic Animals, 3rd ed.; Blackwell Publishing: Oxford, UK, 2008. [Google Scholar]
- West, G.D.; Heard, D.J.; Caulkett, N.A. Zoo & Wildlife Immobilization and Anesthesias; Blackwell Publishing: Ames, IA, USA, 2007; p. 718. [Google Scholar]
- Yue, S. An HSUS Report: The Welfare of Crustaceans at Slaughter; Animal Studies Repository: Wilmington, NC, USA, 2008. [Google Scholar]
- Crump, A.; Browning, H.; Schnell, A.; Burn, C.; Birch, J. Sentience in decapod crustaceans: A general framework and review of the evidence. Anim. Sentience 2022, 7, 1. [Google Scholar] [CrossRef]
- Elwood, R.W. Potential Pain in Fish and Decapods: Similar Experimental Approaches and Similar Results. Front. Vet. Sci. 2021, 8. [Google Scholar] [CrossRef]
- Perrot-Minnot, M.-J.; Balourdet, A.; Musset, O. Optimization of anesthetic procedure in crustaceans: Evidence for sedative and analgesic-like effect of MS-222 using a semi-automated device for exposure to noxious stimulus. Aquat. Toxicol. 2021, 240, 105981. [Google Scholar] [CrossRef]
- Bergamo, P.; Maldonado, H.; Miralto, A. Opiate effect on the threat display in the crab Carnicus mediterraneus. Pharmacol. Biochem. Behav. 1992, 42, 323–326. [Google Scholar] [CrossRef]
- Barr, S.; Elwood, R.W. No evidence of morphine analgesia to noxious shock in the shore crab, Carcinus maenas. Behav. Process. 2011, 86, 340–344. [Google Scholar] [CrossRef]
- Lozada, M.; Romano, A.; Maldonado, H. Effect of morphine and naloxone on a defensive response of the crab Chasmagnathus granulatus. Pharmacol. Biochem. Behav. 1988, 30, 635–640. [Google Scholar] [CrossRef]
- Maldonado, H.; Romano, A.; Lozada, M. Opioid action on response level to a danger stimulus in the crab (Chasmagnathus granulatus). Behav. Neurosci. 1989, 103, 1139. [Google Scholar] [CrossRef]
- Tomsic, D.; Maldonado, H. Central effect of morphine pretreatment on short-and long-term habituation to a danger stimulus in the crab Chasmagnathus. Pharmacol. Biochem. Behav. 1990, 36, 787–793. [Google Scholar] [CrossRef]
- Nathaniel, T.I.; Panksepp, J.; Huber, R. Effects of a single and repeated morphine treatment on conditioned and unconditioned behavioral sensitization in Crayfish. Behav. Brain Res. 2010, 207, 310–320. [Google Scholar] [CrossRef]
- Nathaniel, T.I.; Panksepp, J.; Huber, R. Drug-seeking behavior in an invertebrate system: Evidence of morphine-induced reward, extinction and reinstatement in crayfish. Behav. Brain Res. 2009, 197, 331–338. [Google Scholar] [CrossRef]
- Maldonado, H.; Miralto, A. Effect of morphine and naloxone on a defensive response of the mantis shrimp (Squilla mantis). J. Comp. Physiol. B 1982, 147, 455–459. [Google Scholar] [CrossRef]
- Taylor, J.; Vinatea, L.; Ozorio, R.; Schuweitzer, R.; Andreatta, E.R. Minimizing the effects of stress during eyestalk ablation of Litopenaeus vannamei females with topical anesthetic and a coagulating agent. Aquaculture 2004, 233, 173–179. [Google Scholar] [CrossRef]
- Diarte-Plata, G.; Sainz-Hernández, J.C.; Aguiñaga-Cruz, J.A.; Fierro-Coronado, J.A.; Polanco-Torres, A.; Puente-Palazuelos, C. Eyestalk ablation procedures to minimize pain in the freshwater prawn Macrobrachium americanum. Appl. Anim. Behav. Sci. 2012, 140, 172–178. [Google Scholar] [CrossRef]
- Weiss, N.; Zamponi, G.W. Opioid receptor regulation of neuronal voltage-gated calcium channels. Cel. Mol. Neurobiol. 2021, 41, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Frazier, D.T.; Narahashi, T. Tricaine (MS-222): Effects on ionic conductances of squid axon membranes. Eur. J. Pharmacol. 1975, 33, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Carterall, W.A. Molecular mechanisms of gating and drug block of sodium channels. In Sodium Channels and Neuronal Hyperexcitability: Novartis Foundation Symposium 241; John Wiley & Sons Ltd.: West Sussex, UK, 2002; pp. 206–225. [Google Scholar]
- Flecknell, P. Laboratory Animal Anaesthesia, 3rd ed.; Elsevier Science BV: Amsterdam, The Netherlandds, 2009; pp. 1–300. [Google Scholar]
- Lo Bianco, S. The methods employed at the Naples Zoological Station for the preservation of marine animals. Bull. United States Natl. Mus. 1899, 39, 1–42. [Google Scholar]
- Randolph, H. Chloretone (Acetonchloroform): An anaesthetic and macerating agent for lower animals. Zool. Anz. J. Comp. Zool. 1900, 23, 436–439. [Google Scholar]
- Krogh, A. Ethyl urethane as s narcotic for aquatic animals. Int. Rev. Gesamten Hydrobiol. Hydrogr. 1914, 7, 42–47. [Google Scholar] [CrossRef]
- Naumann, E. Ijber die Narkose von Mesoplankton fiir mikroskopische Zwecke. Z. Mikroskop. Mikroskop. Tech. 1924, 41, 343–349. [Google Scholar]
- Ravera. Emploi de la Paraldéhyde acétique pour la narcos de petits organismes d’eau douce. SIL Proc. 1950, 11, 315–316. [Google Scholar]
- Gatenby, J.B.; Beams, H.W. The Microtomist’s Vade-Mecum: A Handbook of the Methods of Microscopic Anatomy (Bolles Lee), 11th ed.; J. & A. ChurcillLTD.: London, UK, 1950. [Google Scholar]
- Pennak, R.W. Freshwater Invertebrates of the United States; The Ronald Press Company: New York, NY, USA, 1953. [Google Scholar]
- Mahoney, R. Laboratory techniques in zoology. In Laboratory Techniques in Zoology; London Butterworths: London, UK, 1966. [Google Scholar]
- Gliwicz, Z.M. The use of anaesthetizing substance in studies on the food habits of zooplankton communities. Ekol. Pol. Ser. A 1968, XVI, 279–295. [Google Scholar]
- Gannon, J.E.; Gannon, S.A. Observations on the narcotization of crustacean zooplankton. Crustaceana 1975, 28, 220–224. [Google Scholar] [CrossRef]
- Oswald, R. Immobilization of decapod crustacea for experimental procedures. J. Mar. Biol. Assoc. 1977, 57, 715–721. [Google Scholar] [CrossRef]
- McMahon, B.R.; Burggren, W.W. Respiration and Adaptation to the Terrestrial Habitat in the Land Hermit Crab Coenobita clypeatus. J. Exp. Biol. 1979, 79, 265–281. [Google Scholar] [CrossRef]
- Coyle, S.D.; Tidwell, J.H.; Yasharian, D.K.; Caporelli, A.; Skudlarek, N.A. The Effect of Biomass Density, Temperature, and Substrate on Transport Survival of Market-Size Freshwater Prawn, Macrobrachium rosenbergii. J. Appl. Aquac. 2005, 17, 61–71. [Google Scholar] [CrossRef]
- Jensen, M.A.; Fitzgibbon, Q.P.; Carter, C.G.; Adams, L.R. Recovery periods of cultured spiny lobster, Sagmariasus verreauxi juveniles: Effects of handling, force feeding, exercising to exhaustion and anaesthesia on oxygen consumption and ammonia-N excretion rates. Aquaculture 2013, 410–411, 114–121. [Google Scholar] [CrossRef]
- Hajek, G.J.; Choczewski, M.; Dziaman, R.; Kłyszejko, B. Evaluation of immobilizing methods for the Chinese mitten crab, Eriocheir sinensis (Milne-Edwards). Electr. J. Pol. Agric. Univ. 2009, 12, 18. [Google Scholar]
- Gardner, C. Options for humanely immobilizing and killing crabs. J. Shellfish Res. 1997, 16, 219–224. [Google Scholar]
- Pantin, C.F.A. Notes on Microscopical Technique for Zoologists; University Press: Cambridge, UK, 1948. [Google Scholar]
- McKenzie, J.D.; Calow, P.; Clyde, J.; Miles, A.; Dickinson, R.; Lieb, W.R.; Franks, N.P. Effects of temperature on the anaesthetic potency of halothane, enflurane and ethanol in Daphnia magna (Cladocera: Crustacea). Comp. Biochem. Physiol. Part C Comp. Pharmacol. 1992, 101, 15–19. [Google Scholar] [CrossRef]
- Bownik, A.; Ślaska, B.; Szabelak, A. Protective effects of compatible solute ectoine against ethanol-induced toxic alterations in Daphnia magna. J. Comp. Physiol. B 2018, 188, 779–791. [Google Scholar] [CrossRef]
- Darbyshire, A.K.; Oliver, K.H.; Dupont, W.D.; Plummer, W.D.; Jones, C.P.; Boyd, K.L. Anesthesia and Euthanasia of Brine Shrimp (Artemia franciscana). J. Am. Assoc. Lab. Anim. Sci. 2019, 58, 58–64. [Google Scholar] [CrossRef]
- Onabamiro, S. A technique for studying infection of Dracunculus in Cyclops. Nature 1950, 165, 31. [Google Scholar] [CrossRef]
- Venarsky, M.P.; Wilhelm, F.M. Use of clove oil to anaesthetize freshwater amphipods. Hydrobiologia 2006, 568, 425–432. [Google Scholar] [CrossRef]
