Understanding the Effects of Trenbolone Acetate, Polyamine Precursors, and Polyamines on Proliferation, Protein Synthesis Rates, and the Abundance of Genes Involved in Myoblast Growth, Polyamine Biosynthesis, and Protein Synthesis in Murine Myoblasts
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Culture of Murine Myoblasts
2.2. Treatment of Myoblast Cultures for Proliferation Assays
2.3. Treatment of Myoblast Cultures for Protein Synthesis Assays
2.4. Analysis of Proliferation Rates
2.5. Analysis of Protein Synthesis Rates
2.6. mRNA Isolation, Quantification, and cDNA Synthesis
2.7. Quantitative Real-Time PCR
2.8. Statistical Analysis
3. Results
3.1. Effects of Cell Type on Proliferation, Protein Synthesis, and Relative mRNA Abundance
3.2. Effects of Treatments on Proliferation and Protein Synthesis Rates of Murine Myoblasts
3.3. Effects of Treatments on the Relative mRNA Abundance of Genes Involved in Polyamine Biosynthesis
3.4. Effects of Treatments on the Relative mRNA Abundance of Genes Involved in Skeletal Muscle Growth
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Capper, J.L.; Hayes, D.J. The environmental and economic impact of removing growth-enhancing technologies from U.S. beef production. J. Anim. Sci. 2012, 90, 3527–3537. [Google Scholar] [CrossRef] [Green Version]
- Enesco, M.; Puddy, D. Increase in the Number of Nuclei and Weight in Skeletal Muscle of Rats of Various Ages. Am. J. Anat. 1964, 114, 235–244. [Google Scholar] [CrossRef]
- Shea, K.L.; Xiang, W.; LaPorta, V.S.; Licht, J.D.; Keller, C.; Keller, C.B.; Basson, M.A.; Brack, A.S. Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem cell pool during regeneration. Cell Stem Cell 2010, 6, 117–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abou-Khalil, R.; Brack, A.S. Muscle stem cells and reversible quiescence: The role of sprouty. Cell Cycle 2010, 9, 2575–2580. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Price, F.; Rudnicki, M.A. Satellite Cells and the Muscle Stem Cell Niche. Physiol. Rev. 2013, 93, 23–67. [Google Scholar] [CrossRef] [Green Version]
- Snow, M.H. Myogenic cell formation in regenerating rat skeletal muscle injured by mincing II. An autoradiographic study. Anat. Rec. 1977, 188, 201–217. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002, 12, 9–18. [Google Scholar] [CrossRef]
- Moore, D.R. Maximizing Post-exercise Anabolism: The Case for Relative Protein Intakes. Front. Nutr. 2019, 6, 1–13. [Google Scholar] [CrossRef]
- Yoon, M.S. mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass. Front. Physiol. 2017, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Shiojima, I.; Walsh, K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev. 2006, 20, 3347–3365. [Google Scholar] [CrossRef] [Green Version]
- Geraci, A.; Calvani, R.; Ferri, E.; Marzetti, E.; Arosio, B.; Cesari, M. Sarcopenia and Menopause: The Role of Estradiol. Front. Endocrinol. 2021, 12, 682012. [Google Scholar] [CrossRef] [PubMed]
- Montero-Fernandez, N.; Serra-Rexach, J.A. Role of exercise on sarcopenia in the elderly. Eur. J. Phys. Rehabil. Med. 2013, 49, 131–143. [Google Scholar] [PubMed]
