The Matrix Protein Cysrichin, a Galaxin-like Protein from Hyriopsis cumingii, Induces Vaterite Formation In Vitro
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Sequencing Analysis of Cysrichin
2.3. Tissue Expression Analysis of Cysrichin
2.4. Determination of Cysrichin Location by Using a DNA Probe
2.5. RNAi Assay
2.6. Cysrichin Function in Shell Regeneration
2.7. In Vitro Crystallization Experiment
3. Results
3.1. In Silico Analysis of Cysrichin
3.2. Cysrichin Expression Analysis and Location
3.3. Gene Silencing and Shell Surface Observation
3.4. Cysrichin Expression during Shell Regeneration
3.5. Effect of Cysrichin on Crystallization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, Z.Y.; Yuan, L.; Liu, X.J.; Li, J.L. Research progress of matrix proteins in Hyriopsis cumingii. J. Fish. China 2021, 45, 982–991. [Google Scholar]
- Checa, A.G.; Macías-Sánchez, E.; Ramírez-Rico, J. Biological strategy for the fabrication of highly ordered aragonite helices: The microstructure of the Cavolinioidean gastropods. Sci. Rep. 2016, 6, 25989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Addadi, L.; Joester, D.; Nudelman, F.; Weiner, S. Mollusk shell formation: A source of new concepts for understanding biomineralization processes. Chem. Eur. J. 2010, 12, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Frédéric, M.; Luquet, G.; Marie, B.; Medakovic, D. Molluscan shell proteins: Primary structure, origin, and evolution. Curr. Top. Dev. Biol. 2007, 80, 209–276. [Google Scholar]
- Wilt, F.H.; Killian, C.; Livingston, B.T. Development of calcareous skeletal elements in invertebrates. Differentiation 2010, 71, 237–250. [Google Scholar] [CrossRef]
- Long, X.; Ma, Y.R.; Qi, L.M. In Vitro Synthesis of High Mg Calcite under ambient conditions and its implication for biomineralization process. Cryst. Growth Des. 2011, 11, 2866–2873. [Google Scholar] [CrossRef]
- Kamat, S.; Su, X.; Ballarini, R.; Heuer, A.H. Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 2000, 405, 1036–1040. [Google Scholar] [CrossRef]
- Belcher, A.M.; Christensen, R.J.; Hansma, P.K.; Stucky, G.D.; Morse, D.; Wu, X.H. Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 1996, 381, 56–58. [Google Scholar] [CrossRef]
- Falini, G.; Albeck, S.; Weiner, S.; Ad Da Di, L. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 1996, 271, 67–69. [Google Scholar] [CrossRef]
- Wheeler, A.P.; George, J.W.; Evans, C. Control of calcium carbonate nucleation and crystal growth by soluble matrx of oyster shell. Science 1981, 212, 1397–1398. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M.; Saruwatari, K.; Kogure, T.; Yamamoto, Y.; Nishimura, T.; Kato, T.; Nagasawa, H. An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 2009, 325, 1388–1390. [Google Scholar] [CrossRef] [PubMed]
- Han, J.L.; Li, W.J.; Shi, Z.Y.; Hao, Y.Y.; Jin, L.L. Nacrein gene clone, protein extraction and its effect on crystal growth in Hyriopsis cumingii Lea. Biotechnol. Bull. 2010, 12, 137–141. [Google Scholar]
- Damien, C.J. Formation of a calcium phosphate-rich layer on absorbable calcium carbonate bone graft substitutes. Calcif. Tissue Int. 1994, 55, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, I.; Ooki, S.; Fujita, T.; Murayama, E.; Nagasawa, H.; Isa, Y.; Watanabe, T. Molecular cloning of a cDNA encoding a soluble protein in the coral exoskeleton. Biochem. Biophys. Res. Commun. 2003, 304, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Bermudez, A.; Lin, Z.; Hayward, D.C.; Miller, D.J.; Ball, E.E. Differential expression of three galaxin-related genes during settlement and metamorphosis in the scleractinian coral Acropora millepora. BMC Evol. Biol. 2009, 9, 178. [Google Scholar] [CrossRef] [Green Version]
- Marin, F.; Smith, M.; Isa, Y.; Westbroek, M.P. Skeletal matrices, muci, and the origin of invertebrate calcification. Proc. Natl. Acad. Sci. USA 1996, 93, 1554–1559. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, H.; Miyoshi, F.; Kohno, J. The carbonic anhydrase domain protein nacrein is expressed in the epithelial cells of the mantle and acts as a negative regulator in calcification in the mollusc Pinctada fucata. Zool. Sci. 2005, 22, 311. [Google Scholar] [CrossRef]