- Parodi, T.V.; Cunha, M.A.; Heldwein, C.G.; de Souza, D.M.; Martins, Á.C.; Garcia, L.d.O.; Junior, W.W.; Monserrat, J.M.; Schmidt, D.; Caron, B.O.; et al. The anesthetic efficacy of eugenol and the essential oils of Lippia alba and Aloysia triphylla in post-larvae and sub-adults of Litopenaeus vannamei (Crustacea, Penaeidae). Comp. Biochem. Physiol. C 2012, 155, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Becker, A.J.; Ramos, P.B.; Monserrat, J.M.; Wasielesky, W., Jr.; Baldisserotto, B. Behavioural and biochemical responses in adult Pacific white shrimp, Litopenaeus vannamei, exposed to the essential oil of Cymbopogon citratus. Aquac. Res. 2021, 52, 6205–6217. [Google Scholar] [CrossRef]
- Vartak, V.; Singh, R.K. Anesthetic effects of clove oil during handling and transportation of the freshwater prawn, Macrobrachium rosenbergii (de man). Isr. J. Aquac. Bamidgeh 2006, 58, 46–54. [Google Scholar] [CrossRef]
- Aréchiga-Palomera, M.A.; Zaragoza, O.B.D.R.; Galván, S.; Vega-Villasante, F. Evaluation of natural extracts with anesthetic properties in juveniles Macrobrachium tenellum. Pan-Am. J. Aquat. Sci. 2016, 11, 251–257. [Google Scholar]
- Swierzbinski, M.E.; Lazarchik, A.R.; Herberholz, J. Prior social experience affects the behavioral and neural responses to acute alcohol in juvenile crayfish. J. Exp. Biol. 2017, 220, 1516–1523. [Google Scholar] [CrossRef]
- Cowing, D.; Powell, A.; Johnson, M. Evaluation of different concentration doses of eugenol on the behaviour of Nephrops norvegicus. Aquaculture 2015, 442, 78–85. [Google Scholar] [CrossRef]
- Morgan, J.; Cargill, C.; Groot, E. The efficacy of clove oil as an anesthetic for decapod crustaceans. Bull. Aquac. Assoc. Can. 2001, 101, 27–31. [Google Scholar]
- Robinson, A.B.; Manly, K.F.; Anthony, M.P.; Catchpool, J.F.; Pauling, L. Anesthesia of Artemia larvae: Method for quantitative study. Science 1965, 149, 1255–1258. [Google Scholar] [CrossRef]
- McRae, T.; Horsley, K.; McKenzie, B. Evaluation of anaesthetic agents for crayfish. Freshw. Crayfish 1999, 12, 221–232. [Google Scholar]
- Foley, D.M.; Stewart, J.E.; Holley, R. Isobutyl alcohol and methyl pentynol as general anesthetics for the lobster, Homarus americanus Milne-Edwards. Can. J. Zool. 1966, 44, 141–143. [Google Scholar] [CrossRef]
- Gilgan, M.; Burns, B. The anesthesia of the lobster (Homarus americanus) by isobutanol injection. Can. J. Zool. 1976, 54, 1231–1234. [Google Scholar] [CrossRef]
- Pozhoth, J.; Jeffs, A. Effectiveness of the Food-Safe Anaesthetic Isobutanol in the Live Transport of Tropical Spiny Lobster Species. Fishes 2022, 7, 40. [Google Scholar] [CrossRef]
- Ferrero, E.A.; Pressacco, L. Anesthetic procedures for Crustacea. An assessment of isobutanol and xylazine as general anesthetics for Squilla mantis (Crustacea, Stomatopoda). Mem. BioI. Mar. Ocean. 1982, 12, 47–79. [Google Scholar]
- Knudsen, J.W. The Crustaceans. In Biological Techniques: Collecting, Preserving and Illustrating Plants and Animals; Harper International Edition: New York, NY, USA, 1966; pp. 226–285. [Google Scholar]
- Saydmohammed, M.; Pal, A.K. Anesthetic effect of eugenol and menthol on handling stress in Macrobrachium rosenbergii. Aquaculture 2009, 298, 162–167. [Google Scholar] [CrossRef]
- Li, Y.; She, Q.; Han, Z.; Sun, N.; Liu, X.; Li, X. Anaesthetic Effects of Eugenol on Grass Shrimp (Palaemonetes sinensis) of Different Sizes at Different Concentrations and Temperatures. Sci. Rep. 2018, 8, 11007. [Google Scholar] [CrossRef]
- Souza, C.F.; Lima, T.; Baldissera, M.D.; Geihs, M.A.; Maciel, F.E.; Nery, L.E.; Santos, R.C.; Raffin, R.P.; Heinzmann, B.M.; Caron, B.O. Nanoencapsulated Melaleuca alternifolia essential oil exerts anesthetic effects in the brachyuran crab using Neohelice granulate. An. Acad. Bras. Ciências 2018, 90, 2855–2864. [Google Scholar] [CrossRef]
- Barr, S.; Laming, P.R.; Dick, J.T.A.; Elwood, R.W. Nociception or pain in a decapod crustacean? Anim. Behav. 2008, 75, 745–751. [Google Scholar] [CrossRef]
- Robledo-Sánchez, K.C.M.; Guevara-Pantoja, F.J.; Ruiz-Suárez, J.C. Video-tracking and high-speed bright field microscopy allow the determination of swimming and cardiac effects of D. magna exposed to local anaesthetics. Sci. Total Environ. 2019, 691, 278–283. [Google Scholar] [CrossRef]
- Schmit, O.; Mezquita, F. Experimental test on the use of MS-222 for ostracod anaesthesia: Concentration, immersion period and recovery time. J. Limnol. 2010, 69, 350. [Google Scholar] [CrossRef]
- Gamble, J. An anaesthetic for Corophium volutator (pallas) and Marinogammarus obtusatus (dahl), crustacea, amphipoda. Experientia 1969, 25, 539–540. [Google Scholar] [CrossRef] [PubMed]
- Coyle, S.D.; Dasgupta, S.; Tidwell, J.H.; Beavers, T.; Bright, L.A.; Yasharian, D.K. Comparative efficacy of anesthetics for the freshwater prawn Macrobrachiurn rosenbergii. J. World Aquac. Soc. 2005, 36, 282–290. [Google Scholar] [CrossRef]
- Obradović, J. Effects of anaesthetics (halothane and MS-222) on crayfish, Astacus astacus. Aquaculture 1986, 52, 213–217. [Google Scholar] [CrossRef]
- Brown, P.; White, M.; Chaille, J.; Russell, M.; Oseto, C. Evaluation of three anesthetic agents for crayfish (Orconectes virilis). J. Shellfish Res. 1996, 15, 433–436. [Google Scholar]
- Schwartz, F.J. Use of MS 222 in anesthetizing and transporting the sand shrimp. Progress. Fish-Cult. 1966, 28, 232–234. [Google Scholar] [CrossRef]
- Kurup, N. Notes on anaesthetizing crabs. Hydrobiologia 1971, 38, 335–337. [Google Scholar] [CrossRef]
- Minter, L.J.; Harms, C.A.; Archibald, K.E.; Broadhurst, H.; Bailey, K.M.; Christiansen, E.F.; Lewbart, G.A.; Posner, L.P. Efficacy of alfaxalone for intravascular anesthesia and euthanasia in blue crabs (Callinectes sapidus). J. Zoo Wildl. Med. 2013, 44, 694–699. [Google Scholar] [CrossRef]
- Smaldon, G. In praise of soda-water. Biol. Curators Group Newsl. 1978, 2, 18–19. [Google Scholar]
- Fregin, T.; Bickmeyer, U. Electrophysiological Investigation of Different Methods of Anesthesia in Lobster and Crayfish. PLoS ONE 2016, 11, e0162894. [Google Scholar] [CrossRef]
- Roth, B.; Øines, S. Stunning and killing of edible crabs (Cancer pagurus). Anim. Welf. 2010, 19, 287–294. [Google Scholar] [CrossRef]
- Premarathna, A.D.; Pathirana, I.; Rajapakse, R.J.; Pathirana, E. Evaluation of efficacy of selected anesthetic agents on blood-spotted crab (Portunus sanguinolentus). J. Shellfish Res. 2016, 35, 237–240. [Google Scholar] [CrossRef]
- Kubaryk, J.; Harper, C. Optimizing waterless shipping conditions for Macrobrachium rosenbergii. Marketing and Shipping Live Aquatic Products. In Proceedings of the Second International Conference and Exhibition, Seattle, WA, USA, 14–17 November 1999; pp. 131–139. [Google Scholar]
- Baker, J.R. Experiments on the humane killing of crabs. J. Mar. Biol. Assoc. UK 1955, 34, 15–24. [Google Scholar] [CrossRef]
- Mckenzie, J.D.; Calow, P.; Nimmo, W.S. A model to test the potency of inhalation anaesthetics. Br. J. Anaesth. 1989, 63, 489–491. [Google Scholar] [CrossRef]
- Guzmán-Sáenz, F.M.; González-Alanís, P.; Martínez, J.G.S.; Salazar, G.G.; Guzmán, G.A.; Perez-Castañeda, R. Uso de diferentes fármacos para anestesiar camarones Litopenaeus vannamei Boone en prácticas de acuacultura. Rev. Electron. Vet. 2010, 11, 1–9. [Google Scholar]
- Quesada, R.J.; Smith, C.D.; Heard, D.J. Evaluation of parenteral drugs for anesthesia in the blue crab (Callinectes sapidus). J. Zoo Wildl. Med. 2011, 42, 295–299. [Google Scholar] [CrossRef]
- Barrento, S.; Marques, A.; Vaz-Pires, P.; Leonor Nunes, M. Cancer pagurus (Linnaeus, 1758) physiological responses to simulated live transport: Influence of temperature, air exposure and AQUI-S®. J. Therm. Biol. 2011, 36, 128–137. [Google Scholar] [CrossRef]
- Robertson, J.D.; Delorme, N.J.; Hickey, A.; Jeffs, A.G. Assessment of the potential of the anesthetic AQUI-S for live transportation of the southern rock lobster, Jasus edwardsii. Bull. Mar. Sci. 2018, 94, 1137–1151. [Google Scholar] [CrossRef]