- Urban, R.J.; Dillon, E.L.; Choudhary, S.; Zhao, Y.; Horstman, A.M.; Tilton, R.G.; Sheffield-Moore, M. Translational Studies in Older Men Using Testosterone to Treat Sarcopenia. Trans. Am. Clin. Climatol. Assoc. 2014, 124, 27–44. [Google Scholar]
- Duckett, S.K.; Pratt, S.L. Meat Science and Muscle Biology Symposium—Anabolic implants and meat quality. J. Anim. Sci. 2014, 92, 3–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storer, T.W.; Basaria, S.; Traustadottir, T.; Harman, S.M.; Pencina, K.; Li, Z.; Travison, T.G.; Miciek, R.; Tsitouras, P.; Hally, K.; et al. Effects of Testosterone Supplementation for 3 Years on Muscle Performance and Physical Function in Older Men. J. Clin. Endocrinol. Metab. 2017, 102, 583–593. [Google Scholar] [CrossRef] [Green Version]
- Basaria, S.; Coviello, A.D.; Travison, T.G.; Storer, T.W.; Farwell, W.R.; Jette, A.M.; Eder, R.; Tennstedt, S.; Ulloor, J.; Zhang, A.; et al. Adverse events associated with testosterone administration. N. Engl. J. Med. 2010, 363, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Sakakibara, I.; Yanagihara, Y.; Himori, K.; Yamada, T.; Sakai, H.; Sawada, Y.; Takahashi, H.; Saeki, N.; Hirakawa, H.; Yokoyama, A.; et al. Myofiber androgen receptor increases muscle strength mediated by a skeletal muscle splicing variant of Mylk4. iScience 2021, 24, 102303. [Google Scholar] [CrossRef]
- Dayton, W.R.; White, M.E. Meat Science And Muscle Biology Symposium—Role of satellite cells in anabolic steroid-induced muscle growth in feedlot steers. J. Anim. Sci. 2014, 92, 30–38. [Google Scholar] [CrossRef]
- Diel, P.; Baadners, D.; Schlüpmann, K.; Velders, M.; Schwarz, J.P. C2C12 myoblastoma cell differentiation and proliferation is stimulated by androgens and associated with a modulation of myostatin and Pax7 expression. J. Mol. Endocrinol. 2008, 40, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Desler, M.M.; Jones, S.J.; Smith, C.W.; Woods, T.L. Effects of dexamethasone and anabolic agents on proliferation and protein synthesis and degradation in C2C12 myogenic cells. J. Anim. Sci. 1996, 74, 1265. [Google Scholar] [CrossRef]
- Kamanga-Sollo, E.; White, M.E.; Hathaway, M.R.; Chung, K.Y.; Johnson, B.J.; Dayton, W.R. Roles of IGF-I and the estrogen, androgen and IGF-I receptors in estradiol-17β- and trenbolone acetate-stimulated proliferation of cultured bovine satellite cells. Domest. Anim. Endocrinol. 2008, 35, 88–97. [Google Scholar] [CrossRef]
- Reichhardt, C.C.; Ahmadpour, A.; Christensen, R.G.; Ineck, N.E.; Murdoch, G.K.; Thornton, K.J. Understanding the influence of trenbolone acetate and polyamines on proliferation of bovine satellite cells. Domest. Anim. Endocrinol. 2021, 74, 106479. [Google Scholar] [CrossRef]
- Kamanga-Sollo, E.; White, M.E.; Hathaway, M.R.; Weber, W.J.; Dayton, W.R. Effect of trenbolone acetate on protein synthesis and degradation rates in fused bovine satellite cell cultures. Domest. Anim. Endocrinol. 2011, 40, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.K.L.; MacLean, H.E. Polyamines, androgens, and skeletal muscle hypertrophy. J. Cell. Physiol. 2011, 226, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Bulfield, G.; Isaacson, J.H.; Middleton, R.J. Biochemical correlates of selection for weight-for-age in chickens: Twenty-fold higher muscle ornithine decarboxylase levels in modern broilers. Theroret. Appl. Genet. 1988, 75, 432–437. [Google Scholar] [CrossRef]