- Takeuchi, T.; Endo, K. Biphasic and dually coordinated expression of the genes encoding major shell matrix proteins in the pearl oyster Pinctada fucata. Mar. Biotechnol. 2006, 8, 52–61. [Google Scholar] [CrossRef]
- Yonge, C.M. Structure and physiology of the organs of feeding and digestion in Ostrea edulis. J. Mar. Biol. Assoc. U. K. 1926, 14, 295–386. [Google Scholar] [CrossRef] [Green Version]
- Ivanina, A.V.; Falfushynska, H.I.; Beniash, E.; Piontkivska, H.; Sokolova, I.M. Biomineralization-related specialization of hemocytes and mantle tissues of the Pacific oyster Crassostrea gigas. J. Exp. Biol. 2017, 220, 3209–3221. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Li, S.; Liu, Y.; Liu, C.; Zhang, R. Hemocytes in the extrapallial space of Pinctada fucata are involved in immunity and biomineralization. Sci. Rep. 2018, 8, 4657. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.J.; Jin, C.; Guo, W.; Li, J.L. Identification and Molecular Characterization of Hc-Upsalin, a Novel Matrix Protein Involved in Nacreous-Layer Biomineralization in Hyriopsis cumingii. Thalassas 2019, 35, 143–150. [Google Scholar] [CrossRef]
- Creighton, T.E. Disulphide bonds and protein stability. Bioessays 2010, 8, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, N.; Sowdhamini, R.; Ramakrishnan, C.; Balaram, P. Conformations of disulfide bridges in proteins. Chem. Biol. Drug Des. 2010, 36, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Spies, N.P.; Takabayashi, M. Expression of galaxin and oncogene homologs in growth anomaly in the coral Montipora capitata. Dis. Aquat. Org. 2013, 104, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Gotliv, B.A.; Kessler, N.; Sumerel, J.L.; Morse, D.E.; Weiner, S. Asprich: A novel aspartic acid-rich protein family from the prismatic shell matrix of the bivalve Atrina rigida. ChemBioChem 2005, 6, 304–314. [Google Scholar] [CrossRef]
- Shen, X.; Belcher, A.M.; Hansma, P.K.; Stucky, G.D.; Morse, D.E. Molecular cloning and characterization of lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens. J. Biol. Chem. 1997, 272, 32472–32481. [Google Scholar] [CrossRef] [Green Version]
- Liff, M.I.; Zimmerman, M.N. NMR study of crosslinking by oxidation of four-cysteine polypeptide models of the elastic network phase of wool fibre. Polym. Int. 2015, 47, 375–385. [Google Scholar] [CrossRef]
- Watanabe, T.; Fukuda, I.; China, K.; Isa, Y. Molecular analyses of protein components of the organic matrix in the exoskeleton of two scleractinian coral species. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2003, 136, 767–774. [Google Scholar] [CrossRef]
- Kono, M.; Hayashi, N.; Samata, T. Molecular mechanism of the nacreous layer formation in Pinctada maxima. Biochem. Biophys. Res. Commun. 2000, 269, 213–218. [Google Scholar] [CrossRef]
- Miyashita, T.; Takagi, R.; Okushima, M.; Nakano, S.; Miyamoto, H. Complementary DNA cloning and characterization of Pearlin, a new class of matrix protein in the nacreous layer of oyster pearls. Mar. Biotechnol. 2000, 2, 409. [Google Scholar] [CrossRef] [PubMed]
- Gong, N.P.; Ma, Z.J.; Li, Q.; Li, Q.; Yan, Z.G.; Xie, L.P.; Zhang, R.Q. Characterization of calcium deposition and shell matrix protein secretion in primary mantle tissue culture from the marine pearl oyster Pinctada fucata. Mar. Biotechnol. 2008, 10, 457–465. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.; Li, S.; Liu, Z.; Zhang, R. Repaired shells of the pearl oyster largely recapitulate normal prismatic layer growth: A proteomics study of shell matrix proteins. ACS Biomater. Sci. Eng. 2018, 5, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.J.; Li, J.; Xiang, L.; Sun, J.; Zheng, G.L.; Zhang, G.Y.; Wang, H.Z.; Xie, L.P.; Zhang, R.Q. The role of matrix proteins in the control of nacreous layer deposition during pearl formation. Proc. R. Soc. B Biol. Sci. 2012, 279, 1000–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naka, K.; Tanaka, Y.; Chujo, Y. Effect of anionic starburst dendrimers on the crystallization of CaCO3 in aqueous solution: Size control of spherical vaterite particles. Langmuir 2002, 18, 3655–3658. [Google Scholar] [CrossRef]