- Bownik, A. Protective effects of ectoine on physiological parameters of Daphnia magna subjected to clove oil-induced anaesthesia. Turk. J. Fish. Quat. Sci. 2016, 16, 691–701. [Google Scholar] [CrossRef]
- Bownik, A. Clove essential oil from Eugenia caryophyllus induces anesthesia, alters swimming performance, heart functioning and decreases survival rate during recovery of Daphnia magna. Turk. J. Fish. Quat. Sci. 2015, 15, 157–166. [Google Scholar] [CrossRef]
- Ghanawi, J.; Saoud, G.; Zakher, C.; Monzer, S.; Saoud, I.P. Clove oil as an anaesthetic for Australian redclaw crayfish Cherax quadricarinatus. Aquac. Res. 2019, 50, 3628–3632. [Google Scholar] [CrossRef]
- Sanvicente-Anorve, L.; Hermoso-Salazar, M. Relative growth of the land hermit crab, Coenobita clypeatus (Anomura, Coenobitidae) from a coral reef island, southern Gulf of Mexico. Crustaceana 2011, 689–699. [Google Scholar] [CrossRef]
- Matulovic, F.M.; Oshiro, L.M.Y. Uso de óleos essenciais como anestésico para manejo de camarões marinhos Litopenaeus schmitti e Farfantepenaeus brasiliensis. Rev. Acad. Ciênc. Anim. 2016, 14, 57–68. [Google Scholar] [CrossRef]
- Soltani, M.; Marmari, G.; Mehrabi, M. Acute toxicity and anesthetic effects of clove oil in Penaeus semisulcatus under various water quality conditions. Aquacult. Int. 2004, 12, 457–466. [Google Scholar] [CrossRef]
- Becker, A.J.; Vaz, L.J.; Garcia, L.d.O.; Wasielesky, W., Jr.; Heinzmann, B.M.; Baldisserotto, B. Anesthetic potential of different essential oils for two shrimp species, Farfantepenaeus paulensis and Litopenaeus vannamei (Decapoda, Crustacea). Cienc. Rural 2021, 51. [Google Scholar] [CrossRef]
- Huang, X.; Kong, J.; Zhang, T.; Luo, K.; Lai, G. Studies on anesthetic effect of eugenol on juvenile Fenneropenaeus chinensis. Agric. Sci. Technol. 2008, 36, 9572–9574. [Google Scholar] [CrossRef]
- Akbari, S.; Khoshnod, M.J.; Rajaian, H.; Afsharnasa, M. The Use of Eugenol as an Anesthetic in Transportation of With Indian Shrimp (Fenneropenaeus indicus) Post Larvae. Turk. J. Fish. Quat. Sci. 2010, 10, 423–429. [Google Scholar] [CrossRef]
- Cai, Z.; Dong, H.; Wang, J.; Su, Y. Anesthetic effect of eugenol at different concentrations and temperatures on Marsupenaeus japonicus. Mar. Sci. 2012, 36, 29–36. [Google Scholar]
- You, X.; Zeng, F.; Wang, J.; Su, Y. Study on the Anesthetic Effect of Eugenol for Marsupenaeus japonicus. J. Xiamen Univ. 2010, 49, 893–896. [Google Scholar]
- Jiang, S.; Zhou, F.; Yang, W.; Wu, Z.; Le, Y.; Yang, Q.; Yu, Y.; Jiang, S. Anaesthetic effect of eugenol at different concentrations and temperatures on black tiger shrimp (Penaeus monodon). Aquac. Res. 2020, 51, 3268–3273. [Google Scholar] [CrossRef]
- Wycoff, S.; Weineck, K.; Conlin, S.; Suryadevara, C.; Grau, E.; Bradley, A.; Cantrell, D.; Eversole, S.; Grachen, C.; Hall, K.; et al. Effects of Clove Oil (Eugenol) on Proprioceptive Neurons, Heart Rate, and Behavior in Model Crustaceans. Impulse 2018, 145, 21. [Google Scholar]
- Li, Y.; Liang, S.; She, Q.; Han, Z.; Li, Y.; Li, X. Influence of temperature and size on menthol anaesthesia in Chinese grass shrimp Palaemonetes sinensis (Sollaud, 1911). Aquac. Res. 2018, 49, 2091–2098. [Google Scholar] [CrossRef]
- Ozeki, M. The effects of eugenol on the nerve and muscle in crayfish. Comp. Biochem. Physiol. 1975, 50, 183–191. [Google Scholar]
- Huntsberger, C. Use of Injectable Eugenol for Euthanasia and Anesthesia of American Lobsters (Homarus americanus) and Similar Species; Roger Williams University: Bristol, UK, 2012. [Google Scholar]
- Waterstrat, P.R.; Pinkham, L. Evaluation of Eugenol as an Anesthetic for the American Lobster Homerus americanus. J. World Aquac. Soc. 2005, 36, 420–424. [Google Scholar] [CrossRef]
- Ehrhardt, J.; Wissocq, J.; Niaussat, P. Le clométhiazole, un nouvel anesthésique pour les animaux marins. Comptes Rendus Séanc. Soc. Biol. 1970, 164, 1984–1988. [Google Scholar]
- Harzsch, S.; Sandeman, D.; Chaigneau, J. Morphology and Development of the Central Nervous System; Forest, J., von Vaupel, J.C., Eds.; KleinBrill: Leiden, The Netherlands, 2012; pp. 9–221. [Google Scholar]
- Dunton, A.D.; Göpel, T.; Ho, D.H.; Burggren, W. Form and function of the vertebrate and invertebrate blood-brain barriers. Int. J. Mol. Sci. 2021, 22, 12111. [Google Scholar] [CrossRef]
- Dundee, J.W. A review of chlorpromazine hydrochloride. Br. J. Anaesth. 1954, 26, 357–379. [Google Scholar] [CrossRef]
- Tsantilas, H.; Galatos, A.; Athanassopoulou, F.; Prassinos, N.; Kousoulaki, K. Efficacy of 2-phenoxyethanol as an anaesthetic for two size classes of white sea bream, Diplodus sargus L., and sharp snout sea bream, Diplodus puntazzo C. Aquaculture 2006, 253, 64–70. [Google Scholar] [CrossRef]
- Wong, S.M.E.; Fong, E.; Tauck, D.L.; Kendig, J.J. Ethanol as a general anesthetic: Actions in spinal cord. Eur. J. Pharmacol. 1997, 329, 121–127. [Google Scholar] [CrossRef]
- Monticelli, F. Diethyl Ether. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 138–139. [Google Scholar] [CrossRef]
- Levin, L.A.; Edesa, S. The ecology of cirratulid mudballs on the Oman margin, northwest Arabian Sea. Mar. Biol. 1997, 128, 671–678. [Google Scholar] [CrossRef]
- Pergolizzi, J.V., Jr.; Taylor, R., Jr.; LeQuang, J.-A.; Raffa, R.B.; Group, T.N.R. The role and mechanism of action of menthol in topical analgesic products. J. Clin. Pharm. Ther. 2018, 43, 313–319. [Google Scholar] [CrossRef]
- Agardy, T.; Bridgewater, P.; Crosby, M.P.; Day, J.; Dayton, P.K.; Kenchington, R.; Laffoley, D.; McConney, P.; Murray, P.A.; Parks, J.E.; et al. Dangerous targets? Unresolved issues and ideological clashes around marine protected areas. Aquat. Conserv. Mar. Freshw. Ecosyst. 2003, 13, 353–367. [Google Scholar] [CrossRef]
- Martin, J.V.; Iyer, S.V.; McIlroy, P.J.; Michael Iba, M. Influence of oxygenated fuel additives and their metabolites on γ-aminobutyric acidA (GABAA) receptor function in rat brain synaptoneurosomes. Toxicol. Lett. 2004, 147, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Zahl, I.H.; Samuelsen, O.; Kiessling, A. Anaesthesia of farmed fish: Implications for welfare. Fish Physiol. Biochem. 2012, 38, 201–218. [Google Scholar] [CrossRef] [PubMed]
- Brown, L. Anesthesia and restraint. In Fish Medicine; Stoskopf, M., Ed.; WB Saunders: Philadelphia, PA, USA, 1993; pp. 79–90. [Google Scholar]
- Györke, S.; Lukyanenko, V.; Györke, I. Dual effects of tetracaine on spontaneous calcium release in rat ventricular myocytes. J. Physiol. 1997, 500, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Rider, T.H. Piperidinopropanediol di-phenylurethane hydrochloride, a new local anesthetic. J. Pharmacol. Exp. Ther. 1933, 47, 255. [Google Scholar]
- Devaud, J.M.; Blunk, A.; Podufall, J.; Giurfa, M.; Grünewald, B. Using local anaesthetics to block neuronal activity and map specific learning tasks to the mushroom bodies of an insect brain. Eur. J. Neurosci. 2007, 26, 3193–3206. [Google Scholar] [CrossRef]
- Fraser, A.J.; Gamble, J.C.; Sargent, J.R. Changes in lipid content, lipid class composition and fatty acid composition of developing eggs and unfed larvae of cod (Gadus morhua). Mar. Biol. 1988, 99, 307–313. [Google Scholar] [CrossRef]
- Hara, K.; Harris, R.A. The anesthetic mechanism of urethane: The effects on neurotransmitter-gated ion channels. Anesth. Analg. 2002, 94, 313–318, table of contents. [Google Scholar] [CrossRef]
- Ditzel, N.; Andersen, S.O.; Hojrup, P. Cuticular proteins from the horseshoe crab, Limulus polyphemus. Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 2003, 134, 489–497. [Google Scholar] [CrossRef]
- Sear, J.W. Steroid anesthetics: Old compounds, new drugs. J. Clin. Anesth. 1996, 8, S91–S98. [Google Scholar] [CrossRef]
- Mettam, J.J.; McCrohan, C.R.; Sneddon, L.U. Characterisation of chemosensory trigeminal receptors in the rainbow trout, Oncorhynchus mykiss: Responses to chemical irritants and carbon dioxide. J. Exp. Biol. 2012, 215, 685–693. [Google Scholar] [CrossRef]