- Cepero, M.; Cubría, J.C.; Reguera, R.; Balaña-Fouce, R.; Ordóñez, C.; Ordóñez, D. Plasma and muscle polyamine levels in aerobically exercised rats treated with salbutamol. J. Pharm. Pharmacol. 1998, 50, 1059–1064. [Google Scholar] [CrossRef]
- Cyriac, J.; Haleem, R.; Cai, X.; Wang, Z. Androgen regulation of spermidine synthase expression in the rat prostate. Prostate 2002, 40, 252–261. [Google Scholar] [CrossRef]
- Käpyaho, K.; Pösö, H.; Jänne, J. Role of propylamine transferases in hormone-induced stimulation of polyamine biosynthesis. Biochem. J. 1980, 192, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Russell, D.H.; Taylor, R.L. Polyamine Syntheis and Accumulation in the Castrated Rat Uterus After Estradiol-17β Stimulation. Endocrinology 1971, 88, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.; Thomas, T.J. Estradiol control of ornithine decarboxylase mRNA, enzyme activity, and polyamine levels in MCF-7 breast cancer cells: Therapeutic implications. Breast Cancer Res. Treat. 1994, 29, 189–201. [Google Scholar] [CrossRef]
- Reichhardt, C.C.; Okamato, L.L.; Motsinger, L.A.; Griffin, B.P.; Murdoch, G.K.; Thornton, K.J. The impact of polyamine precursors, polyamines, and steroid hormones on temporal messenger RNA abundance in bovine satellite cells induced to differentiate. Animals 2021, 11, 764. [Google Scholar] [CrossRef] [PubMed]
- Pegg, A.E.; McCann, P.P. Polyamine metabolism and function. Am. J. Physiol 1982, 243, C212–C221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pegg, A.E. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem. J. 1986, 234, 249–262. [Google Scholar] [CrossRef] [Green Version]
- Marton, L.J.; Pegg, A.E. Polyamines as targets for therapeutic intervention. Annu. Rev. Pharmacol. Toxicol. 1995, 35, 55–91. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.; Thomas, T.J. Polyamines in cell growth and cell death: Molecular mechanisms and therapeutic applications. Cell Mol. Life Sci. 2001, 58, 244–258. [Google Scholar] [CrossRef]
- Igarashi, K.; Kashiwagi, K. Polyamines: Mysterious modulators of cellular functions. Biochem. Biophys. Res. Commun. 2000, 271, 559–564. [Google Scholar] [CrossRef]
- Tabbaa, M.; Ruz Gomez, T.; Campelj, D.G.; Gregorevic, P.; Hayes, A.; Goodman, C.A. The regulation of polyamine pathway proteins in models of skeletal muscle hypertrophy and atrophy: A potential role for mTORC1. Am. J. Physiol. Cell Physiol. 2021, 320, C987–C999. [Google Scholar] [CrossRef]
- Bardócz, S.; Brown, D.S.; Grant, G.; Pusztai, A.; Stewart, J.C.; Palmer, R.M. Effect of the 13-adrenoceptor agonist clenbuterol and phytohaemagglutinin on growth, protein synthesis and polyamine metabolism of tissues of the rat. Br. J. Pharmacol. 1992, 106, 476–482. [Google Scholar] [CrossRef]