- Gusliakova, O.; Verkhovskii, R.; Abalymov, A.; EkaterinaLengert; Kozlova, A.; Atkin, V.; Nechaeva, O.; Morrison, A.; Tuchin, V.; Svenskaya, Y. Biocompatible superparamagnetic sub-micron vaterite particles for thermo-chemotherapy: From controlled design to in vitro anticancer synergism. Mater. Sci. Eng. C 2021, 119, 111428. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, D.; Yang, X.; Liu, C.; Xie, J.; Zheng, G.L.; Xie, L.P.; Zhang, R.Q. A novel matrix protein, PfY2, functions as a crucial macromolecule during shell formation. Sci. Rep. 2017, 7, 6021. [Google Scholar] [CrossRef]
- Ma, H.Y.; Dai, T.G.; Yuan, K.R.; Deng, Y.H. The first discovery of vaterite in lusterless fresh-water pearls of leidian, zhejiang. Acta Mineral. Sin. 2001, 2, 153–157. [Google Scholar]
- Hasse, B.; Ehrenberg, H.; Marxen, J.C.; Becker, W.; Epple, M. Calcium carbonate modifications in the mineralized shell of the freshwater snail Biomphalaria glabrata. Chem. Eur. J. 2000, 6, 3679–3685. [Google Scholar] [CrossRef]
- Macías-Sánchez, E.; Willinger, M.G.; Pina, C.M.; Checa, A.G. Transformation of ACC into aragonite and the origin of the nanogranular structure of nacre. Sci. Rep. 2017, 7, 12728. [Google Scholar] [CrossRef] [Green Version]
- AntoninoNatoli; Wiens, M.; Schröder, H.-C.; Stifanic, M.; Batel, R.; Soldati, A.L.; Jacob, D.E.; Müller, W.E.G. Bio-vaterite formation by glycoproteins from freshwater pearls. Micron 2010, 41, 359–366. [Google Scholar]
- Yang, D.; Yan, Y.; Yang, X.; Liu, J.; Zheng, G.L.; Xie, L.P.; Zhang, R.Q. A basic protein, N25, from a mollusk modifies calcium carbonate morphology and shell biomineralization. J. Biol. Chem. 2019, 294, 8371–8383. [Google Scholar] [CrossRef] [PubMed]
- Lan, H.Y. In Situ Raman Spectra of Freshwater Cultured Pearls and the Phase Transforman of Its in Organic Cystals. Master’s Thesis, Guangxi University, Nanning, China, 2005. [Google Scholar]
Primer Name | Primer Sequence (5′–3′) |
---|---|
cysrichin-F1 | 5′-GAYGCNGGNTTYAGY-3′, Y = C/T, N = A/G/C/T |
cysrichin-F2 | 5′-GAYGCNGGNTTYTCN-3′, Y = C/T, N = A/G/C/T |
cysrichin-R | GCATACAAATAAAGGGCTTTGGTAG |
qPCR-F | GATGATAATCCGAAGAATGG |
qPCR-R | GATTTTGACTGAACCACACC |
EF-1α-F | GGAACTTCCCAGGCAGACTGTGC |
EF-1α-R | TCAAAACGGGCCGCAGAGAAT |
RNAi-F | TATGTGCTGTAACGGTGTGGT |
RNAi-R | AAAGGGCTTTGGTAGTGGTC |
RNAi-F+T7 | GGATCCTAATACGACTCACTATAGGTATGTGCTGTAACGGTGTGGT |
RNAi-R+T7 | GGATCCTAATACGACTCACTATAGGAAAGGGCTTTGGTAGTGGTC |
Amino Acid | Proportion |
---|---|
Cys (C) | 14.70% |
Ser (S) | 11.70% |
Gly (G) | 8.60% |
Arg (R) | 6.70% |
Gln (Q) | 6.10% |
Asp (D) | 4.90% |
Ile (I) | 4.30% |
Leu (L) | 4.30% |
Met (M) | 4.30% |
Val (V) | 4.30% |
Pro (P) | 3.70% |
Asn (N) | 3.10% |
Phe (F) | 3.10% |
Tyr (Y) | 3.10% |
Thr (T) | 2.50% |
Lys (K) | 1.80% |
Glu (E) | 1.20% |
His (H) | 1.20% |
Trp (W) | 1.20% |
Theoretical weight: 17.53 kDa | pI: 8.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Z.; Zhang, X.; Zhou, Y.; Yao, L.; Zhang, Z.; Zhang, R.; Liu, X. The Matrix Protein Cysrichin, a Galaxin-like Protein from Hyriopsis cumingii, Induces Vaterite Formation In Vitro. Biology 2023, 12, 447. https://doi.org/10.3390/biology12030447
Xia Z, Zhang X, Zhou Y, Yao L, Zhang Z, Zhang R, Liu X. The Matrix Protein Cysrichin, a Galaxin-like Protein from Hyriopsis cumingii, Induces Vaterite Formation In Vitro. Biology. 2023; 12(3):447. https://doi.org/10.3390/biology12030447
Chicago/Turabian StyleXia, Zhonghui, Xin Zhang, Yujuan Zhou, Liping Yao, Zhen Zhang, Rongqing Zhang, and Xiaojun Liu. 2023. "The Matrix Protein Cysrichin, a Galaxin-like Protein from Hyriopsis cumingii, Induces Vaterite Formation In Vitro" Biology 12, no. 3: 447. https://doi.org/10.3390/biology12030447
APA StyleXia, Z., Zhang, X., Zhou, Y., Yao, L., Zhang, Z., Zhang, R., & Liu, X. (2023). The Matrix Protein Cysrichin, a Galaxin-like Protein from Hyriopsis cumingii, Induces Vaterite Formation In Vitro. Biology, 12(3), 447. https://doi.org/10.3390/biology12030447