- Wills, C.C.; Zampacavallo, G.; Poli, B.M.; Proctor, M.R.; Henehan, G.T. Nitrogen stunning of rainbow trout. Int. J. Food Sci. Technol. 2006, 41, 395–398. [Google Scholar] [CrossRef]
- Griffith, H.R. Cyclopropane Anesthesia. Anesth. Analg. 1935, 14, 253–256. [Google Scholar] [CrossRef]
- Wawersik, J. History of chloroform anesthesia. Anaesthesiol. Reanim. 1997, 22, 144–152. [Google Scholar]
- Kleinholz, L. A method for removal of the sinus gland from the eyestalks of crustaceans. Biol. Bull. 1947, 93, 52–55. [Google Scholar] [CrossRef]
- Axelsson, K.; Widman, G.B. A Comparison of Bupivacaine and Tetracaine in Spinal Anaesthesia with Special Reference to Motor Block. Acta Anaesthesiol. Scand. 1985, 29, 79–86. [Google Scholar] [CrossRef]
- Field, K.J.; White, W.J.; Lang, C.M. Anaesthetic effects of chloral hydrate, pentobarbitone and urethane in adult male rats. Lab. Anim. 1993, 27, 258–269. [Google Scholar] [CrossRef]
- Vinson, D.R.; Bradbury, D.R. Etomidate for procedural sedation in emergency medicine. Ann. Emerg. Med. 2002, 39, 592–598. [Google Scholar] [CrossRef]
- Erdös, G.; Basciani, R.M.; Eberle, B. Etomidate–a review of robust evidence for its use in various clinical scenarios. Acta Anaesthesiol. Scand. 2014, 58, 380–389. [Google Scholar] [CrossRef]
- Sneddon, L.U. Clinical anesthesia and analgesia in fish. J. Exot. Pet Med. 2012, 21, 32–43. [Google Scholar] [CrossRef]
- Baser, K.H.C.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Johnson, J.D.; Ryan, M.J.; Toft, J.D.; Graves, S.W.; Hejtmancik, M.R.; Cunningham, M.L.; Herbert, R.; Abdo, K.M. Two-year toxicity and carcinogenicity study of methyleugenol in F344/N rats and B6C3F1 mice. J. Agric. Food Chem. 2000, 48, 3620–3632. [Google Scholar] [CrossRef] [PubMed]
- Andriantahina, F.; Liu, X.; Huang, H. Genetic map construction and quantitative trait locus (QTL) detection of growth-related traits in Litopenaeus vannamei for selective breeding applications. PLoS ONE 2013, 8, e75206. [Google Scholar] [CrossRef]
- Wixson, S.K. CHAPTER 6-Anesthesia and Analgesia**The contributions of Theresa Vrona, Kathleen Knarr, Linda Karchner, and Charlotte Gonzales in the preparation of this chapter are sincerely appreciated. In The Biology of the Laboratory Rabbit, 2nd ed.; Manning, P.J., Ringler, D.H., Newcomer, C.E., Eds.; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Houghton, E.M.; Aldrich, T.B. Chloretone; a new hypnotic and anesthetic. J. Am. Med. Assoc. 1899, XXXIII, 777–778. [Google Scholar] [CrossRef]
- Rätz, A.E.; Schlienger, R.G.; Linder, L.; Langewitz, W.; Haefeli, W.E. Pharmacokinetics and pharmacodynamics of clomethiazole after oral and rectal administration in healthy subjects. Clin. Ther. 1999, 21, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, G. Use of guaiacol glycerine ether in clinical anaesthesia in the horse. Equine Vet. J. 1985, 17, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Gardner, C. Effect of size on reproductive output of giant crabs Pseudocarcinus gigas (Lamarck): Oziidae. Mar. Freshw. Res. 1997, 48, 581–587. [Google Scholar] [CrossRef]
- Kuo, C.H.; Tan, P.H.; Chen, J.J.; Peng, C.H.; Lee, C.C.; Chung, H.C.; Tseng, C.K. Prolonged paralysis associated with succinylcholine--a case report. Acta Anaesthesiol. Sin. 2000, 38, 229–232. [Google Scholar]
- Popovic, M.B.; Lamkin-Kennard, K.A.; Beckerle, P.; Bowers, M.P.C. 3-Actuators. In Biomechatronics; Popovic, M.B., Ed.; Elsevier: Salt Lake City, UT, USA, 2019; pp. 45–79. [Google Scholar] [CrossRef]
- Weineck, K.; Ray, A.J.; Fleckenstein, L.J.; Medley, M.; Dzubuk, N.; Piana, E.; Cooper, R.L. Physiological Changes as a Measure of Crustacean Welfare under Different Standardized Stunning Techniques: Cooling and Electroshock. Animals 2018, 8, 158. [Google Scholar] [CrossRef]
- Neil, D. The Effect of the Crustastun™ on Nerve Activity in Two Commercially Important Decapod Crustaceans: The Edible Brown Cancer Pagurus and the European Lobster Homarus Gammarus; Scientific Report; University of Glasgow: Glasgow, UK, 2012; p. 20. [Google Scholar]
- Neil, D.; Thompson, J. The Stress Induced by the Crustastun™ Process in Two Commercially Important Decapod Crustaceans: The Edible Brown Cancer Pagurus and the European Lobster Homarus gammarus; Projecte report; University of Gasglow: Glasgow, UK, 2012; p. 11. [Google Scholar]
- Roth, B.; Grimsbo, E. Electrical stunning of edible crabs (Cancer pagurus): From single experiments to commercial practice. Anim. Welf. 2016, 25, 489–497. [Google Scholar] [CrossRef]
- Roth, B.; Grimsbø, E. Electrical Stunning of Edible Crabs; NOFIMA: Tromso, Norway, 2013; pp. 1–8. [Google Scholar]
- Neil, D. The Effect of the Crustastun on Nerve Activity in Crabs and Lobsters; University of Glasgow: Glasgow, UK, 2010; p. 20. [Google Scholar]
- Albalat, A.; Gornik, S.; Theethakaew, C.; Neil, D. Evaluation of the Quality of Langoustines after Being Killed by the Crustastun; Project report; Univeristy of Glasgow: Glasgow, UK, 2008; pp. 1–23. [Google Scholar]
- Fossat, P.; Bacqué-Cazenave, J.; De Deurwaerdère, P.; Cattaert, D.; Delbecque, J.-P. Serotonin, but not dopamine, controls stress response and anxiety-like behavior in crayfish, Procambarus clarkii. J. Exp. Biol. 2015, 218, 2746–2752. [Google Scholar] [CrossRef]
- RSPCA-Australia. Humane Killing and Processing of Crustaceans for Human Consumption. Available online: https://kb.rspca.org.au/wp-content/uploads/2019/01/Humane-killing-of-crustaceans-for-human-consumption-%E2%80%93-RSPCA-Information-Paper-May-2018.pdf (accessed on 2 February 2023).
- Barrento, S.; Marques, A.; Vaz-Pires, P.; Nunes, M.L. Live shipment of immersed crabs Cancer pagurus from England to Portugal and recovery in stocking tanks: Stress parameter characterization. ICES J. Mar. Sci. 2010, 67, 435–443. [Google Scholar] [CrossRef]
- Rotllant, G.; Roque, A.; Solé, M.; Gisbert, E. Assessment of the effects of confinement in the spider crab Maja brachydactyla Blass, 1922 broodstock. Aquac. Res. 2013, 44, 412–426. [Google Scholar] [CrossRef]
- Giulianini, P.G.; Smullen, R.P.; Bentley, M.G.; Ferrero, E.A. Cytological and immunocytochemical study of the sinus gland in the Norway lobster Nephrops norvegicus (L.). Invertebr. Reprod. Dev. 1998, 33, 57–68. [Google Scholar] [CrossRef]
- Datta, U.; Van Staaden, M.; Huber, R. Crayfish self-administer amphetamine in a spatially contingent task. Front. Physiol. 2018, 9, 433. [Google Scholar] [CrossRef]
- Bellchambers, L.M.; Smith, K.D.; Evans, S.N. Effect of Exposure to Ice Slurries on Nonovigerous and Ovigerous Blue Swimmer Crabs, Portunus pelagicus. J. Crustacean Biol. 2005, 25, 274–278. [Google Scholar] [CrossRef]
- Puri, S.; Faulkes, Z. Do decapod crustaceans have nociceptors for extreme pH? PLoS ONE 2010, 5, e10244. [Google Scholar] [CrossRef]
- Puri, S.; Faulkes, Z. Can crayfish take the heat? Procambarus clarkii show nociceptive behaviour to high temperature stimuli, but not low temperature or chemical stimuli. Biol. Open 2015, 4, 441–448. [Google Scholar] [CrossRef]
- Salin, K. Live transportation of Macrobrachium rosenbergii (De Man) in chilled sawdust. Aquac. Res. 2005, 36, 300–310. [Google Scholar] [CrossRef]
- Aram Terchunian, A.; Kunz, N.; O’Dierno, L. Air Shipment of Live and Fresh Fish & Seafood Guidelines. In A Manual on Preparing, Packing and Packaging Live and Fresh Fish & Seafood Air Shipments along with Customs and Inspection Guidelines for Six APEC Member Economies, 1st ed.; The APEC Secretariat: Singapore, 1999. [Google Scholar]
- Gil Rho, Y. Present status of fleshy prawn (Penaeus chinensis) seed in Korea. In Proceedings of the Culture of Cold-Tolerant Shrimp: Proceedings of an Asian-US Workshop on Shrimp Culture, Honolulu, HI, USA, 2–4 October 1989; pp. 29–35. [Google Scholar]
- Goodrick, B.; Paterson, B.; Grauf, S. Alive and kipping? Storage and transport of live prawns. Aust. Fish. 1995, 54, 18–21. [Google Scholar]