- Dubois, V.; Laurent, M.; Boonen, S.; Vanderschueren, D.; Claessens, F. Androgens and skeletal muscle: Cellular and molecular action mechanisms underlying the anabolic actions. Cell. Mol. Life Sci. 2012, 69, 1651–1667. [Google Scholar] [CrossRef]
- Lee, N.K.L.; Skinner, J.P.J.; Zajac, J.D.; Maclean, H.E. Ornithine decarboxylase is upregulated by the androgen receptor in skeletal muscle and regulates myoblast proliferation. Am. J. Physiol. Endocrinol. Metab. 2011, 301, E172–E179. [Google Scholar] [CrossRef] [Green Version]
- Berthois, Y.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S. Phenol red in tissue culture media is a weak estrogen: Implications concerning the study of estrogen-responsive cells in culture. Proc. Natl. Acad. Sci. USA 1986, 83, 2496–2500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thornton, K.J.; Kamange-Sollo, E.; White, M.E.; Dayton, W.R. Role of G protein–coupled receptors (GpcR), matrix metalloproteinases 2 and 9 (mmp2 and mmp9), heparin-binding epidermal growth factor–like growth factor (hbeGf), epidermal growth factor receptor (eGfR), erbB2, and insulin-like growth factor 1 receptor (iGf-1R) in trenbolone acetate– stimulated bovine satellite cell proliferation. J. Anim. Sci. 2015, 93, 4291–4301. [Google Scholar] [PubMed] [Green Version]
- Thornton, K.J.; Welch, C.M.; Davis, L.C.; Doumit, M.E.; Hill, R.A.; Murdoch, G.K. Bovine sire selection based on maintenance energy affects muscle fiber type and meat color of F1 progeny. J. Anim. Sci. 2012, 90, 1617–1627. [Google Scholar] [CrossRef] [PubMed]
- Chapalamadugu, K.C.; Robison, B.D.; Drew, R.E.; Powell, M.S.; Hill, R.A.; Amberg, J.J.; Rodnick, K.J.; Hardy, R.W.; Hill, M.L.; Murdoch, G.K. Dietary carbohydrate level affects transcription factor expression that regulates skeletal muscle myogenesis in rainbow trout. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2009, 153, 66–72. [Google Scholar] [CrossRef]
- Bhasin, S. Testosterone supplementation for aging-associated sarcopenia. J. Gerontol. A Biol. Sci. Med. Sci. 2003, 58A, 1002–1008. [Google Scholar] [CrossRef]
- Meng, D.; Yang, Q.; Wang, H.; Melick, C.H.; Navlani, R.; Frank, A.R.; Jewell, J.L. Glutamine and asparagine activate mTORC1 independently of Rag GTPases. J. Biol. Chem. 2020, 295, 2890–2899. [Google Scholar] [CrossRef] [Green Version]
- Sinha-Hikim, I.; Roth, S.M.; Lee, M.I.; Bhasin, S. Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E197–E205. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Lee, N.K.L.; Zajac, J.D.; MacLean, H.E. Generation and analysis of an androgen-responsive myoblast cell line indicates that androgens regulate myotube protein accretion. J. Endocrinol. Investig. 2008, 31, 910–918. [Google Scholar] [CrossRef]
- Bouffault, J.C.; Willemart, J.P. Anabolic activity of trenbolone aceate alone or in association with estrogens. In Proceedings of the Symposium on Anabolics in Animal Production, Paris, France, 15–17 February 1983; pp. 155–179. [Google Scholar]
- Yamazawa, T.; Yamada, S. Role of skeletal muscle homeostasis of functional food material. Nippon. Yakurigaku Zasshi 2020, 155, 236–240. [Google Scholar] [CrossRef]
- Kanou, M.; Nakamura, K.; Horie, K.; Sakai, H.; Yanagihara, Y.; Sakakibara, I.; Yamana, K.; Imai, Y. Polyamine pathway is associated with muscle anabolic effects by androgen receptor ligand. JCSM Rapid Commun. 2021, 4, 57–74. [Google Scholar] [CrossRef]
- Landau, G.; Bercovich, Z.; Park, M.H.; Kahana, C. The Role of Polyamines in Supporting Growth of Mammalian Cells Is Mediated through Their Requirement for Translation Initiation and Elongation. J. Biol. Chem. 2010, 285, 12474–12481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, M.J.; Ford, S.P.; Du, M. Androgen enhances both Akt/mTOR and MAPK signaling in C2C12 myoblast cells. FASEB J. 2007, 21, A1205. [Google Scholar] [CrossRef]
- Hatae, J.; Takami, N.; Lin, H.; Honda, A.; Inoue, R. 17β-Estradiol-induced enhancement of estrogen receptor biosynthesis via MAPK pathway in mouse skeletal muscle myoblasts. J. Physiol. Sci. 2009, 59, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Kamanga-Sollo, E.; White, M.E.; Hathaway, M.R.; Weber, W.J.; Dayton, W.R. Effect of Estradiol-17β on protein synthesis and degradation rates in fused bovine satellite cell cultures. Domest. Anim. Endocrinol. 2010, 39, 54–62. [Google Scholar] [CrossRef]
- Logiudice, N.; Le, L.; Abuan, I.; Leizorek, Y.; Roberts, S. Alpha-Difluoromethylornithine, an Irreversible Inhibitor of Polyamine Biosynthesis, as a Therapeutic Strategy against Hyperproliferative and Infectious Diseases. J. Med. Sci. 2018, 6, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crozat, A.; Palvimo, J.J.; Julkunen, M.; Jänne, O.A. Comparison of androgen regulation of ornithine decarboxylase and S-adenosylmethionine decarboxylase gene expression in rodent kidney and accessory sex organs. Endocrinology 1992, 130, 1131–1144. [Google Scholar]
- Maclean, H.E.; Chiu, W.S.M.; Notini, A.J.; Axell, A.-M.; Davey, R.A.; McManus, J.F.; Ma, C.; Plant, D.R.; Lynch, G.S.; Zajac, J.D. Impaired skeletal muscle development and function in male, but not female, genomic androgen receptor knockout mice. FASEB J. 2008, 22, 2676–2689. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, S.; Murakami, Y. Rapid and regulated degradation of ornithine decarboxylase. Biochem. J. 1995, 306, 1–10. [Google Scholar] [CrossRef]
- Seale, P.; Sabourin, L.A.; Girgis-Gabardo, A.; Mansouri, A.; Gruss, P.; Rudnicki, M.A. Pax7 Is Required for the Specification of Myogenic Satellite Cells. Cell 2000, 102, 777–786. [Google Scholar] [CrossRef] [Green Version]
- Cargnello, M.; Roux, P.P. Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiol. Mol. Biol. Rev. 2011, 75, 50–83. [Google Scholar] [CrossRef] [Green Version]
- Fu, R.; Liu, J.; Fan, J.; Li, R.; Li, D.; Yin, J.; Cui, S. Novel evidence that testosterone promotes cell proliferation and differentiation via G protein-coupled receptors in the rat L6 skeletal muscle myoblast cell line. J. Cell. Physiol. 2012, 227, 98–107. [Google Scholar] [CrossRef]
- Ma, X.M.; Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 2009, 10, 307–318. [Google Scholar] [CrossRef] [PubMed]