- Shigueno, K. Problems in Prawn Culture; Aquaculture Series 19; Balkema Press: Rotterdam, The Netherlands, 1979; Volume 19, pp. 1–103. [Google Scholar]
- Shigueno, K. Shrimp culture industry in Japan. In Marine Shrimp Culture: Principles and Practices; Fast, A.W., Lester, J., Eds.; The Elsevier: Amsterdam, The Netherlands, 1992; Volume 30, pp. 641–652. [Google Scholar]
- Gil Rho, Y. Present status of kuruma prawn (Penaeus japonicus) seed in Korea. In Proceedings of the Culture of Cold-Tolerant Shrimp: Proceedings of an Asian-US Workshop on Shrimp Culture, Honolulu, HI, USA, 2–4 October 1989; pp. 36–41. [Google Scholar]
- Goodrick, G.; Paterson, B.; Grauf, S. Air transport of live kuruma prawns (Penaeus japonicus): Temperature control improves survival. Food Aust. Off. J. CAFTA AIFST 1993, 45, 400–403. [Google Scholar]
- Huq, K.; Mollah, M.; Islam, M.A.; Hossain, M. Survival of simulated hibernated penaeid shrimps inside insulated boxes without supplementary water and oxygen. Indian J. Fish. 1994, 41, 33–36. [Google Scholar]
- Liao, I.C.; Chien, Y. Culture of cold-tolerant shrimp. Evaluation and Comparison of Culture Practices for Peneeus japonicus, P. penicillatus and P. chiniensis in Taiwan. In Proceedings of the Asian-US Workshop on Shrimp Culture, Honolulu, HI, USA, 2–4 October 1989; pp. 49–63. [Google Scholar]
- Salin, K.; Jayasree-Vadhyar, K. Effect of different chilling rates for cold anaesthetization of Penaeus monodon (Fabricius) on the survival, duration and sensory quality under live storage in chilled sawdust. Aquac. Res. 2001, 32, 145–155. [Google Scholar] [CrossRef]
- Browdy, C.; Jiang, C. Live Shipment of the Marine Shrimp, Penaeus vannamei, without Water; World Aquaculture Society: Baton Rouge, LA, USA, 1995; pp. 94–100. [Google Scholar]
- Lorenzo, R.A.; Tomac, A.; Tapella, F.; Yeannes, M.I.; Romero, M.C. Biochemical and quality parameters of southern king crab meat after transport simulation and re-immersion. Food Control 2021, 119, 107480. [Google Scholar] [CrossRef]
- Sneddon, L.U. Comparative physiology of nociception and pain. Physiology 2018, 33, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.V.; Ryan, L.W.; Nocillado, J.; Le Groumellec, M.; Elizur, A.; Ventura, T. Transcriptomic changes across vitellogenesis in the black tiger prawn (Penaeus monodon), neuropeptides and G protein-coupled receptors repertoire curation. Gen. Comp. Endocrinol. 2020, 298, 113585. [Google Scholar] [CrossRef]
- Salin, K.; Vadhyar, K.J. Cold-anaesthetization and Live Transportation of Penaeid Shrimps. Fish. Technol. 2001, 38, 71–76. [Google Scholar]
- Kawai, N.; Kono, R.; Sugimoto, S. Avoidance learning in the crayfish (Procambarus clarkii) depends on the predatory imminence of the unconditioned stimulus: A behavior systems approach to learning in invertebrates. Behav. Brain Res. 2004, 150, 229–237. [Google Scholar] [CrossRef]
- Fossat, P.; Bacqué-Cazenave, J.; De Deurwaerdère, P.; Delbecque, J.-P.; Cattaert, D. Anxiety-like behavior in crayfish is controlled by serotonin. Science 2014, 344, 1293–1297. [Google Scholar] [CrossRef]
- Elwood, R.W.; Adams, L. Electric shock causes physiological stress responses in shore crabs, consistent with prediction of pain. Biol. Lett. 2015, 11. [Google Scholar] [CrossRef]
- Anonymous. Invertebrate animals other than insects. In Instructions for Collectors; British Museum (Natural History): London, UK, 1954; Volume 9A. [Google Scholar]
- Bacqué-Cazenave, J.; Cattaert, D.; Delbecque, J.-P.; Fossat, P. Social harassment induces anxiety-like behaviour in crayfish. Sci. Rep. 2017, 7, 39935. [Google Scholar] [CrossRef]
- Battison, A.; MacMillan, R.; MacKenzie, A.; Rose, P.; Cawthorn, R.; Horney, B. Use of injectable potassium chloride for euthanasia of American lobsters (Homarus americanus). Comp. Med. 2000, 50, 545–550. [Google Scholar]
- Paterson, B.D.; Exley, P.; Smith, R.A. Live Transport of Crustaceans in Air-Prolonging the Survival of Crabs; Fisheries Research and Development Corporation, and Queensland Department of Primary Industries (QDPI) Report Q094035; Fisheries Research and Development Corporation: Brisbane, Australia, 1994; p. 55. [Google Scholar]
- Aaser, C.S. Avliving av hummer. Nord. Vet. Med. 1949, 1, 221–226. [Google Scholar]
- McKay, C.R.; Hartzband, D.J. Propylene phenoxetol: Narcotic agent for unsorted benthic invertebrates. J. Am. Soc. Anesthesiol. 1970, 89, 53–54. [Google Scholar] [CrossRef]
- Sinel, J. The Killing of Crabs and Lobsters for Table. R. Soc. Prev. Cruel. Anim. 1914. [Google Scholar]
- Gunter, G. Painless killing of crabs and other large crustaceans. Science 1961, 133, 327. [Google Scholar] [CrossRef]
- Tainter, M.L.; Throndson, A.H. Suitability of Butyn for Injection Anesthesia in Oral Surgery. J. Am. Dent. Assoc. 1941, 28, 1979–1986. [Google Scholar] [CrossRef]
- Lee, C.; Jones, T. Molecular conformation–activity relationship of decamethonium congeners. Br. J. Anaesth. 2002, 88, 692–699. [Google Scholar] [CrossRef]
- Suzuki, N.; Takahata, M.; Shoji, T.; Suzuki, Y. Characterization of Electro-olfactogram Oscillations and Their Computational Reconstruction. Chem. Senses 2004, 29, 411–424. [Google Scholar] [CrossRef]
- Sofia, R.D.; Vassar, H.B. The effect of ergotamine and methysergide on serotonin metabolism in the rat brain. Arch. Int. Pharmacodyn. Ther. 1975, 216, 40–50. [Google Scholar]
- Larsen, M.T.; Kuhlmann, M.; Hvam, M.L.; Howard, K.A. Albumin-based drug delivery: Harnessing nature to cure disease. Mol. Cell. Ther. 2016, 4, 3. [Google Scholar] [CrossRef]
- Wise, R.A.; Robble, M.A. Dopamine and addiction. Annu. Rev. Psychol. 2020, 71, 79–106. [Google Scholar] [CrossRef] [PubMed]
- Wyeth, R.; Croll, R.; Willows, A.; Spencer, A. 1-Phenoxy-2-propanol is a useful anaesthetic for gastropods used in neurophysiology. J. Neurosci. Methods 2008, 176, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Waud, B. Decrease in Dose Requireement of d-Tubocurarine by Volatile Anesthetics. Trans. Am. Microsc. Soc. 1979, 51, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Sneddon, L.U. Pain in laboratory animals: A possible confounding factor? Altern. Lab. Anim. 2017, 45, 161–164. [Google Scholar] [CrossRef]
System | Subsystem | Class | Order | Species | References |
---|---|---|---|---|---|
Esters | Tricaine Methanesulphonate (MS 222) * | Malacostraca | Amphipoda | Gammarus pulex | [20] |
Opioids | Morphine | Malacostraca | Decapoda | Carcinus aestuarii | [21] |
Carcinus maenas | [22] | ||||
Chasmagnathus granulatus | [23,24,25] | ||||
Orconectes rusticus | [26,27] | ||||
Stomatopoda | Squilla mantis | [28] | |||
Other organics | Lidocaine * | Malacostraca | Decapoda | Macrobrachium americanum | [29,30] |
Litopennaeus vannamei |
System | Subsystem | Class | Order | Species | References |
---|---|---|---|---|---|
Drugs acting at adrenoreceptors | Chlorpromazine hydrochloride | Malacostraca | Decapoda | Cancer pagurus | [45] |
Carcinus maenas | [45] | ||||
Xylazine | Malacostraca | Decapoda | Coenobita clypeatus | [46] | |
Cancer pagurus | [45] | ||||
Carcinus maenas | [45] | ||||
Alcohols | 2-phenoxy ethanol | Malacostraca | Decapoda | Macrobrachiurn rosenbergii | [47] |
Sagmariasus verreauxi | [48] | ||||
Eriocheir sinensis | [49] | ||||
Pseudocarcinus gigas | [50] | ||||
Ethanol | Various species | [51] | |||
Branchiopoda freshwater species | Onychopoda | Branchiopoda freshwater species | [41] | ||
Branchiopoda | Anomopoda | Daphnia magna | [38,52,53] | ||
Anostraca | Artemia franciscana | [54] | |||
Onychopoda | Cladocera frehwater species | [41] | |||
Ostracoda | Ostracoda freshwater species | [41] | |||
Ostracoda species | [35] | ||||
Hexanauplia (Subclasse Copepoda) | Cyclopodia | Copepoda freshwater species | [41] | ||
Cyclops sp. | [55] | ||||
Thecostraca (Subclass Cirripedia) | Balanomorpha | Balanus spp. | [35] | ||
Scalpellomorpha | Conchoderma spp. | [35] | |||
Lepas spp. | [35] | ||||