- White, J.P.; Gao, S.; Puppa, M.J.; Sato, S.; Welle, S.L.; Carson, J.A. Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscle. Mol. Cell. Endocrinol. 2013, 365, 174–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, R.M.; Bavaria, M.; Johnson, L.R. Interaction of polyamines and mTOR signaling in the synthesis of antizyme (AZ). Cell Signal. 2015, 27, 1850–1859. [Google Scholar] [CrossRef] [Green Version]
- Tuckow, A.P.; Kazi, A.A.; Kimball, S.R.; Jefferson, L.S. Identification of ubiquitin-modified lysine residues and novel phosphorylation sites on eukaryotic initiation factor 2B epsilon. Biochem. Biophys. Res. Commun. 2013, 436, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Kubica, N.; Kimball, S.R.; Jefferson, L.S.; Farrell, P.A. Alterations in the expression of mRNAs and proteins that code for species relevant to eIF2B activity after an acute bout of resistance exercise. J. Appl. Physiol. 2004, 96, 679–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubica, N.; Crispino, J.L.; Gallagher, J.W.; Kimball, S.R.; Jefferson, L.S. Activation of the mammalian target of rapamycin complex 1 is both necessary and sufficient to stimulate eukaryotic initiation factor 2Bɛ mRNA translation and protein synthesis. Int. J. Biochem. Cell Biol. 2008, 40, 2522–2533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwee, D.T.; Bodine, S.C. Age-Related Deficit in Load-Induced Skeletal Muscle Growth. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64A, 618–628. [Google Scholar] [CrossRef] [Green Version]
- Fluckey, J.D.; Pohnert, S.C.; Boyd, S.G.; Cortright, R.N.; Trappe, T.A.; Dohm, G.L. Insulin stimulation of muscle protein synthesis in obese Zucker rats is not via a rapamycin-sensitive pathway. Am. J. Physiol. Endocrinol. Metab. 2000, 279, E182–E187. [Google Scholar] [CrossRef] [Green Version]
- Hardt, S.E.; Tomita, H.; Katus, H.A.; Sadoshima, J. Phosphorylation of Eukaryotic Translation Initiation Factor 2Bε by Glycogen Synthase Kinase-3β Regulates β-Adrenergic Cardiac Myocyte Hypertrophy. Circ. Res. 2004, 94, 926–935. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Proud, C.G. A novel mechanism for the control of translation initiation by amino acids, mediated by phosphorylation of eukaryotic initiation factor 2B. Mol. Cell. Biol. 2008, 28, 1429–1442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, J.W.; Kubica, N.; Kimball, S.R.; Jefferson, L.S. Reduced Eukaryotic Initiation Factor 2Bε-Subunit Expression Suppresses the Transformed Phenotype of Cells Overexpressing the Protein. Cancer Res. 2008, 68, 8752–8760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Messenger RNA | GBA Number | Primer and Probe Sequences (5′-3′) |
---|---|---|
Ribosomal 18S (18S) | AF243428 | FP: CCACGCGAGATTGAGCAAT RP: GCAGCCCCGGACATCTAA TP: ACAGGTCTGTGATGCC |
Ornithine decarboxylase (ODC) | NM_013614.2 | FP: CCTGAGCGGATGAGCATTATAG RP: CGACAGACAGCTTTGGAATCA TP: AGGTTGGTTCTACGGATTGCCACT |
S-adenosylmethionine decarboxylase (AMD1) | NM_009665.5 | FP: CTACTTGTCCTACCGTCAGCTG RP: CAGAATATTGCGCCGTTCCATC TP: CAGGTTACTCAGCCAGATAGTGAA |
Paired box transcription factor 7 (Pax7) | XM_616352.4 | FP: TTGTACCCCGCCCTCTCTTA RP: GGCTCAGCAATCCGTTTCC TP: AGCTGGGTCTTTTG |
Sprouty 1 (Spry1) | NM_001099366.1 | FP: TCACAGGAAGACAGCAAAGA RP: GCAAACAGGAAGACACGAC TP: TGCTTCTTAGAAGCTGGAGAGCA |
Mitogen-activated protein kinase (MapK) | NM_001038663.1 | FP: CCACCCATACCTGGAGCAGTA RP: CAAACTTGAATGGCGCTTCA TP: CCCAAGTGATGAGCCCA |
Eukaryotic translation initiation factor 2B subunit epsilon (eIF-2Bε) | NM_172265.2 | FP: CAAAGAGACACAACTGACGAAGG RP: GTTACGAGGACAGCCAATGAGA TP: CTGAGAGAGGCAGAAGAAGAGTC |
Mammalian target of rapamycin (mTOR) | NM_020009.2 | FP: CATCCCTCTGTCCACCAACTC RP: TGCTCAAACACCTCTACCTTCT TP: CGGGACTACAGAGAGAAGAAGAAG |
Proliferating cultures a | ||||
Time (h) | C2C12 | Sol8 | SEM | p-value |
ODC | ||||
0.5 | 1.23 | 0.96 | 0.19 | p = 0.32 |
12 | 0.97 | 1.13 | 0.23 | p = 0.63 |
24 | 1.04 | 0.86 | 0.37 | p = 0.56 |
AMD1 | ||||
0.5 | 1.38 | 1.54 | 0.43 | p = 0.79 |
12 | 1.03 | 1.02 | 0.18 | p = 0.95 |
24 | 1.22 | 1.01 | 0.27 | p = 0.57 |
Pax7 | ||||
0.5 | 1.10 | 0.84 | 0.30 | p = 0.52 |
12 | 1.08 | 0.74 | 0.15 | p = 0.10 |
24 | 1.37 | 0.88 | 0.25 | p = 0.14 |
Spry1 | ||||
0.5 | 1.13 | 1.10 | 0.24 | p = 0.91 |
12 | 0.99 | 0.92 | 0.21 | p = 0.89 |
24 | 1.43 | 0.85 | 0.30 | p = 0.14 |
MapK | ||||
0.5 | 0.96 | 0.78 | 0.09 | p = 0.17 |
12 | 0.96 | 0.92 | 0.21 | p = 0.89 |
24 | 1.43 | 0.85 | 0.30 | p = 0.14 |
Fused cultures b | ||||
Time (h) | C2C12 | Sol8 | SEM | p-value |
ODC | ||||
1 | 0.87 | 0.81 | 0.14 | p = 0.77 |
12 | 1.13 | 1.3 | 0.15 | p = 0.42 |
24 | 0.87 | 1.31 | 0.25 | p = 0.22 |
AMD1 | ||||
1 | 1.10 | 0.65 | 0.17 | p = 0.06 |
12 | 1.50 | 1.59 | 0.47 | p = 0.89 |
24 | 0.85 | 0.96 | 0.16 | p = 0.61 |
mTOR | ||||
1 | 0.87 | 0.68 | 0.11 | p = 0.22 |
12 | 1.30 | 1.41 | 0.22 | p = 0.70 |
24 | 0.88 | 1.38 | 0.21 | p = 0.10 |
eIF-2Bε | ||||
1 | 0.95 | 0.91 | 0.19 | p = 0.88 |
12 | 1.05 | 1.28 | 0.13 | p = 0.20 |
24 | 0.90 | 1.32 | 0.21 | p = 0.17 |
Proliferating Cultures a | ||||||||||
Treatment | ||||||||||
Time (h) | Con | TBA | Met | Orn | Put | Spd | Spe | SEM | ||
ODC | ||||||||||
0.5 | 0.96 | 0.79 | 0.77 | 1.13 | 0.83 | 0.74 | 1.96 * | 0.54 | ||
12 | 0.96 | 0.74 | 0.90 | 0.72 | 1.06 | 2.09 * | 1.42 | 0.50 | ||
24 | 0.95 | 0.96 | 1.07 | 1.06 | 0.76 | 0.35 | 1.34 | 0.80 | ||
AMD1 | ||||||||||
0.5 | 1.10 | 1.24 | 1.89 | 1.50 | 1.82 | 1.12 | 1.85 | 0.62 | ||
12 | 1.00 | 1.51 | 1.15 | 1.20 | 1.19 | 0.76 | 0.61 | 0.27 | ||
24 | 0.97 | 1.13 | 1.42 | 1.15 | 1.66 | 1.14 | 0.96 | 0.44 | ||
Fused cultures b | ||||||||||
Treatment | ||||||||||
Time (h) | Con | TBA | E2 | TBA + E2 | Met | Orn | Put | Spd | Spe | SEM |
ODC | ||||||||||
1 | 1.00 | 0.75 | 0.98 | 0.98 | 0.75 | 0.71 † | 0.82 | 0.68 | 0.83 | 0.14 |
12 | 1.00 | 1.07 | 1.29 | 1.11 | 1.21 | 1.19 | 1.38 | 1.40 | 1.27 | 0.20 |
24 | 1.00 | 1.20 | 0.83 | 1.30 | 1.00 | 1.45 | 1.08 | 1.10 | 0.79 | 0.32 |
AMD1 | ||||||||||
1 | 1.00 | 0.93 | 0.78 | 0.83 | 0.90 | 0.78 | 0.92 | 0.84 | 0.83 | 0.25 |
12 | 1.00 | 1.71 † | 1.65 | 1.46 | 1.44 | 1.64 | 2.31 * | 1.71 | 1.14 | 0.45 |
24 | 1.00 | 1.05 | 0.84 | 1.05 | 0.96 | 0.88 | 1.15 | 0.83 | 0.42 * | 0.17 |
Proliferating cultures a | ||||||||||
Treatment | ||||||||||
Time (h) | Con | TBA | Met | Orn | Put | Spd | Spe | SEM | ||
Pax7 | ||||||||||
0.5 | 0.91 | 1.02 | 1.64 | 0.57 | 0.58 | 1.02 | 1.17 | 0.66 | ||