Malacostraca | Cumacea | Cumacea species | [35] | ||
Isopoda | Isopoda freshwater species | [41] | |||
Isopoda species | [35] | ||||
Amphipoda | Amphipoda freshwater species | [41] | |||
Gammarus minus | [56] | ||||
Schizopoda | Schizopoda species | [35] | |||
Decapoda | Litopenaeus vanamei | [57] | |||
Litopenaeus vanamei | [58] | ||||
Macrobrachium rosenbergii | [59] | ||||
Macrobrachium tenellum | [60] | ||||
Crayfish species | [41] | ||||
Cherax destructor | [61] | ||||
Nephrops norvegicus | [62] | ||||
Cancer magister | [63] | ||||
Hemigrapsus oregonensis | [63] | ||||
Pugettia producta | [63] | ||||
Stomatopoda | Stomatopoda species | [35] | |||
Ether | Branchiopoda | Anomopoda | Daphnia magna | [38] | |
Anostraca | Artemia franciscana | [64] | |||
Malacostraca | Decapoda | Cherax destructor | [65] | ||
Homarus americanus | [66] | ||||
Eriocheir sinensis | [49] | ||||
Isobutanol | Malacostraca | Decapoda | Cherax destructor | [65] | |
Homarus americanus | [66,67] | ||||
Panulirus homarus | [68] | ||||
Panulirus ornatus | [68] | ||||
Panulirus polyphagus | [68] | ||||
Panulirus versicolor | [68] | ||||
Eriocheir sinensis | [49] | ||||
Stomatopoda | Squilla mantis | [69] | |||
Menthol | Various species | [51] | |||
Branchiopoda | Anomopoda | Daphnia pulex | [44] | ||
Hexanauplia (Subclasse Copepoda) | Calanoida | Diaptomus spp. | [44] | ||
Limnocalanus macrurus | [44] | ||||
Cyclopodia | Diacyclops bicuspidatus | [44] | |||
Thecostraca (Subclass Cirripedia) | Cirripedia species | [42,70] | |||
Malacostraca | Decapoda | Macrobrachium rosenbergii | [71] | ||
Macrobrachiurn tenellum | [60] | ||||
Palaemonetes sinensis | [72] | ||||
Cherax destructor | [65] | ||||
Neohelice granulata | [73] | ||||
Methyl alcohol | Branchiopoda | Anomopoda | Daphnia pulex | [44] | |
Hexanauplia (Subclasse Copepoda) | Calanoida | Diaptomus spp. | [44] | ||
Limnocalanus macrurus | [44] | ||||
Cyclopodia | Diacyclops bicuspidatus | [44] | |||
Methyl pentynol | Branchiopoda | Anomopoda | Daphnia pulex | [44] | |
Hexanauplia (Subclasse Copepoda) | Calanoida | Diaptomus spp. | [44] | ||
Limnocalanus macrurus | [44] | ||||
Cyclopodia | Diacyclops bicuspidatus | [44] | |||
Malacostraca | Decapoda | Homarus americanus | [66] | ||
Tert-amyl alcohol | Branchiopoda | Anomopoda | Daphnia pulex | [44] | |
Esters | Benzocaine | Malacostraca | Decapoda | Palaemon elegans | [74] |
Cherax destructor | [65] | ||||
Cancer pagurus | [45] | ||||
Carcinus maenas | [45] | ||||
Pseudocarcinus gigas | [50] | ||||
Pantocaine | Branchiopoda | Anomopoda | Eubosmina coregoni | [43] | |
Chydorus sphaericus | [43] | ||||
Daphnia cucullata | [43] | ||||
Ctenopoda | Diaphanosoma brachyurum | [43] | |||
Hexanauplia (Subclasse Copepoda) | Calanoida | Eudiaptomus graciloides | [43] | ||
Cyclopodia | Mesocyclops leuckarti | [43] | |||
Phenyluretane | Branchiopoda | Anomopoda | Daphnia magna | [38] | |
Procaine | Branchiopoda | Anomopoda | Daphnia magna | [38] | |
Malacostraca | Decapoda | Cancer pagurus | [45] | ||
Carcinus maenas | [45] | ||||
Tetracaine hydrochloride | Branchiopoda | Anomopoda | Daphnia magna | [75] | |
Tricaine Methane Sulfate (MS 222) | Branchiopoda | Anostraca | Artemia franciscana | [54] | |
Anomopoda | Daphnia pulex | [44] | |||
Hexanauplia (Subclasse Copepoda) | Calanoida | Diaptomus spp. | [44] | ||
Limnocalanus macrurus | [44] | ||||
Cyclopodia | Diacyclops bicuspidatus | [44] | |||
Ostracoda | Podocopida | Eucypris virens | [76] | ||
Malacostraca | Amphipoda | Corophium volutator | [77] | ||
Echinogammarus obtusatus | [77] | ||||
Gammarus pulex | [20] | ||||
Decapoda | Macrobrachium rosenbergii | [78] | |||
Astacus astacus | [79] | ||||
Orconectes virilis | [80] | ||||
Homarus americanus | [66] | ||||
Cancer magister | [63] | ||||
Cancer pagurus | [45] | ||||
Carcinus maenas | [45] | ||||
Crangon septemspinosa | [81] | ||||
Eriocheir sinensis | [49] | ||||
Hemigrapsus nudus | [82] | ||||
Hemigrapsus oregonensis | [63] | ||||
Petrolisthes cinctipes | [82] | ||||
Pseudocarcinus gigas | [50] | ||||
Pugettia producta | [63] | ||||
Urethane | Various species | [51] | |||
Branchiopoda | Anomopoda | Daphnia magna | [38] | ||
Daphnia pulex | [44] | ||||
Daphnia spp. | [37,40] | ||||
Hexanauplia (Subclasse Copepoda) | Calanoida | Diaptomus spp. | [44] | ||
Limnocalanus macrurus | [44] | ||||
Cyclopodia | Cyclops sp. | [37] | |||
Diacyclops bicuspidatus | [44] | ||||
Malacostraca | Isopoda | Asellus spp. | [37] | ||
Idotea spp. | [37] | ||||
Decapoda | Astacus fluviatilis | [37] | |||
Astacus sp. | [40] | ||||
Steroid | Alfaxalone | Malacostraca | Decapoda | Callinectes sapidus | [83] |
Cancer pagurus | [45] | ||||
Carcinus maenas | [45] | ||||
Inhalant (Gaseous) | Carbon Dioxide | Various species | [51] | ||
Branchiopoda | Anomopoda | Daphnia pulex | [44] | ||
Hexanauplia (Subclasse Copepoda) | Calanoida | Diaptomus spp. | [44] | ||
Limnocalanus macrurus | [44] | ||||
Cyclopodia | Diacyclops bicuspidatus | [44] | |||
Thecostraca (Subclass Cirripedia) | Balanomorpha | Balanus spp. | [84] | ||
Malacostraca | Decapoda | Palaemon longirostris | [84] | ||
Cangron cangron | [84] | ||||
Astacus astacus | [85] | ||||
Astacus leptodactylus | [85] | ||||
Cherax destructor | [65] | ||||
Homarus americanus | [85] | ||||
Homarus gammarus | [85] | ||||
Cancer pagurus | [86] | ||||
Portunus sanguinolentus | [87] | ||||
Pseudocarcinus gigas | [50] | ||||
Cycloprane | Branchiopoda | Anostraca | Artemia franciscana | [64] | |
Nitrogen | Malacostraca | Decapoda | Cancer pagurus | [86] | |
Macrobrachium rosenbergii | [88] | ||||
Inhalant (Volatile) | Chloroform | Branchiopoda | Anomopoda | Daphnia pulex | [44] |
Anostraca | Artemia franciscana | [64] | |||
Hexanauplia (Subclasse Copepoda) | Calanoida | Diaptomus spp./ Limnocalanus macrurus | [44] | ||
Cyclopodia | Diacyclops bicuspidatus | [44] | |||
Malacostraca | Decapoda | Astacus spp. | [42] | ||
Cancer pagurus | [89] | ||||
Carcinus spp. | [42] | ||||
Cherax destructor | [65] | ||||
Eriocheir sinensis | [49] | ||||
Homarus americanus | [66] | ||||
Homarus spp. | [42] | ||||
Pseudocarcinus gigas | [50] | ||||
Enflurane | Branchiopoda | Anomopoda | Daphnia magna | [52,90] | |
Halotane | Branchiopoda | Anomopoda | Daphnia magna | [52,90] | |
Anostraca | Artemia franciscana | [64] | |||
Malacostraca | Decapoda | Astacus astacus | [79] | ||
Cherax destructor | [65] | ||||
Litopenaeus vannamei | [91] | ||||
Isoflurane | Branchiopoda | Anomopoda | Daphnia magna | [90] | |
Malacostraca | Decapoda | Eriocheir sinensis | [49] | ||
Injectables | Bupivacaine hydrochloride monohydrate | Branchiopoda | Anomopoda | Daphnia magna | [75] |
Chloral hydrate | Varoius species | [51] | |||
Branchiopoda | Anomopoda | Eubosmina coregoni | [43] | ||
Chydorus sphaericus | [43] | ||||
Daphnia cucullata | [43] | ||||
Daphnia magna | [38] | ||||
Daphnia pulex | [44] | ||||
Moina macrocopa | [41] | ||||
Branchiopoda | Ctenopoda | Diaphanosoma brachyurum | [43] | ||
Sididae species | [41] | ||||
Hexanauplia (Subclasse Copepoda) | Calanoida | Diaptomus spp. | [44] | ||
Eudiaptomus graciloides | [43] | ||||
Limnocalanus macrurus | [44] | ||||
Cyclopodia | Diacyclops bicuspidatus | [44] | |||
Mesocyclops leuckarti | [43] | ||||
Etomidate | Malacostraca | Decapoda | Callinectes sapidus | [92] | |
Eriocheir sinensis | [49] | ||||
Ketamine | Malacostraca | Decapoda | Callinectes sapidus | [92] | |
Orconectes virilis | [80] | ||||
Pseudocarcinus gigas | [50] | ||||
Pentobarbital | Branchiopoda | Anomopoda | Daphnia pulex | [44] | |
Malacostraca | Decapoda | Callinectes sapidus | [92] | ||
Cancer pagurus | [45] | ||||
Carcinus maenas | [45] | ||||
Propanidid | Malacostraca | Decapoda | Cancer pagurus | [45] | |
Carcinus maenas | [45] | ||||
Propofol | Malacostraca | Decapoda | Callinectes sapidus | [92] | |
Quinaldine | Branchiopoda | Anomopoda | Daphnia pulex | [44] | |
Hexanauplia (Subclasse Copepoda) | Calanoida | Diaptomus spp. | [44] | ||
Limnocalanus macrurus | [44] | ||||
Cyclopodia | Diacyclops bicuspidatus | [44] | |||
Malacostraca | Decapoda | Homarus americanus | [66] | ||
Macrobrachium rosenbergii | [78] | ||||
Tiletamine–zolazepam | Malacostraca | Decapoda | Callinectes sapidus | [92] | |
Oils | Aqui-STM | Malacostraca | Decapoda | Cancer pagurus | [93] |
Jasus edwardsii | [94] | ||||
Macrobrachium rosenbergii | [78] | ||||
Pseudocarcinus gigas | [50] | ||||
Clove oil (CO) | Branchiopoda | Anomopoda | Daphnia magna | [95,96] | |
Malacostraca | Amphipoda | Gammarus acherondytes | [56] | ||
Gammarus minus | [56] | ||||
Decapoda | Cancer magister | [63] | |||
Cherax destructor | [65] | ||||
Cherax quadricarinatus | [97] | ||||
Coenobita clypeatus | [98] | ||||
Eriocheir sinensis | [49] | ||||
Hemigrapsus oregonensis | [63] | ||||
Macrobrachium rosenbergii | [78,59] | ||||
Macrobrachium tenellum | [60] | ||||
Penaeus brasiliensis | [99] | ||||
Penaeus schmitti | [99] | ||||
Penaeus semisulcatus | [100] | ||||
Portunus sanguinolentus | [87] | ||||
Pseudocarcinus gigas | [50] | ||||
Pugettia producta | [63] | ||||
Sagmariasus verreauxi | [48] | ||||
Essential oils of Lippia alba (EOLA) | Malacostraca | Decapoda | Penaeus paulensis | [58] | |
Litopenaeus vanamei | [57] | ||||
Neohelice granulata | [73] | ||||
Essential oils of Aloysia triphylla (EOAT) | Malacostraca | Decapoda | Litopenaeus vannamei | [57] | |
Neohelice granulata | [73] | ||||
Essential oils of Cymbopogon citratus (EOC) | Malacostraca | Decapoda | Litopenaeus vannamei | [101] | |
Essential oils of Ocimum gratissimum (EOOG) | Malacostraca | Decapoda | Penaeus paulensis | [58] | |
Essential oils of Origanum majorana (EOO) | Malacostraca | Decapoda | Litoenaeus vannamei | [58] | |
Essential oils of Lavandula officinalis (LAV) | Malacostraca | Decapoda | Penaeus brasiliensis | [99] | |
Penaeus schmitti | [99] | ||||
Essential oils of Amyris balsamifera (SAN) | Malacostraca | Decapoda | Penaeus brasiliensis | [99] | |
Penaeus schmitti | [99] | ||||
Essential oils of Mentha piperita (MEN) | Malacostraca | Decapoda | Penaeus brasiliensis | [99] | |
Penaeus schmitti | [99] | ||||
Essential oils of Melaleuca alternifolia (tea tree oil: TTO) | Malacostraca | Decapoda | Neohelice granulata | [73] | |
Essential oils of Passiflora incarnata | Malacostraca | Decapoda | Macrobrachium tenellum | [60] | |
Essential oils of Valeriana officinalis | Malacostraca | Decapoda | Macrobrachium tenellum | [60] | |
Eugenol | Branchiopoda | Anostraca | Artemia franciscana | [54] | |
Malacostraca | Amphipoda | Gammarus pulex | [20] | ||
Decapoda | Penaeus chiniensis | [102] | |||
Penaeus indicus | [103] | ||||
Penaeus japonicus | [104,105] | ||||
Penaeus monodon | [106] | ||||
Litopenaeus vannamei | [57,107] | ||||
Macrobrachium rosenbergii | [71,88] | ||||
Palaemonetes sinensis | [108] | ||||
Astacus astacus | [107] | ||||
Cherax destructor | [65] | ||||
Procambarus clarkii | [109] | ||||
Homarus americanus | [110,111] | ||||
Nephrops norvegicus | [62] | ||||
Callinectes sapidus | [107] | ||||
Cancer irroratus | [110] | ||||
Carcinus maenas | [110] | ||||
Neohelice granulata | [73] | ||||
Other organic compounds | Acetic paraldehyde | Branchiopoda | Anomopoda | Daphnia longispina | [39] |
Daphnia obtusa | [39] | ||||
Hexanauplia (Subclasse Copepoda) | Cyclopodia | Cyclops strenuus | [39] | ||
Eudiaptomus vulgaris | [39] | ||||
Copepoda species | [36] | ||||
Chlorotone | Various species | [51] | |||
Branchiopoda | Anomopoda | Daphnia pulex | [44] | ||
Daphnia spp. | [36] | ||||
Cirripedia | Cirripidia species | [70] | |||
Hexanauplia (Subclasse Copepoda) | Calanoida | Diaptomus spp. | [44] | ||
Limnocalanus macrurus | [44] | ||||
Cyclopodia | Diacyclops bicuspidatus | [44] | |||
Ostracoda | Ostracoda species | [36] | |||
Clomethiazole (Hemineurine) | Malacostraca | Decapoda | Carcinus maenas | [112] | |
Necora puber | [112] | ||||
Guaiacol glyceryl ether | Malacostraca | Decapoda | Cancer pagurus | [45] | |
Carcinus maenas | [45] | ||||
Lidocaine | Branchiopoda | Anomopoda | Daphnia magna | [75] | |
Malacostraca | Decapoda | Callinectes sapidus | [92] | ||
Cancer pagurus | [45] | ||||
Carcinus maenas | [45] | ||||
Macrobrachium americanum | [30] | ||||
Orconectes virilis | [80] | ||||
Litopenaeus vannamei | [29,91] | ||||
Portunus sanguinolentus | [87] | ||||
Pseudocarcinus gigas | [50] | ||||
Stomatopoda | Squilla mantis | [69] | |||
Piperazinum | Branchiopoda | Anomopoda | Eubosmina coregoni | [43] | |
Chydorus sphaericus | [43] | ||||
Daphnia cucullata | [43] | ||||
Ctenopoda | Diaphanosoma brachyurum | [43] | |||
Hexanauplia (Subclasse Copepoda) | Calanoida | Eudiaptomus graciloides | [43] | ||
Cyclopodia | Mesocyclops leuckarti | [43] | |||
Suxamethonium chloride | Malacostraca | Decapoda | Cancer pagurus | [45] | |
Carcinus maenas | [45] | ||||
Terpinen-4-ol | Malacostraca | Decapoda | Neohelice granulata | [73] | |
Various species | [51] |
System | Subsystem | Class | Order | Species | References |
---|---|---|---|---|---|
Electrical | Electric shock (stunning) | Malacostraca | Decapoda | Astacus astacus | [85] |
Astacus leptodactylus | [85] | ||||
Callinectes sapidus | [152] | ||||
Cancer pagurus | [86,153,154,155,156] | ||||
Carcinus maenas | [157] | ||||
Homarus americanus | [85] | ||||
Hommarus gammarus | [153,154] | ||||
Nephrops norvegicus | [157,158] | ||||
Litopenaeus vannamei | [152] | ||||
Procambarus clarkii | [152,159] | ||||
Decapoda species | [160] | ||||
Mechanical | Pithing | Malacostraca | Decapoda | Bracyura species | [160] |
Cherax destructor | [12] | ||||
Cherax quadricarinatus | [12] | ||||
Cherax tenuimanus | [12] | ||||
Decapods but brachyura | [160] | ||||
Ibacus peronii | [12] | ||||
Jasus edwardsii | [12] | ||||
Panulirus cygnus | [12] | ||||
Panulirus ornatus | [12] | ||||
Thenus orientalis | [12] | ||||
Spiking | Malacostraca | Decapoda | Cancer pagurus | [86,89,161] | |
Scylla serrata | [12] | ||||
Thermic | Chilling in ice/water slurry | Hexanauplia (Subclasse Copepoda) | Cyclopodia | Cyclops sp. | [55] |
Malacostraca | Decapoda | Astacus astacus | [85] | ||
Astacus leptodactylus | [85] | ||||
Callinectes sapidus | [152] | ||||
Cancer pagurus | [86,157,161] | ||||
Carcinus maenas | |||||
Cherax destructor | [12,65] | ||||
Cherax quadricarinatus | [12] | ||||
Cherax tenuimanus | |||||
Eriocheir sinensis | [49] | ||||
Fenneropenaeus merguiensis | [12] | ||||
Homarus americanus | [85,157] | ||||
Ibacus peronii | [12] | ||||
Jasus edwardsii | [12] | ||||
Maja brachydactyla | [162] | ||||
Metapenaeus ensis | [12] | ||||
Nephrops norvegicus | [163] | ||||
Orconectes rusticus | [164] | ||||
Panulirus cygnus | [12] | ||||
Panulirus ornatus | [12] | ||||
Penaeus esculentus | [12] | ||||
Penaeus japonicus | [12] | ||||
Penaeus monodon | [12,182] | ||||
Litopenaeus vannamei | [152] | ||||
Portunus pelagicusus | [165] | ||||
Portunus sanguinolentus | [87] | ||||
Procambarus clarkii | [152,166,167] | ||||
Pseudocarcinus gigas | [50] | ||||
Scylla serrata | [12] | ||||
Thenus orientalis | [12] | ||||
Tropical and temperate species | [160] | ||||
Marine tropical crabs | [70] | ||||
Chilling in water | Malacostraca | Decapoda | Cherax tenuimanus | [12] | |
Macrobrachium rosenbergii | [88,168,169] | ||||
Pacifastacus leniusculus trowbridgii | [136] | ||||
Penaeus monodon | [169] | ||||
Cherax tenuimanus | [12] | ||||
Penaeus chiniensis | [170] | ||||
Penaeus esculentus | [171] | ||||
Penaeus japonicus | [172,173,174,175,176,177] | ||||
Penaeus monodon | [12,169,171,178] | ||||
Penaeus semisulcatus | [171] | ||||
Litopenaeus vannamei | [179] | ||||
Dry chilling | Malacostraca | Decapoda | Cancer pagurus | [86] | |
Cherax destructor | [12] | ||||
Cherax quadricarinatus | [12] | ||||
Cherax tenuimanus | [12] | ||||
Crab species | [169] | ||||
Fenneropenaeus merguiensis | [12] | ||||
Homarus americanus | [169] | ||||
Ibacus peronii | [12] | ||||
Jasus edwardsii | [12] | ||||