12 | 0.97 | 0.83 | 1.09 | 0.98 | 0.56 | 1.68 * | 0.67 | 0.29 | ||
24 | 0.96 | 0.96 | 1.59 | 0.98 | 2.94 * | 0.71 | 1.27 | 0.46 | ||
Spry1 | ||||||||||
0.5 | 1.00 | 1.22 | 0.78 | 1.00 | 1.05 | 1.74 | 1.26 | 0.83 | ||
12 | 0.98 | 1.74 | 1.01 | 1.34 | 1.81 * | 0.42 | 0.70 | 0.44 | ||
24 | 1.00 | 1.55 | 1.27 | 2.08 * | 1.00 | 0.71 | 0.63 | 0.69 | ||
MapK | ||||||||||
0.5 | 1.00 | 0.84 | 0.20 * | 0.75 | 0.66 | 0.96 | 1.03 | 0.53 | ||
12 | 1.00 | 0.70 | 1.32 | 0.86 | 1.08 | 0.62 | 0.76 | 0.33 | ||
24 | 0.93 | 1.08 | 1.96 * | 0.53 | 2.09 * | 0.71 | 1.49 | 0.47 | ||
Fused cultures b | ||||||||||
Treatment | ||||||||||
Time (h) | Con | TBA | E2 | TBA + E2 | Met | Orn | Put | Spd | Spe | SEM |
mTOR | ||||||||||
1 | 1.00 | 0.84 | 0.71 † | 0.71 | 0.83 | 0.56 * | 0.78 | 0.83 | 0.69 † | 0.15 |
12 | 1.00 | 1.20 | 1.20 | 1.45 | 1.08 | 1.10 | 1.87 * | 1.97 * | 1.31 | 0.27 |
24 | 1.00 | 0.33 | 1.04 | 1.45 | 1.30 | 1.34 | 0.79 | 1.20 | 0.96 | 0.33 |
eIF-2Bε | ||||||||||
1 | 1.00 | 0.97 | 0.86 | 1.02 | 0.90 | 0.90 | 0.91 | 0.95 | 0.91 | 0.18 |
12 | 1.00 | 0.98 | 1.04 | 1.21 | 1.07 | 1.13 | 1.44 * | 1.28 | 1.31 † | 0.18 |
24 | 1.00 | 1.29 | 0.99 | 1.14 | 1.35 | 1.01 | 1.29 | 0.97 | 0.92 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motsinger, L.A.; Okamoto, L.L.; Ineck, N.E.; Udy, B.A.; Erickson, C.L.; Harraq, Y.; Reichhardt, C.C.; Murdoch, G.K.; Thornton, K.J. Understanding the Effects of Trenbolone Acetate, Polyamine Precursors, and Polyamines on Proliferation, Protein Synthesis Rates, and the Abundance of Genes Involved in Myoblast Growth, Polyamine Biosynthesis, and Protein Synthesis in Murine Myoblasts. Biology 2023, 12, 446. https://doi.org/10.3390/biology12030446
Motsinger LA, Okamoto LL, Ineck NE, Udy BA, Erickson CL, Harraq Y, Reichhardt CC, Murdoch GK, Thornton KJ. Understanding the Effects of Trenbolone Acetate, Polyamine Precursors, and Polyamines on Proliferation, Protein Synthesis Rates, and the Abundance of Genes Involved in Myoblast Growth, Polyamine Biosynthesis, and Protein Synthesis in Murine Myoblasts. Biology. 2023; 12(3):446. https://doi.org/10.3390/biology12030446
Chicago/Turabian StyleMotsinger, Laura A., Lillian L. Okamoto, Nikole E. Ineck, Brynne A. Udy, Christopher L. Erickson, Youssef Harraq, Caleb C. Reichhardt, Gordon K. Murdoch, and Kara Jean Thornton. 2023. "Understanding the Effects of Trenbolone Acetate, Polyamine Precursors, and Polyamines on Proliferation, Protein Synthesis Rates, and the Abundance of Genes Involved in Myoblast Growth, Polyamine Biosynthesis, and Protein Synthesis in Murine Myoblasts" Biology 12, no. 3: 446. https://doi.org/10.3390/biology12030446
APA StyleMotsinger, L. A., Okamoto, L. L., Ineck, N. E., Udy, B. A., Erickson, C. L., Harraq, Y., Reichhardt, C. C., Murdoch, G. K., & Thornton, K. J. (2023). Understanding the Effects of Trenbolone Acetate, Polyamine Precursors, and Polyamines on Proliferation, Protein Synthesis Rates, and the Abundance of Genes Involved in Myoblast Growth, Polyamine Biosynthesis, and Protein Synthesis in Murine Myoblasts. Biology, 12(3), 446. https://doi.org/10.3390/biology12030446