Large crustaceans adapted to very low temperatures | [160] | ||||
Lithodes santolla | [180] | ||||
Macrobrachium rosenbergii | [88,168] | ||||
Metapenaeus ensis | [12] | ||||
Orconectes rusticus | [26] | ||||
Panulirus cygnus | [12] | ||||
Panulirus ornatus | [12] | ||||
Penaeus chiniensis | [170,171] | ||||
Penaeus esculentus | [12] | ||||
Penaeus indicus | [176] | ||||
Penaeus japonicus | [169,174,175][12,171,172,173,176] | ||||
Penaeus monodon | [12,178] | ||||
Penaeus semisulcatus | [171] | ||||
Litopenaeus vannamei | [179] | ||||
Scylla serrata | [12] | ||||
Thenus orientalis | [12] | ||||
Warm water lobster species | [169] |
Method | System | Subsystem | Class | Order | Species | References |
---|---|---|---|---|---|---|
Chemical | Alcohol | BOUIN (Alcohol + Formaldehyde + glacial acetic acid + picric acid) | Various species | [51] | ||
Branchiopoda | Anostraca | Anostraca species | [42] | |||
Ostracoda | Ostracoda species | [42] | ||||
Malacostraca | Decapoda | Astacus spp. | [42] | |||
Homarus spp. | [42] | |||||
Carcinus spp. | [42] | |||||
Other organic compounds | Butyn | Branchiopoda | Anomopoda | Daphnia pulex | [44] | |
Hexanauplia (Subclasse Copepoda) | Calanoida | Diaptomus spp. | [44] | |||
Limnocalanus macrurus | [44] | |||||
Cyclopodia | Diacyclops bicuspidatus | [44] | ||||
Decamethonium bromide | Malacostraca | Decapoda | Cancer pagurus | [45] | ||
Carcinus maenas | [45] | |||||
Gallamine Triethiodite | Malacostraca | Decapoda | Cancer pagurus | [45] | ||
Carcinus maenas | [45] | |||||
Guaiacol glyceryl ether | Malacostraca | Decapoda | Cancer pagurus | [45] | ||
Carcinus maenas | [45] | |||||
Formalin | Crustacean species | [187] | ||||
Branchiopoda | Branchiopoda species | [41] | ||||
Branchipoda | Anostraca | Anostraca species | [187] | |||
Onychopoda (Cladocera) | Anostraca species | [187] | ||||
Anostraca | Branchipoda species | [42] | ||||
Ostracoda | Ostracoda species | [42] | ||||
Hexanauplia (Subclasse Copepoda) | Copepoda species | [42] | ||||
Malacostraca | Amphipoda | Amphipoda species | [187] | |||
Cumacea | Cumacea species | [187] | ||||
Malacostraca | Decapoda and Stomatopoda | Malacostraca species | [187] | |||
Hydrogen peroxide | Branchiopoda | Anomopoda | Daphnia pulex | [44] | ||
Hexanauplia (Subclasse Copepoda) | Calanoida | Diaptomus spp. | [44] | |||
Limnocalanus macrurus | [44] | |||||
Cyclopodia | Diacyclops bicuspidatus | [44] | ||||
Hydroxylamina | Branchiopoda | Anomopoda | Daphnia pulex | [44] | ||
Hexanauplia (Subclasse Copepoda) | Calanoida | Diaptomus spp. | [44] | |||
Limnocalanus macrurus | [44] | |||||
Cyclopodia | Diacyclops bicuspidatus | [44] | ||||
Methysergide maleate | Malacostraca | Decapoda | Procambarus clarkii | [188] | ||
Salts | Magnesium chloride | Various species | [51] | |||
Malacostraca | Decapoda | Astacus astacus | [85] | |||
Astacus leptodactylus | [85] | |||||
Cherax destructor | [65] | |||||
Homarus americanus | [85] | |||||
Magnesium sulphate | Branchiopoda | Anomopoda | Daphnia pulex | [44] | ||
Malacostraca | Decapoda | Hemigrapsus sanguineus | [2] | |||
Homarus americanus | [66] | |||||
Portunus sanguinolentus | [87] | |||||
Pseudocarcinus gigas | [50] | |||||
Physostigmine salicylate | Branchiopoda | Anomopoda | Eubosmina coregoni | [43] | ||
Chydorus sphaericus | [43] | |||||
Daphnia cucullata | [43] | |||||
Daphnia pulex | [44] | |||||
Ctenopoda | Diaphanosoma brachyurum | [43] | ||||
Hexanauplia (Subclasse Copepoda) | Calanoida | Diaptomus spp. | [44] | |||
Eudiaptomus graciloides | [43] | |||||
Limnocalanus macrurus | [44] | |||||
Cyclopodia | Diacyclops bicuspidatus | [44] | ||||
Mesocyclops leuckarti | [43] | |||||
Potassium chloride | Malacostraca | Decapoda | Cancer pagurus | [86] | ||
Homarus americanus | [189] | |||||
Potassium hydroxide | Chthyostraca (Subclass Branchiura) | Decapoda | Branchiura species | [42] | ||
Sodium bicarbonate | Malacostraca | Decapoda | Ranina ranina | [190] | ||
Sodium chloride | Malacostraca | Decapoda | Cancer pagurus | [86,89] | ||
Homarus gammarus | [191] | |||||
Pseudocarcinus gigas | [50] | |||||
Others | Albumin | Branchiopoda | Anomopoda | Daphnia magna | [38] | |
Corrosive sublimate | Branchiopoda | Onychopoda | Evadne spp. | [35] | ||
Podon spp. | [35] | |||||
Hexanauplia (Subclasse Copepoda) | Copepoda species | [35] | ||||
Cumacea | Cumacea species | [35] | ||||
Malacostraca | Amphipoda | Phronima spp. | [35] | |||
Decapoda | Decapoda species | [35] | ||||
Isopoda | Bopyroides spp. | [35] | ||||
Entoniscoides spp. | [35] | |||||
Schizopoda | Schizopoda species | [35] | ||||
Stomatopoda | Stomatopoda species | [35] | ||||
Curare | Branchiopoda | Anomopoda | Eubosmina coregoni | [43] | ||
Chydorus sphaericus | [43] | |||||
Daphnia cucullata | [43] | |||||
Ctenopoda | Diaphanosoma brachyurum | [43] | ||||
Hexanauplia (Subclasse Copepoda) | Calanoida | Eudiaptomus graciloides | [43] | |||
Cyclopodia | Mesocyclops leuckarti | [43] | ||||
Osmic acid | Branchiopoda | Onychopoda | Evadne spp. | [35] | ||
Podon spp. | [35] | |||||
Malacostraca | Decapoda | Decapoda species | [35] | |||
Physostigmine salicylate | Branchiopoda | Anomopoda | Eubosmina coregoni | [43] | ||
Chydorus sphaericus | [43] | |||||
Daphnia cucullata | [43] | |||||
Ctenopoda | Diaphanosoma brachyurum | [43] | ||||
Propylene phenoxetol | Malacostraca | Amphipoda | Amphipoda species | [192] | ||
Decapoda | Caridea species | [192] | ||||
Mysidacea | Mysidacea species | [192] | ||||
Tubocurarine | Branchiopoda | Anomopoda | Daphnia pulex | [44] | ||
Malacostraca | Decapoda | Cancer pagurus | [45] | |||
Carcinus maenas | [45] | |||||
Methyl cellulose | Small crustacean species | [70] | ||||
Nicotine | Malacostraca | Decapoda | Cherax destructor | [65] | ||
Physical | Emersion in air | Malacostraca | Decapoda | Cherax destructor | [12] | |
Cherax tenuimanus | [12] | |||||
Fenneropenaeus merguiensis | [12] | |||||
Ibacus peronii | [12] | |||||
Jasus edwardsii | [12] | |||||
Metapenaeus ensis | [12] | |||||
Panulirus cygnus | [12] | |||||
Panulirus ornatus | [12] | |||||
Penaeus esculentus | [12] | |||||
Penaeus japonicus | [12] | |||||
Penaeus monodon | [12] | |||||
Pseudocarcinus gigas | [50] | |||||
Ranina ranina | [190] | |||||
Scylla serrata | [12] | |||||
Thenus orientalis | [12] | |||||
Heating | Crustaceans | Various species | [51] | |||
Malacostraca | Decapoda | Various species | [160] | |||
Malacostraca | Decapoda | Astacus astacus | [85] | |||
Astacus leptodactylus | [85] | |||||
Cancer pagurus | [86,89] | |||||
Homarus americanus | [85] | |||||
Homarus gammarus | [191,193] | |||||
Pseudocarcinus gigas | [50] | |||||
Osmotic (immersion in tap water) | Malacostraca | Decapoda | Marine large crustaceans | [187] | ||
Decapoda species | [70] | |||||
[160] | ||||||
[35] | ||||||
Crab and lobster species | [194] | |||||
Cancer pagurus | [89] | |||||
Pseudocarcinus gigas | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotllant, G.; Llonch, P.; García del Arco, J.A.; Chic, Ò.; Flecknell, P.; Sneddon, L.U. Methods to Induce Analgesia and Anesthesia in Crustaceans: A Supportive Decision Tool. Biology 2023, 12, 387. https://doi.org/10.3390/biology12030387
Rotllant G, Llonch P, García del Arco JA, Chic Ò, Flecknell P, Sneddon LU. Methods to Induce Analgesia and Anesthesia in Crustaceans: A Supportive Decision Tool. Biology. 2023; 12(3):387. https://doi.org/10.3390/biology12030387
Chicago/Turabian StyleRotllant, Guiomar, Pol Llonch, José A. García del Arco, Òscar Chic, Paul Flecknell, and Lynne U. Sneddon. 2023. "Methods to Induce Analgesia and Anesthesia in Crustaceans: A Supportive Decision Tool" Biology 12, no. 3: 387. https://doi.org/10.3390/biology12030387
APA StyleRotllant, G., Llonch, P., García del Arco, J. A., Chic, Ò., Flecknell, P., & Sneddon, L. U. (2023). Methods to Induce Analgesia and Anesthesia in Crustaceans: A Supportive Decision Tool. Biology, 12(3), 387. https://doi.org/10.3390/biology12030387